PROJETO PEDAGÓGICO DO CURSO DE ENGENHARIA CIVIL COM
ÊNFASE EM ESTRUTURAS METÁLICAS

OURO BRANCO - MG
JUNHO de 2010
REITOR
Helvécio Luiz Reis

VICE REITORA
Valéria Kemp

PRÓ REITOR DE ENSINO DE GRADUAÇÃO
Murilo Cruz Leal

PRÓ REITOR DE PESQUISA E PÓS GRADUAÇÃO
Antônio Luiz Assunção

PRÓ REITOR DE EXTENSÃO E ASSUNTOS COMUNITÁRIOS
Marcus Vieira Silva

PRÓ REITOR DE ADMINISTRAÇÃO
Benedito Anselmo Martins de Oliveira

PRÓ REITORA DE PLANEJAMENTO E DESENVOLVIMENTO
Neyla Lourdes Bello

PRÓ REITORA DE GESTÃO E DESENVOLVIMENTO DE PESSOAS
Maria Anália Catizane Ramos

DIRETOR DO CAMPUS ALTO PARAOPEBA
Paulo César Abreu Leão

DIRETORA ADJUNTA DO CAMPUS ALTO PARAOPEBA
Cássia Regina Santos Nunes

COMISSÃO RESPONSÁVEL
Heraldo Nunes Pitanga
Hisashi Inoue
Stélio Maia Menezes
Marina Garabini Cornelissen Hoyos
Renata Maria Abrantes Baracho Porto
Cynara Fiedler Bremer
Danielle Meireles de Oliveira
Silvio Luiz Thomaz de Souza
Taciano Oliveira da Silva
Silvia Ferreira da Silva
Murilo Cruz Leal
Gustavo Leal Toledo
Rafael Cesar Russo Chagas

CONSULTOR EXTERNO
Ricardo Hallal Fakury
Sumário

1. APRESENTAÇÃO ..1

2. O CURSO DE ENGENHARIA CIVIL DO CAP/UFSJ ...2

3. O BACHARELADO EM CIÊNCIA E TECNOLOGIA (BC&T) ..3
 3.1 Apresentação do BC&T ...3
 3.2 Perfil do egresso do BC&T ..4
 3.3 Matriz curricular do BC&T ...5
 3.4 Trabalho de contextualização e integração curricular ..6

4. JUSTIFICATIVA DO CURSO ..8

5. OBJETIVOS DO CURSO ..12

6. PERFIL DO EGRESSO ..13
 6.1 Requisitos de acesso ..14

7. COMPETÊNCIAS E HABILIDADES ..14

8. ESTRATÉGIAS DE ENSINO E APRENDIZAGEM ...17

9. MATRIZ CURRICULAR ...19
 9.1 Apresentação geral ..19
 9.2 Grade curricular do curso de engenharia civil com ênfase em estruturas metálicas da UFSJ ...22
 9.3 Seqüência sugerida e pré requisitos ...27
 9.4 Estágio curricular obrigatório ...31
 9.5 Trabalho de conclusão de curso ...32
 9.6 Atividades complementares ..33

10. TRANSIÇÃO PARA A MATRIZ CURRICULAR PROPOSTA ..37

11. INFRA ESTRUTURA FÍSICA ..38
 11.1 Laboratórios ..38

12. RECURSOS HUMANOS ..57
 12.1 Administração do curso ..58
 12.2 Núcleo docente estruturante (NDE) ..58

13. EMENTÁRIO ..58

14. ANEXOS ..207
1. APRESENTAÇÃO

O presente documento apresenta o Projeto Pedagógico do Curso (PPC) de Engenharia Civil com ênfase em estruturas metálicas, do Campus Alto Paraopeba (CAP), da Universidade Federal de São João del-Rei (UFSJ).

O texto foi elaborado em atendimento à Resolução Nº 001, de 15 de janeiro de 2003 do CONAC¹, modificada pela Resolução Nº 023, de 11 de dezembro de 2008 do CONEP² que determina a obrigatoriedade do Projeto Pedagógico por curso e fixa diretrizes para sua elaboração. O referido Projeto Pedagógico está em perfeito acordão com as Diretrizes Curriculares Nacionais dos Cursos de Engenharia, instituídas pela Resolução CNE/CES³ Nº 11, de 11 de março de 2002, que consta no ANEXO 1, com a Resolução que dispõe sobre a regulamentação da atribuição de títulos profissionais, atividades, competências e caracterização do âmbito de atuação dos profissionais inseridos no Sistema CONFEA⁴/CREA⁵, para efeito de fiscalização do exercício profissional, Resolução Nº 1.010, de 22 de agosto de 2005, que consta no ANEXO 2, e também com as Diretrizes Gerais do Campus Alto Paraopeba, anexo à Resolução Nº 003, de 18 de fevereiro de 2008 do CONSU,⁶ conforme ANEXO 3.

O texto aqui apresentado foi baseado na versão anterior do Projeto Pedagógico do Curso de Engenharia Civil com ênfase em Estruturas Metálicas, elaborado em 2008 e que está atualmente em vigor no CAP. Tal reforma se faz necessária, já que, devido à falta de docentes da área de Engenharia Civil, concursados e atuantes no CAP/UFSJ na época da implantação do campus, o projeto anterior foi elaborado por profissionais contratados pela Instituição e que não atuavam na mesma. Para atender às especificidades da região onde o curso está inserido e também às exigências do atual mercado profissional, faz-se necessário uma reformulação do atual PPC. Diante do exposto, por meio da Portaria Nº 003 de 25 de janeiro de 2010, a Diretoria do Campus Alto Paraopeba instituiu uma comissão formada pelos docentes Heraldo Nunes Pitanga, Hisashi Inoue, Mariana Garabini Cornelissen Hoyos, Renata Maria Abrantes Baracho Porto, Sílvio Luiz Thomaz de

¹ Conselho Acadêmico da Universidade Federal de São João Del Rei
² Conselho de Ensino, Pesquisa e Extensão da Universidade Federal de São João Del Rei
³ Conselho Nacional de Educação/Câmara de Educação Superior
⁴ Conselho Federal de Engenharia, Arquitetura e Agronomia
⁵ Conselho Regional de Engenharia, Arquitetura e Agronomia
⁶ Conselho Universitário da Universidade Federal de São João Del Rei
Souza, Cynara Fiedler Bremer, Danielle Meireles de Oliveira, Stélio Maia Menezes, Taciano Oliveira da Silva e a discente Sílvia Ferreira da Silva que, sob a presidência do primeiro, reformulou o antigo PPC e elaborou uma nova proposta de Projeto Pedagógico para o curso. Essa comissão contou ainda com os trabalhos de um consultor externo, o Prof. Ricardo Hallal Fakury, docente da Universidade Federal de Minas Gerais (UFMG). Todas as modificações propostas serão apresentadas ao longo do texto.

Além de atender aos requisitos institucionais obrigatórios, este documento mantém uma das principais características do projeto anterior, o de apresentar à sociedade um curso com qualidade, voltado para a formação de profissionais éticos e comprometidos com questões tais como qualidade de vida da população, desenvolvimento sustentável, uso inteligente das novas tecnologias, dentre outras.

2. O CURSO DE ENGENHARIA CIVIL DO CAP/UFSJ

O curso de Engenharia Civil com ênfase em estruturas metálicas da UFSJ/CAP é ofertado tanto em período integral, quanto em período noturno. São oferecidas 100 vagas anuais, divididas em duas entradas semestrais de 50 vagas cada. A carga horária total do curso é distribuída ao longo de 10 semestres, sendo cada semestre constituído por 18 semanas letivas com 20 horas/aula cada.

Nome do Curso: Engenharia Civil com Ênfase em Estruturas Metálicas.

Habilitação: Engenheiro Civil.

Número de vagas: 50 por semestre.

Tipo: Bacharelado.

Modalidade: Educação Presencial (EDP)

Turno de funcionamento: integral e noturno.

Endereço de funcionamento: Campus Alto Paraopeba da UFSJ, Rodovia 443, km 07, Fazenda do Cadete, Caixa Posta 131, CEP: 36420-000, Ouro Branco, Minas Gerais, Brasil.

Tempo de Integralização do Curso:

- Mínimo: 10 semestres.
- Padrão: 10 semestres.
- Máximo: 15 semestres.
Carga horária semestral:

- **Mínima**: 280 horas.
- **Máxima**: 420 horas.

Histórico do Curso: O curso de Engenharia Civil com ênfase em Estruturas Metálicas do CAP/UFSJ recebeu sua primeira turma no primeiro semestre de 2008, oferecendo 50 vagas no turno da noite. No segundo semestre de 2008, o curso não teve uma nova entrada e, desde o primeiro semestre de 2009, o curso apresenta 2 entradas anuais com 50 vagas cada, totalizando 100 vagas anualmente, sendo 50 delas para o período noturno (primeiro semestre do ano) e 50 vagas para o período integral (segundo semestre do ano).

Características do Curso: O curso é composto de unidades curriculares obrigatórias, incluindo um Trabalho de Conclusão de Curso no seu último período. Deve-se cumprir ainda o Estágio Curricular Obrigatório e Atividades Complementares. Todos esses itens serão especificados e melhor detalhados nas próximas seções.

Uma peculiaridade do curso de Engenharia Civil com ênfase em Estruturas Metálicas da UFSJ é a existência de uma formação intermediária, denominada Bacharelado em Ciência e Tecnologia (BC&T). Tal formação garante aos alunos do curso um diploma de Bacharel em Ciência e Tecnologia, quando os alunos integralizarem 2404 horas (ao término do sexto período do curso), conforme discriminação no item seguinte.

3. O BACHARELADO EM CIÊNCIA E TECNOLOGIA (BC&T)

3.1 Apresentação do BC&T

Em conformidade com as Diretrizes Gerais do Campus Alto Paraopeba, anexas à Resolução 003/2008 do Conselho Universitário (CONSU), de 18 de fevereiro de 2008, o Bacharelado em Ciência e Tecnologia (BC&T) corresponde ao primeiro ciclo da formação em graduação oferecida no Campus Alto Paraopeba (CAP) da Universidade Federal de São João del-Rei (UFSJ). Atualmente, o curso não possui uma forma de ingresso específica, mas é oferecido a todos os alunos ingressantes nos cursos de Engenharia da UFSJ do CAP.
O BC&T faz parte do movimento de inovação curricular e pedagógica em curso na Educação Superior no Brasil, dirigido às especificidades do mundo contemporâneo. Com essa diplomação, pretende-se formar cidadãos, em nível superior, que possuam as seguintes características:

- Capacidade de comunicação nas formas oral, escrita e gráfica, com clareza e precisão;
- Raciocínio lógico e dedutivo;
- Capacidade de trabalho em equipe;
- Domínio de ferramentas computacionais;
- Espírito crítico;
- Postura ética e responsabilidade social;
- Foco na sustentabilidade e na cidadania em suas práticas profissionais;
- Autonomia para inserir-se em ambientes globalizados e apreender os conteúdos e estabelecer competências necessárias ao desenvolvimento de suas funções e de novas idéias e tecnologias para a solução de problemas.

Para atingirmos tais objetivos, a matriz curricular do curso de BC&T contempla uma formação generalista e multidisciplinar, oferecendo conhecimento de conteúdos básicos que fundamentam a prática no campo das Ciências Exatas e Engenharia, bem como uma fundamentação humanística, dirigida especialmente à compreensão do *modus operandi* da ciência e das implicações socioambientais das atividades científicas e tecnológicas; pretendeu-se ainda favorecer a flexibilidade e a mobilidade estudantil, já que permite aos alunos escolher parte dos conteúdos que irão cursar, assim como a Instituição de Ensino Superior para cursar tais conteúdos ou até mesmo continuar seus estudos e obter nova diplomação.

3.2 Perfil do egresso do BC&T

O Bacharelado em Ciência e Tecnologia é um curso de natureza não profissionalizante, mas que permite a empregabilidade do bacharel. O aluno egresso desse curso terá uma formação generalista, com um amplo conhecimento das disciplinas básicas, domínio de ferramentas computacionais, assim como uma formação humanística. Deverão ser capazes de se adaptar às novas exigências do
mundo do trabalho de modo crítico e criativo. O egresso poderá atuar especificamente em instituições públicas ou privadas, ou abrir empresa própria ou em parceria, ou candidatar-se a cursos de pós-graduação, especialização, mestrado ou doutorado. No mundo de trabalho, o egresso desse Bacharelado poderá ocupar posições que não necessitem de excessiva especialização, mas que, por outro lado, exijam visão de conjuntura e bases conceituais no campo da Ciência e Tecnologia, pró-atividade, espírito cooperativo e atitude ética.

3.3 Matriz curricular do BC&T

O curso de Bacharelado em Ciência e Tecnologia (BC&T) do CAP/UFSJ possui a seguinte matriz curricular, totalizando 2404 h (duas mil e quatrocentas e quatro horas) de carga horária obrigatória:

Tabela 1 – Estrutura curricular do BC&T.

<table>
<thead>
<tr>
<th>ESTRUTURA CURRICULAR DO BC&T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição</td>
</tr>
<tr>
<td>Unidades Curriculares Obrigatórias</td>
</tr>
<tr>
<td>Unidades Curriculares Eletivas</td>
</tr>
<tr>
<td>Trabalho de Contextualização e</td>
</tr>
<tr>
<td>Integração Curricular I e II (TCIC I e TCIC II)</td>
</tr>
<tr>
<td>Atividades Complementares</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

As **Unidades Curriculares Obrigatórias** do BC&T são as unidades curriculares obrigatórias e comuns aos cinco cursos de Engenharia oferecidos pelo CAP. Segue, abaixo, uma tabela contendo a discriminação de tais unidades curriculares.

Tabela 2 – Discriminação das UC’s Obrigatórias do BC&T

<table>
<thead>
<tr>
<th>Código</th>
<th>Unidade Curricular</th>
<th>Carga Horária</th>
<th>Pré requisito</th>
<th>Co requisito</th>
</tr>
</thead>
</table>

5
<table>
<thead>
<tr>
<th>Código</th>
<th>Curso da Disciplina</th>
<th>Carga Horária</th>
<th>Código</th>
<th>Fundamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCT101</td>
<td>Cálculo Diferencial e Integral I</td>
<td>72</td>
<td>Não há.</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT102</td>
<td>Cálculo Diferencial e Integral II</td>
<td>72</td>
<td>BCT101</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT103</td>
<td>Cálculo Diferencial e Integral III</td>
<td>72</td>
<td>BCT102</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT104</td>
<td>Equações Differenciais A</td>
<td>72</td>
<td>BCT102</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT106</td>
<td>Geometria Analítica e Álgebra Linear</td>
<td>72</td>
<td>Não há.</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT107</td>
<td>Estatística e Probabilidade</td>
<td>72</td>
<td>BCT101</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT201</td>
<td>Fenômenos Mecânicos</td>
<td>72</td>
<td>BCT101</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT202</td>
<td>Fenômenos Térmicos, Ondulatórios e Fluidos</td>
<td>72</td>
<td>BCT201</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT203</td>
<td>Fenômenos Eletromagnéticos</td>
<td>72</td>
<td>BCT201</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT301</td>
<td>Algoritmos e Estrutura de Dados I</td>
<td>72</td>
<td>Não há.</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT303</td>
<td>Cálculo Numérico</td>
<td>72</td>
<td>BCT301 / BCT101</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT401</td>
<td>Química Geral</td>
<td>54</td>
<td>Não há.</td>
<td>BCT402</td>
</tr>
<tr>
<td>BCT402</td>
<td>Química Geral Experimental</td>
<td>18</td>
<td>Não há.</td>
<td>BCT401</td>
</tr>
<tr>
<td>BCT502</td>
<td>Individuos, Grupos e Sociedade Global</td>
<td>36</td>
<td>Não há.</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT503</td>
<td>Ciência, Tecnologia e Sociedade</td>
<td>36</td>
<td>Não há.</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT504</td>
<td>Meio Ambiente e Gestão para a Sustentabilidade</td>
<td>36</td>
<td>Não há.</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT505</td>
<td>Economia e Administração para Engenheiros</td>
<td>72</td>
<td>Não há.</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT601</td>
<td>Trabalho de Contextualização e Integração Curricular I</td>
<td>72</td>
<td>1080 horas</td>
<td>Não há.</td>
</tr>
<tr>
<td>BCT602</td>
<td>Trabalho de Contextualização e Integração Curricular II</td>
<td>72</td>
<td>BCT601</td>
<td>Não há.</td>
</tr>
<tr>
<td></td>
<td>Atividades Complementares</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unidades Curriculares Eletivas</td>
<td>1080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As Unidades Curriculares Eletivas do BC&T são quaisquer unidades curriculares oferecidas pela UFSJ em todos os seus campi totalizando, no mínimo, a carga horária exigida.

3.4 Trabalho de contextualização e integração curricular

Além das unidades obrigatórias comuns, o aluno terá que fazer o Trabalho de Contextualização e Integração Curricular (TCIC), sendo um requisito obrigatório para a titulação no Bacharelado em Ciência e Tecnologia (BC&T) da Universidade Federal de São João del Rei, no Campus Alto Paraopeba (CAP/UFSJ). Esse
trabalho é desenvolvido durante 01 (um) ano e está inserido na estrutura curricular do curso através das unidades curriculares obrigatórias TCIC I e TCIC II. Em conformidade com as Diretrizes Gerais do Campus Alto Paraopeba, o TCIC representa uma inovação na abordagem pedagógica, favorecendo o protagonismo estudantil, o trabalho em equipe, o uso de novas tecnologias e, principalmente, a necessidade da prática da multi, inter e/ou transdisciplinaridade e a correlação de conceitos e temas científicos e tecnológicos com os contextos sociocultural, ambiental e produtivo. Nesse sentido, o TCIC enxega contribuir para o amadurecimento e a autonomia dos estudantes, preparando-os melhor para o mundo profissional contemporâneo. Dessa forma, o TCIC é um espaço curricular onde a articulação entre teoria/prática e ensino/pesquisa/extensão e respectivas reflexões podem ser desenvolvidas. As regras gerais e específicas do TCIC serão definidas pelo Colegiado do curso de Engenharia Civil com ênfase em estruturas metálicas.

Os principais objetivos do TCIC são:

✓ Propiciar ao aluno a interação e a integração entre os diferentes campos de conhecimentos adquiridos e em estudo, ao longo dos três primeiros anos de sua formação acadêmica regular;

✓ Propiciar ao aluno uma visão aplicada de conceitos e teorias aprendidos em sala de aula;

✓ Permitir que o aluno contextualize os conhecimentos adquiridos em relação às demandas sociais;

✓ Favorecer a articulação entre os conhecimentos teórico e prático;

✓ Estimular no aluno o desenvolvimento de sua autonomia;

✓ Estimular o trabalho em equipe.
Outras informações sobre esse Trabalho de Contextualização e Integração Curricular podem ser obtidas nas fichas dessas unidades curriculares que se encontram no Ementário.

4. JUSTIFICATIVA DO CURSO

Aliada ao ciclo de crescimento e desenvolvimento econômico do país, iniciado na década de 1950, a construção civil brasileira ganhou gradativa importância e começou a se destacar como atividade industrial, conduzindo o setor à inevitável busca pela qualificação dos profissionais envolvidos com o seu exercício. Comprovadamente, a Engenharia Civil brasileira está entre as mais avançadas do mundo. No que concerne à tecnologia do concreto armado, por exemplo, ela se situa em posição de vanguarda, possibilitando soluções arrojadas em estruturas. Também a área de desenvolvimento tecnológico de novos materiais e a utilização de resíduos da construção civil ou de outras indústrias têm se destacado no âmbito internacional.

As empresas brasileiras de Engenharia Civil, na sua grande maioria, têm como característica marcante a diversidade de áreas de atuação, o que facilita a atuação das mesmas em quase todos os mercados. Segundo dados do Ministério do Desenvolvimento, Indústria e Comércio Exterior, a Engenharia Civil brasileira já realizou obras monumentais e avançadas em mais de cinqüenta países ao redor do mundo, como, por exemplo, plataformas de petróleo, metrôs, gasodutos e aeroportos.

Entre as várias modalidades de Engenharia, a Civil é efetivamente a que está mais estreitamente vinculada aos cidadãos e ao seu convívio nas cidades, estando muito ligada à qualidade da vida humana, uma vez que ela é fundamental na construção de domicílios e edifícios, captação e distribuição de água, captação e distribuição de energia, construção e controle dos sistemas de tráfego de pessoas e bens, dentre outros.

Hoje, a indústria da construção civil congrega milhares de empresas no país, desde grandes expoentes da engenharia mundial, até as milhares de pequenas e microempresas que promovem a interiorização do desenvolvimento, proporcionando os mais diversos benefícios à sociedade. O setor da construção civil propriamente dito (edificações, obras viárias e construção pesada), acrescido dos segmentos fornecedores de matéria-prima e equipamentos para a construção e dos setores de
serviços e distribuição ligados à construção, é responsável por percentagem significativa do Produto Interno Bruto (PIB) nacional.

Adicionalmente, não podem ser desconsiderados os efeitos da indústria de construção civil sobre o processo produtivo e o seu potencial de criação de empregos (diretos e indiretos). A indústria da construção nacional impulsiona a grande maioria dos segmentos produtivos, o que justifica a sua denominação de “poderosa alavanca para o desenvolvimento sustentado do país”.

No âmbito da Engenharia Civil moderna, uma tendência que tem sido claramente constatada na área da construção civil em nosso país é a de incrementar o emprego das estruturas de aço. Desde o século XVIII, quando se iniciou a utilização de estruturas de aço na construção civil, até os dias atuais, o aço tem possibilitado aos arquitetos, engenheiros e construtores soluções arrojadas, eficientes e de alta qualidade. Das primeiras obras aos ultramodernos edifícios que se multiplicaram pelas grandes cidades, a arquitetura em aço sempre esteve associada à ideia de modernidade, inovação e vanguarda, traduzida em obras de grande expressão arquitetônica. No entanto, as vantagens na utilização de sistemas construtivos em aço vão muito além da linguagem estética de expressão marcante: redução do tempo de construção, racionalização no uso de materiais e na mão de obra e aumento da produtividade passaram a ser fatores chave para o sucesso de qualquer empreendimento. Essas características, que transformaram a construção civil no maior mercado para os produtores de aço no exterior, começam agora a ser percebidas no Brasil.

Buscando incentivar este mercado e colocar o Brasil no mesmo patamar de desenvolvimento tecnológico de outros países, uma série de empresas siderúrgicas instaladas na região do Alto Paraopeba se propõe a oferecer uma vasta gama de aços para aplicação específica na construção civil. A presença, na região, de empresas como a Gerdau Açominas, a Vallourec & Sumitomo Tubos do Brasil (VSB) e a Companhia Siderúrgica Nacional (CSN) tem transformado essa região no maior pólo siderúrgico do estado de Minas Gerais, abrindo um grande leque de possibilidades para os profissionais da Engenharia Civil que, além da sua formação convencional, são especializados em construções metálicas.

É importante ressaltar que, atualmente, graças ao desenvolvimento tecnológico, o aço é apresentado em grande diversidade de formas e especificações. O material pode ser utilizado na construção civil industrializada sob diferentes
subsistemas, desde fundações, estruturas, lajes, coberturas e fechamentos, até componentes como escadas, portas e janelas. Na aplicação em estruturas, vários tipos de perfis podem ser empregados, como laminados, soldados e dobrados ou mesmo a combinação entre estes perfis, no intuito de se otimizar vãos e cargas. Há sistemas construtivos desenvolvidos a partir de perfis de aço zincado leves, o denominado “Light Steel Framing”, que permitem a construção rápida de residências ou mesmo de prédios de até cinco pavimentos. O aço pode também ser utilizado nos fechamentos internos, por meio do sistema dry wall, e na aplicação em lajes, em fôrmas colaborantes (steel deck) que facilitam o trabalho no canteiro ao eliminar a necessidade de escoramentos. Em relação à estrutura do telhado, o engradamento metálico vem substituindo a madeira nas coberturas e pode ser utilizado tanto em construções estruturadas em aço, como em estruturas convencionais, com a vantagem de chegar à obra na condição pré-montada. Além disso, o engradamento em aço pode receber qualquer tipo de telha, desde as tradicionais em cerâmica como as telhas de aço, não apresentando os problemas que são freqüentes de empenamento ou ataque de organismos. Com alta durabilidade, facilidade de manutenção e reciclabilidade, as coberturas podem utilizar vários tipos de telhas em aço zincado, em liga alumínio-zinco e em pré-pintados, dependendo da agressividade do ambiente. As coberturas com telhas de aço oferecem grandes vantagens em termos de rapidez de instalação e em função de seu baixo peso.

Verifica-se, portanto, que os sistemas construtivos em aço apresentam vantagens significativas sobre os sistemas construtivos convencionais. Dentre essas vantagens, destacam-se as seguintes:

✓ **Liberdade no projeto de arquitetura:** a tecnologia do aço confere aos arquitetos total liberdade criadora, permitindo a elaboração de projetos arrojados e de expressão arquitetônica marcante;

✓ **Maior área útil:** as seções dos pilares e vigas de aço são substancialmente mais esbeltas do que as equivalentes em concreto, resultando em melhor aproveitamento do espaço interno e aumento da área útil, fator muito importante principalmente em garagens;
Flexibilidade: a estrutura em aço mostra-se especialmente indicada nos casos onde há necessidade de adaptações, ampliações, reformas e mudança de ocupação de edifícios. Além disso, torna mais fácil a passagem de utilidades como água, ar condicionado, eletricidade, esgoto, telefonia, informática, entre outros;

Compatibilidade com outros materiais: o sistema construtivo em aço é perfeitamente compatível com qualquer tipo de material de fechamento, tanto vertical como horizontal, admitindo desde os mais convencionais (tijolos, blocos, lajes moldadas in loco) até componentes pré-fabricados (lajes e painéis de concreto, painéis "dry-wall");

Menor prazo de execução: a fabricação da estrutura em paralelo com a execução das fundações, a possibilidade de se trabalhar simultaneamente em diversas frentes de serviços, a diminuição de fórmas e escoramentos e o fato da montagem da estrutura não ser afetada pela ocorrência de chuvas, todos esses aspectos podem levar a uma redução de até 40% no tempo de execução da obra quando comparado com os processos convencionais;

Racionalização de materiais e mão-de-obra: numa obra, através de processos convencionais, o desperdício de materiais pode chegar a 25% em peso. A estrutura em aço possibilita a adoção de sistemas industrializados, fazendo com que o desperdício seja sensivelmente reduzido;

Alívio de carga nas fundações: por serem mais leves, as estruturas em aço podem reduzir em até 30% o custo das fundações;

Garantia de qualidade: a fabricação de uma estrutura em aço ocorre dentro de uma indústria e conta com mão-de-obra altamente qualificada, o que dá ao cliente a garantia de uma obra com qualidade superior devido ao rígido controle existente durante todo o processo industrial;

Antecipação do ganho: em função da maior velocidade de execução da obra, haverá um ganho adicional pela ocupação antecipada do imóvel e pela rapidez no retorno do capital investido;
Organização do canteiro de obras: como a estrutura em aço é totalmente pré-fabricada, há uma melhor organização do canteiro devido, entre outros, à ausência de grandes depósitos de areia, brita, cimento, madeiras e ferragens, reduzindo também o inevitável desperdício desses materiais. O ambiente limpo, com menor geração de entulho, oferece ainda melhores condições de segurança ao trabalhador, contribuindo para a redução dos acidentes na obra;

Reciclabilidade: o aço é 100% reciclável e as estruturas em aço podem ser desmontadas e reaproveitadas;

Preservação do meio ambiente: a estrutura em aço é menos agressiva ao meio ambiente, pois além de reduzir o consumo de madeira na obra, diminui a emissão de material particulado e a poluição sonora geradas pelas serras e outros equipamentos destinados a trabalhar a madeira;

Precisão construtiva: enquanto nas estruturas de concreto a precisão é medida em centímetros, numa estrutura em aço a unidade empregada é o milímetro. Isso garante uma estrutura perfeitamente aprumada e nivelada, facilitando atividades como o assentamento de esquadrias, a instalação de elevadores, bem como a redução no custo dos materiais de revestimento.

O que se constata, portanto, é que os contextos nacional e regional são amplamente favoráveis à oferta do curso de Engenharia Civil com ênfase em estruturas metálicas da UFSJ, o qual contempla não apenas as particularidades da formação convencional do profissional de Engenharia Civil, mas confere também, ao mesmo, uma formação complementar que o especializa na área de construções metálicas, tornando-o um profissional indubitavelmente diferenciado dos demais profissionais de Engenharia Civil que anualmente são inseridos no mercado de trabalho.

5. OBJETIVOS DO CURSO

A educação nacional, consubstanciada na Lei de Diretrizes e Bases da
Educação Nacional, Lei 9.394 de 20 de dezembro de 1996, tem, entre suas finalidades, o pleno desenvolvimento do ser humano e seu aperfeiçoamento e o preparo do cidadão para a compreensão e o exercício do trabalho, mediante acesso ao conhecimento científico e tecnológico, conhecimentos fundamentais que capacitam o homem para o exercício de uma profissão. Dentre os objetivos do ensino superior, destaca-se a capacitização do homem para o exercício de uma profissão e para o exercício da reflexão crítica e participação na produção. Tendo como referência esses princípios, o curso de Engenharia Civil com ênfase em estruturas metálicas da UFSJ será desenvolvido tendo como objetivos principais:

✓ Formar profissionais conscientes de seu papel na sociedade;

✓ Formar profissionais empreendedores;

✓ Formar profissionais aptos para a inserção no mercado de trabalho da construção civil, em geral, e da construção metálica, em particular;

✓ Formar profissionais aptos para a busca do auto-aprimoramento contínuo;

✓ Favorecer, no estudante, o desenvolvimento de seu potencial criativo, do raciocínio e de sua visão crítica;

✓ Incentivar a criação cultural, a pesquisa e a investigação científica, visando o desenvolvimento da ciência e da tecnologia, da criação e difusão da cultura e, desse modo, desenvolver o entendimento do homem e do meio em que se vive.

6. PERFIL DO EGRESSO

O Engenheiro Civil, em decorrência de uma formação acadêmica alicerçada na matemática e na física, com suporte tecnológico da ciência da computação, aliada a conhecimentos de administração, economia e meio ambiente, é dotado de
uma versatilidade que o transforma em um dos profissionais de engenharia mais requisitados pelo mercado de trabalho. Sua formação generalista e sua capacidade de adaptação a diversas áreas de atuação profissional têm favorecido o incremento de seu índice de empregabilidade nesse mercado.

Segundo o Conselho Nacional de Educação (CNE) e a Câmara de Educação Superior (CES) em sua Resolução CNE/CES 11, de 11 de março de 2002, o curso de graduação em Engenharia Civil deve ter como perfil do formando egresso/profissional o engenheiro, com formação generalista, humanista, crítica e reflexiva, capacitado a absorver e desenvolver novas tecnologias, estimulando a sua atuação crítica e criativa na identificação e resolução de problemas, considerando seus aspectos políticos, econômicos, sociais, ambientais e culturais, com visão ética e humanística, em atendimento às demandas da sociedade. É dentro dessa perspectiva que se propõe a orientação formativa dos alunos do curso de Engenharia Civil com ênfase em estruturas metálicas da UFSJ, cujas competências e habilidades são identificadas a seguir.

6.1 Requisitos de acesso

A seleção de estudantes ocorrerá por meio de processo seletivo (vestibular da UFSJ, ENEM e SiSu). Alunos de outros cursos de graduação ou portadores de diploma podem ingressar por transferências interna, externa ou PDG (portador de diploma de graduação).

7. COMPETÊNCIAS E HABILIDADES

A profissão do Engenheiro Civil é fiscalizada pelo Conselho Regional de Engenharia, Arquitetura e Agronomia (CREA) e suas competências e atribuições são definidas pelo Conselho Federal de Engenharia, Arquitetura e Agronomia (CONFEA), definidas e regulamentadas na sua Resolução nº 1.010, de 22 de agosto de 2005.

O Engenheiro Civil projeta e planeja os mais variados tipos de obras de construção civil, analisa a viabilidade técnica e econômica das obras, viabiliza os
cálculos, a especificação de materiais e a execução das obras, estuda e escolhe soluções para as obras de edificações, vias terrestres (estradas, ferrovias, aeroportos), pontes e viadutos. Esse profissional também faz engenharia para obras de infra-estrutura como barragens, drenagem, abastecimento de água, saneamento, fundações e obras de estabilização de encostas e, ainda, planeja meios de transporte e tráfego urbano.

O campo de atuação profissional abrange empresas de projetos e de consultoria, construtoras e empreiteiras, empresas governamentais, instituições de ensino superior e de pesquisa, públicas ou privadas. O Engenheiro Civil pode exercer atividades de engenheiro projetista, engenheiro de obras, engenheiro de fiscalização e de engenheiro consultor, podendo, também, estar vinculado ao ensino e à pesquisa, contribuindo para a formação de novos profissionais e desenvolvimento da tecnologia.

Considerando o perfil desejado para o Engenheiro Civil, o formando deverá desenvolver as seguintes competências e habilidades gerais para o exercício das suas atividades profissionais:

- Aplicar os conhecimentos tradicionais da matemática, da química e das ciências físicas, aliados às técnicas e ferramentas modernas, para o desempenho das atribuições profissionais da Engenharia Civil;

- Projetar e conduzir experimentos, assim como analisar e interpretar resultados;

- Projetar sistemas, componentes e processos que os constituem, bem como outras atividades pertinentes de sua profissão;

- Atuar em equipes multidisciplinares;

- Diagnosticar e apresentar soluções aos problemas de engenharia;

- Compreender a ética e a responsabilidade profissionais;

- Comunicar-se efetivamente em suas diversas formas;
Entender o impacto das soluções da engenharia nos contextos socioeconômico e ambiental;

Engajar-se no processo de aprendizagem permanente.

Conforme a Resolução Nº 1.010, de 22 de agosto de 2005, do CONFEA, compete ao Engenheiro Civil o desempenho das atividades de 01 a 18 listadas no Art. 5º, Capítulo II, as quais se encontram relacionadas a seguir:

• Atividade 01 - Gestão, supervisão, coordenação, orientação técnica;
• Atividade 02 - Coleta de dados, estudo, planejamento, projeto, especificação;
• Atividade 03 - Estudo de viabilidade técnico-econômica e ambiental;
• Atividade 04 - Assistência, assessoria, consultoria;
• Atividade 05 - Direção de obra ou serviço técnico;
• Atividade 06 - Vistoria, perícia, avaliação, monitoramento, laudo, parecer técnico, auditoria, arbitragem;
• Atividade 07 - Desempenho de cargo ou função técnica;
• Atividade 08 - Treinamento, ensino, pesquisa, desenvolvimento, análise, experimentação, ensaio, divulgação técnica, extensão;
• Atividade 09 - Elaboração de orçamento;
• Atividade 10 - Padronização, mensuração, controle de qualidade;
• Atividade 11 - Execução de obra ou serviço técnico;
• Atividade 12 - Fiscalização de obra ou serviço técnico;
• Atividade 13 - Produção técnica e especializada;
• Atividade 14 - Condução de trabalho técnico;

• Atividade 15 - Condução de equipe de instalação, montagem, operação, reparo ou manutenção;

• Atividade 16 - Execução de instalação, montagem, operação, reparo ou manutenção;

• Atividade 17 - Operação, manutenção de equipamento ou instalação; e

• Atividade 18 - Execução de desenho técnico.

8. ESTRATÉGIAS DE ENSINO E APRENDIZAGEM

O Projeto Pedagógico do curso (PPC) de Engenharia Civil com ênfase em estruturas metálicas da UFSJ prevê, entre suas estratégias pedagógicas:

✓ A clareza nas técnicas e nos métodos de ensino utilizados em todas as atividades docentes;

✓ A revisão periódica dos conteúdos e a atualização das bibliografias, sempre que se fizer necessário;

✓ A avaliação periódica do PPC, tanto interna como externa, para orientar a forma de atuação de todas as pessoas que integram o curso.

Assim, estabelece-se um processo contínuo e sistemático de avaliação, visando o acompanhamento do processo ensino-aprendizagem e a verificação de sua sintonia com o Projeto Pedagógico do curso. Os valores inerentes ao curso devem ser buscados e reafirmados continuamente. Dentre eles, podem ser citados:

✓ Emprego de um currículo que proporcione atualização frente às novidades oriundas do desenvolvimento tecnológico e científico;
Estruturação de uma grade curricular que contemple uma distribuição temporal harmônica, permitindo aos alunos tempo disponível para atividades extraclasse, como os estágios voluntários e a representação estudantil em colegiados e diretórios acadêmicos;

Incentivo à integração entre a graduação e a pós-graduação, bem como à participação dos alunos em projetos de iniciação científica, de extensão e em programas de intercâmbio acadêmico;

Manutenção de uma qualificada titulação acadêmica entre os docentes e do incentivo ao desempenho, que resulte em reconhecida produção científica;

Estímulo aos professores para a produção de material didático, como livros, apostilas, vídeos, audiovisuais ou softwares educacionais, bem como nas atividades de supervisão de estágios, de preparação de práticas de laboratório e de atendimento aos alunos fora dos horários de aula;

Existência e manutenção de laboratórios que permitam a demonstração de leis, medidas de parâmetros e a verificação de cálculos de projetos;

Existência e manutenção de laboratórios ligados às disciplinas profissionalizantes e específicas, proporcionando a realização de ensaios, inclusive os executados segundo normas técnicas nacionais e internacionais;

Constante qualificação e atualização dos servidores técnico-administrativos;

Pontualidade e assiduidade de todos os integrantes do curso;

Motivação dos alunos, em especial os ingressantes no curso, pelo contato com docentes experientes na atividade profissional e no magistério e, ainda, pela convivência com profissionais que atuam no mercado de trabalho;
Empenho dos integrantes do curso com o cumprimento e retro-alimentação do Projeto Pedagógico do curso de Engenharia Civil com ênfase em estruturas metálicas.

As estratégias pedagógicas expostas estão alicerçadas no comprometimento coletivo de professores, alunos e servidores técnico-administrativos. O cumprimento do que estabelece o Projeto Pedagógico do curso e a sua atualização dependem de uma ampla discussão interna, visando à constituição e à manutenção de um curso de Engenharia Civil com ênfase em estruturas metálicas de excelente qualidade.

É prática comum nas coordenadorias de curso dispensar alunos de determinadas disciplinas se eles já as cursaram em outros cursos e estão em processo de transferência para esta instituição. Este procedimento se baseia no fato de que não seria correto obrigar ao aluno a repetir tudo o que ele já comprovadamente aprendeu. Os documentos utilizados normalmente para comprovar a aprendizagem são o histórico do aluno e as ementas das disciplinas. Tal procedimento levanta questões, como por exemplo, a falta de meios para comprovar se aquela ementa foi realmente seguida. Uma das possíveis saídas para isso é a aplicação de uma avaliação pertinente que comprove o domínio sobre o conteúdo.

9. MATRIZ CURRICULAR

9.1 Apresentação geral

O curso de Engenharia Civil com ênfase em estruturas metálicas da UFSJ está estruturado em regime semestral, com unidades curriculares organizadas em núcleos de conhecimentos e distribuídas em horas-aula. A estrutura curricular do referido curso está em consonância com a Resolução CNE/CES 11, de 11 de março de 2002, contendo unidades curriculares que favorecem a formação de um profissional com:

✓ Sólida base em matemática e física;
✓ Visão humanística, ética, de cidadania e de respeito ao meio ambiente;

✓ Conhecimentos gerais de construção civil, das mais modernas ferramentas utilizadas em projetos, cálculos, gerenciamento e execução de obras;

✓ Liderança e participação em trabalhos em grupo;

✓ Habilidade em estudos de viabilidade técnica e socioeconômica de projetos de engenharia civil;

✓ Capacidade de adaptação às necessidades do mercado de trabalho.

Em atendimento à referida Resolução, o núcleo de conteúdos básicos visa à aquisição de conhecimentos gerais acerca da engenharia e de suas ciências básicas, tais quais Matemática, Física e Química, acrescentadas dos conhecimentos de Informática, Meio Ambiente e Ciências Sociais, entre outros, composto cerca de 30% da carga horária mínima do curso.

Para a Resolução em pauta, o núcleo de conteúdos profissionalizantes corresponde a cerca de 15% da carga horária mínima e, por definição, versa sobre um subconjunto coerente de tópicos discriminados.

Ainda de acordo com a Resolução supracitada, o núcleo de conteúdos específicos se constitui em extensões e aprofundamentos dos conteúdos do núcleo de unidades curriculares profissionalizantes, bem como de outros conteúdos destinados a caracterizar modalidades. Constituem-se em conhecimentos científicos, tecnológicos e instrumentais necessários para a definição das modalidades de
engenharia e devem garantir o desenvolvimento das competências e habilidades estabelecidas como diretrizes.

A estrutura curricular que ora se apresenta será implementada a partir dos alunos ingressantes no segundo período letivo do ano de 2010. A estrutura curricular compreende uma parte central, que comporta unidades curriculares e atividades concernentes à formação geral e específica básica do Engenheiro Civil e que abrange mais de 70% da carga horária total do curso, e uma parte periférica, que compreende atividades específicas direcionadas às habilitações, ênfases e complementações. A Tabela 3 apresenta o resumo da carga horária do curso de Engenharia Civil com ênfase em estruturas metálicas da UFSJ.

Tabela 3 – Resumo da carga horária do currículo do curso de Engenharia Civil com ênfase em estruturas metálicas da UFSJ.

<table>
<thead>
<tr>
<th>Conteúdo curricular</th>
<th>Horas/aula (UC’s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidades curriculares obrigatórias</td>
<td>3600</td>
</tr>
<tr>
<td>presenciais</td>
<td></td>
</tr>
<tr>
<td>Estágio curricular obrigatório</td>
<td>360</td>
</tr>
<tr>
<td>Atividades complementares</td>
<td>244</td>
</tr>
<tr>
<td>Total</td>
<td>4204</td>
</tr>
</tbody>
</table>

Considerando-se a carga horária efetivamente ministrada, o currículo proposto tem 3600 horas de unidades curriculares obrigatórias presenciais (ministradas em sala de aula), das quais 72 horas correspondem à unidade curricular “Trabalho de conclusão de curso”. Considerando-se que o tempo regular de duração do curso é de 10 semestres e que cada semestre letivo possui 18 semanas de aulas, temos uma média de 20 horas/aula por semana o que corresponde, em média, à 4 horas/aula por dia, de segunda a sexta.

Para integralizar o seu currículo, o aluno precisa cumprir com as exigências do “Estágio curricular obrigatório”, o qual corresponde a uma carga horária mínima de 360 horas, cumprir com as exigências de atividades complementares correspondentes a uma carga horária mínima de 244 horas. Portanto, a carga horária mínima total do curso corresponde a 4204 horas. O conjunto dessas exigências está explicitado na grade curricular do curso apresentada, a seguir. A Tabela 4 apresenta as unidades curriculares pertinentes à concepção acadêmica do curso, com a identificação de seus respectivos períodos, cargas horárias nominais (total, teórica e prática) e ciclo de conteúdo a que pertencem.
9.2 Grade curricular do curso de engenharia civil com ênfase em estruturas metálicas da UFSJ
Grade Curricular – Engenharia Civil com Ênfase em Estruturas Metálicas
<table>
<thead>
<tr>
<th>1º Período</th>
<th>2º Período</th>
<th>3º Período</th>
<th>4º Período</th>
<th>5º Período</th>
<th>6º Período</th>
<th>7º Período</th>
<th>8º Período</th>
<th>9º Período</th>
<th>10º Período</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cálculo diferencial e integral I</td>
<td>Cálculo diferencial e integral II</td>
<td>Equações diferenciais A</td>
<td>Cálculo numérico</td>
<td>Fundamentos de Física Moderna</td>
<td>Meio ambiente e gestão para a sustentabilidade</td>
<td>ESTRUTURAS DE CONCRETO ARMADO I</td>
<td>ESTRUTURAS DE CONCRETO ARMADO II</td>
<td>SANEAMENTO</td>
<td>DETALHAMENTO DE ESTRUTURAS DE AÇO E MISTAS DE AÇO E CONCRETO</td>
</tr>
<tr>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>Ciência, Tecnologia e Sociedade</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
</tr>
<tr>
<td>Geometria analítica e álgebra linear</td>
<td>Algoritmos e estruturas de dados II</td>
<td>Cálculo diferencial e integral III</td>
<td>Fenômenos eletromagnéticos</td>
<td>ESTRUTURAS ISOSTÁTICAS</td>
<td>PROJETO TOPOGRÁFICO</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO I</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO II</td>
<td>EDIFÍCIOS INDUSTRIAIS EM ESTRUTURAS DE AÇO</td>
<td>EDIFÍCIOS DE ANDARES MÚLTIPLOS EM ESTRUTURAS DE AÇO E MISTAS DE AÇO E CONCRETO</td>
</tr>
<tr>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
</tr>
<tr>
<td>Algoritmos e estruturas de dados I</td>
<td>Fenômenos mecânicos</td>
<td>Estatística e Probabilidade</td>
<td>Equações diferenciais B</td>
<td>RESISTÊNCIA DOS MATERIAIS I</td>
<td>RESISTÊNCIA DOS MATERIAIS II</td>
<td>ESTRUTURAS DE MADEIRA</td>
<td>INSTALAÇÕES PREDIAIS: HIDRÁULICO-SANITÁRIAS</td>
<td>SEGURANÇA DAS ESTRUTURAS EM SITUAÇÃO DE INCêNDIO</td>
<td>TÉCNICAS CONSTRUTIVAS</td>
</tr>
<tr>
<td>72h</td>
</tr>
<tr>
<td>Metodologia científica</td>
<td>GEOLOGIA DE ENGENHARIA</td>
<td>Fenômenos térmicos, ondulatórios e fluidos</td>
<td>MECÂNICA DOS FLUIDOS</td>
<td>Economia e Administração para Engenheiros</td>
<td>HIDRÁULICA E HIDROLOGIA</td>
<td>INFRA-ESTRUTURA DE VIAS TERRESTRES</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO DE SEÇÃO TUBULAR</td>
<td>FABRICAÇÃO, TRANSPORTE E MONTAGEM DE ESTRUTURAS DE AÇO</td>
<td>PONTES COM ESTRUTURAS DE CONCRETO, AÇO E MISTAS DE AÇO E CONCRETO</td>
</tr>
<tr>
<td>36h</td>
</tr>
<tr>
<td>INTRODUÇÃO À ENGENHARIA CIVIL</td>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Química geral</td>
<td>PROJETO ARQUITETÔNICO E COMPUTAÇÃO GRÁFICA</td>
<td>MATERIAIS DE CONSTRUÇÃO</td>
<td>MECÂNICA VETORIAL</td>
<td>ELETROTÉCNICA GERAL</td>
<td>ESTRUTURAS HIPERESTÁTICAS</td>
<td>MECÂNICA DOS SOLOS</td>
<td>FUNDAÇÕES</td>
<td>SUPER-ESTRUTURA DE VIAS TERRESTRES</td>
<td>TRABALHO DE CONCLUSÃO DE CURSO</td>
</tr>
<tr>
<td>54h</td>
<td>18h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Química geral experimental</td>
<td>18h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>720h</td>
</tr>
<tr>
<td>UNIDADE CURRICULAR</td>
<td>CÓDIGO CONTAC</td>
<td>PERÍODO</td>
<td>CARGA HORÁRIA (horas)</td>
<td>Carga teórica (horas)</td>
<td>Carga prática (horas)</td>
<td>Ciclo básico (horas)</td>
<td>Ciclo profissionalizante (horas)</td>
<td>Ciclo específico (horas)</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>---------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Cálculo diferencial e integral I</td>
<td>BCT101</td>
<td>1º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometria analítica e álgebra linear</td>
<td>BCT106</td>
<td>1º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algoritmos e estruturas de dados I</td>
<td>BCT301</td>
<td>1º</td>
<td>72</td>
<td>36</td>
<td>36</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metodologia científica</td>
<td>BCT501</td>
<td>1º</td>
<td>36</td>
<td>36</td>
<td>0</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introdução à engenharia civil</td>
<td>ENC101</td>
<td>1º</td>
<td>36</td>
<td>36</td>
<td>0</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Química geral</td>
<td>BCT401</td>
<td>1º</td>
<td>54</td>
<td>54</td>
<td>0</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Química geral experimental</td>
<td>BCT402</td>
<td>1º</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cálculo diferencial e integral II</td>
<td>BCT102</td>
<td>2º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algoritmos e estrutura de dados II</td>
<td>BCT302</td>
<td>2º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenômenos mecânicos</td>
<td>BCT201</td>
<td>2º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geologia de engenharia</td>
<td>ENC201</td>
<td>2º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projeto arquitetônico e computação gráfica</td>
<td>ENC111</td>
<td>2º</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equações diferenciais A</td>
<td>BCT104</td>
<td>3º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cálculo diferencial e integral III</td>
<td>BCT103</td>
<td>3º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estatística e probabilidade</td>
<td>ENC107</td>
<td>3º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenômenos térmicos, ondulatórios e fluidos</td>
<td>BCT202</td>
<td>3º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materiais de construção</td>
<td>ENC301</td>
<td>3º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cálculo numérico</td>
<td>BCT303</td>
<td>4º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenômenos eletromagnéticos</td>
<td>BCT203</td>
<td>4º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equações diferenciais B</td>
<td>ENC603</td>
<td>4º</td>
<td>36</td>
<td>36</td>
<td>0</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indivíduos, grupos e sociedade global</td>
<td>BCT502</td>
<td>4º</td>
<td>36</td>
<td>36</td>
<td>0</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecânica dos fluidos</td>
<td>ENC401</td>
<td>4º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecânica vetorial</td>
<td>ENC501</td>
<td>4º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentos de física moderna</td>
<td>ENC604</td>
<td>5º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturas isostáticas</td>
<td>ENC506</td>
<td>5º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistência dos materiais I</td>
<td>ENC511</td>
<td>5º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economia e administração para engenheiros</td>
<td>BCT506</td>
<td>5º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eletrotécnica geral</td>
<td>ENC601</td>
<td>5º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meio ambiente e gestão para a sustentabilidade</td>
<td>BCT504</td>
<td>6º</td>
<td>36</td>
<td>36</td>
<td>0</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciência, tecnologia e sociedade</td>
<td>BCT503</td>
<td>6º</td>
<td>36</td>
<td>36</td>
<td>0</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projeto topográfico</td>
<td>ENC221</td>
<td>6º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistência dos materiais II</td>
<td>ENC512</td>
<td>6º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidráulica e hidrologia</td>
<td>ENC402</td>
<td>6º</td>
<td>72</td>
<td>36</td>
<td>36</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturas hiperestáticas</td>
<td>ENC507</td>
<td>6º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturas de concreto armado I</td>
<td>ENC521</td>
<td>7º</td>
<td>72</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementos estruturais de aço I</td>
<td>ENC541</td>
<td>7º</td>
<td>72</td>
<td>54</td>
<td>18</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturas de madeira</td>
<td>ENC531</td>
<td>7º</td>
<td>36</td>
<td>18</td>
<td>18</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalações prediais: elétrica e telefonia</td>
<td>ENC602</td>
<td>7º</td>
<td>36</td>
<td>18</td>
<td>18</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Code</td>
<td>Year</td>
<td>Period</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infra-estrutura de vias terrestres</td>
<td>ENC222</td>
<td>7º</td>
<td>72</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecânica dos solos</td>
<td>ENC202</td>
<td>7º</td>
<td>72</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturas de concreto armado II</td>
<td>ENC522</td>
<td>8º</td>
<td>72</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementos estruturais de aço II</td>
<td>ENC542</td>
<td>8º</td>
<td>72</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalações prediais: hidráulico – sanitárias</td>
<td>ENC403</td>
<td>8º</td>
<td>72</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementos estruturais de aço de secção tubular</td>
<td>ENC543</td>
<td>8º</td>
<td>36</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ergonomia e segurança no trabalho</td>
<td>ENC304</td>
<td>8º</td>
<td>36</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundações</td>
<td>ENC203</td>
<td>8º</td>
<td>72</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saneamento</td>
<td>ENC404</td>
<td>9º</td>
<td>72</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edifícios industriais em estruturas de aço</td>
<td>ENC544</td>
<td>9º</td>
<td>72</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segurança das estruturas em situação de incêndio</td>
<td>ENC545</td>
<td>9º</td>
<td>72</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabricação, transporte e montagem de estruturas de aço</td>
<td>ENC546</td>
<td>9º</td>
<td>36</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superestrutura de vias terrestres</td>
<td>ENC223</td>
<td>9º</td>
<td>72</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementos estruturais mistos de aço e concreto</td>
<td>ENC547</td>
<td>9º</td>
<td>36</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detalhamento de estruturas de aço e mistas de aço e concreto</td>
<td>ENC548</td>
<td>10º</td>
<td>36</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patologia das construções</td>
<td>ENC302</td>
<td>10º</td>
<td>36</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edifícios de andares múltiplos em estruturas de aço e mistas de aço e concreto</td>
<td>ENC549</td>
<td>10º</td>
<td>72</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Técnicas construtivas</td>
<td>ENC303</td>
<td>10º</td>
<td>72</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pontes com estruturas de concreto, aço e mistas de aço e concreto</td>
<td>ENC550</td>
<td>10º</td>
<td>72</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trabalho de conclusão de curso</td>
<td>ENC701</td>
<td>10º</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estágio curricular obrigatório</td>
<td>ENC702</td>
<td>10º</td>
<td>360</td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atividades Complementares</td>
<td></td>
<td></td>
<td>244</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Tabela 5 apresenta as respectivas cargas horárias dos núcleos de conteúdos básicos, profissionalizantes e específicos do currículo do curso de Engenharia Civil com ênfase em estruturas metálicas.

Tabela 5 – Resumo da carga horária dos conteúdos do currículo do curso de Engenharia Civil com ênfase em estruturas metálicas.

<table>
<thead>
<tr>
<th>Conteúdos</th>
<th>Carga Horária (horas)</th>
<th>% do Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Básicos</td>
<td>1188</td>
<td>33</td>
</tr>
<tr>
<td>Profissionalizantes</td>
<td>972</td>
<td>27</td>
</tr>
<tr>
<td>Específicos</td>
<td>1440</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>3600</td>
<td>100</td>
</tr>
</tbody>
</table>

Poderão ser ofertadas, além das unidades curriculares que contemplam a carga horária obrigatória mínima, unidades curriculares optativas. Essas unidades podem ser ofertadas por qualquer curso do Campus Alto Paraopeba, assim como por qualquer instituição pública de ensino superior. O oferecimento dessas unidades curriculares será feito fora do horário de oferecimento das unidades curriculares obrigatórias da grade curricular do curso. A Coordenadoria do Curso de Engenharia Civil deverá fazer um calendário anual de oferecimento de unidades curriculares optativas, de forma a facilitar a programação prévia dos alunos que por elas se interessem.

A Tabela 6 apresenta as unidades curriculares optativas e a área da Coordenadoria do Curso de Engenharia Civil com ênfase em estruturas metálicas responsáveis pelos seus respectivos oferecimentos. Ressalta-se que compete ao colegiado do curso a aprovação da oferta de outras unidades curriculares optativas distintas daquelas apresentadas nessa Tabela.

Tabela 6 – Unidades curriculares optativas ofertadas pelo curso de Engenharia Civil com ênfase em estruturas metálicas.

<table>
<thead>
<tr>
<th>Área</th>
<th>Unidade curricular</th>
<th>Código CONTAC</th>
<th>Carga Horária Teórica (horas)</th>
<th>Carga Horária Prática (horas)</th>
<th>Carga Horária Total (horas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construção civil</td>
<td>Engenharia de avaliações e perícias</td>
<td>ENC305</td>
<td>36</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Materiais de construção alternativos</td>
<td>ENC306</td>
<td>36</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Estruturas</td>
<td>Introdução ao método dos</td>
<td>ENC551</td>
<td>72</td>
<td></td>
<td>72</td>
</tr>
</tbody>
</table>
9.3 Seqüência sugerida e pré-requisitos

A seqüência ideal aconselhada para integralizar o currículo é fornecida na Tabela 7, assim como as exigências de matrícula (pré-requisitos). A Tabela 8 apresenta os pré-requisitos correspondentes às unidades curriculares optativas ofertadas.

Tabela 7 – Seqüência ideal para integralização do currículo do curso de Engenharia Civil com ênfase em estruturas metálicas.

<table>
<thead>
<tr>
<th>Período</th>
<th>Unidade curricular</th>
<th>CÓDIGO CONTAC</th>
<th>Carga Horária (horas)</th>
<th>Pré-requisito</th>
<th>CÓDIGO CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º</td>
<td>Cálculo diferencial e integral I</td>
<td>BCT101</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geometria analítica e álgebra linear</td>
<td>BCT106</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algoritmos e estrutura de dados I</td>
<td>BCT301</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metodologia científica</td>
<td>BCT501</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introdução à engenharia civil</td>
<td>ENC101</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Química geral</td>
<td>BCT401</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Química geral experimental</td>
<td>BCT402</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2º</td>
<td>Cálculo diferencial e integral II</td>
<td>BCT102</td>
<td>72</td>
<td>Cálculo diferencial e integral I</td>
<td>BCT101</td>
</tr>
<tr>
<td></td>
<td>Algoritmos e estrutura de dados II</td>
<td>BCT302</td>
<td>72</td>
<td>Algoritmos e estrutura de dados I</td>
<td>BCT301</td>
</tr>
<tr>
<td>Ano</td>
<td>Disciplina</td>
<td>Código</td>
<td>Horas</td>
<td>Disciplina</td>
<td>Código</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--------</td>
<td>-------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>3º</td>
<td>Fenômenos mecânicos</td>
<td>BCT201</td>
<td>72</td>
<td>Cálculo diferencial e integral I</td>
<td>BCT101</td>
</tr>
<tr>
<td></td>
<td>Geologia de engenharia</td>
<td>ENC201</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Projeto arquitetônico e computação gráfica</td>
<td>ENC111</td>
<td>72</td>
<td>Geometria analítica e álgebra linear</td>
<td>BCT106</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4º</td>
<td>Equações diferenciais A</td>
<td>BCT104</td>
<td>72</td>
<td>Cálculo diferencial e integral II</td>
<td>BCT102</td>
</tr>
<tr>
<td></td>
<td>Cálculo diferencial e integral III</td>
<td>BCT103</td>
<td>72</td>
<td>Cálculo diferencial e integral II</td>
<td>BCT102</td>
</tr>
<tr>
<td></td>
<td>Estatística e probabilidade</td>
<td>BCT107</td>
<td>72</td>
<td>Cálculo Diferencial e Integral I</td>
<td>BCT101</td>
</tr>
<tr>
<td></td>
<td>Fenômenos térmicos, ondulatórios e fluidos</td>
<td>BCT202</td>
<td>72</td>
<td>Fenômenos mecânicos</td>
<td>BCT201</td>
</tr>
<tr>
<td></td>
<td>Materiais de construção</td>
<td>ENC301</td>
<td>72</td>
<td>600 horas de UC’s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5º</td>
<td>Cálculo numérico</td>
<td>BCT303</td>
<td>72</td>
<td>Cálculo diferencial e integral I Algoritmos e estruturas de dados I</td>
<td>BCT301</td>
</tr>
<tr>
<td></td>
<td>Fenômenos eletromagnéticos</td>
<td>BCT203</td>
<td>72</td>
<td>Fenômenos mecânicos</td>
<td>BCT201</td>
</tr>
<tr>
<td></td>
<td>Equações diferenciais B</td>
<td>ENC603</td>
<td>36</td>
<td>Equações diferenciais A</td>
<td>BCT104</td>
</tr>
<tr>
<td></td>
<td>Indivíduos, grupos e sociedade global</td>
<td>BCT502</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mecânica dos fluidos</td>
<td>ENC401</td>
<td>72</td>
<td>Fenômenos térmicos, ondulatórios e fluidos</td>
<td>BCT202</td>
</tr>
<tr>
<td></td>
<td>Mecânica vetorial</td>
<td>ENC501</td>
<td>72</td>
<td>Cálculo diferencial e integral III Fenômenos mecânicos</td>
<td>BCT103</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6º</td>
<td>Fundamentos de física moderna</td>
<td>ENC604</td>
<td>72</td>
<td>Fenômenos térmicos, ondulatórios e fluidos</td>
<td>BCT202</td>
</tr>
<tr>
<td></td>
<td>Estruturas isostáticas</td>
<td>ENC506</td>
<td>72</td>
<td>Mecânica vetorial</td>
<td>ENC501</td>
</tr>
<tr>
<td></td>
<td>Resistência dos materiais I</td>
<td>ENC511</td>
<td>72</td>
<td>Mecânica vetorial</td>
<td>ENC501</td>
</tr>
<tr>
<td></td>
<td>Economia e administração para engenheiros</td>
<td>BCT506</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eletrotécnica geral</td>
<td>ENC601</td>
<td>72</td>
<td>Geometria analítica e álgebra linear Fenômenos eletromagnéticos</td>
<td>BCT106</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meio ambiente e gestão para a sustentabilidade</td>
<td>BCT504</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciência, tecnologia e sociedade</td>
<td>BCT503</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Projeto topográfico</td>
<td>ENC221</td>
<td>72</td>
<td>Projeto arquitetônico e computação</td>
<td>ENC111</td>
</tr>
</tbody>
</table>

TOTAL 360
<table>
<thead>
<tr>
<th></th>
<th>Código</th>
<th>Créditos</th>
<th>7º</th>
<th></th>
<th>8º</th>
<th></th>
<th>9º</th>
<th></th>
<th>10º</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistência dos materiais II</td>
<td>ENC512</td>
<td>72</td>
<td></td>
<td>Resistência dos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>materiais I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidráulica e hidrologia</td>
<td>ENC402</td>
<td>72</td>
<td></td>
<td>Mecânica dos fluidos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturas hiperestáticas</td>
<td>ENC507</td>
<td>72</td>
<td></td>
<td>Estruturas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>isostáticas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturas de concreto armado I</td>
<td>ENC521</td>
<td>72</td>
<td></td>
<td>Resistência dos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>materiais II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Estruturas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hiperestáticas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementos estruturais de aço I</td>
<td>ENC541</td>
<td>72</td>
<td></td>
<td>Resistência dos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>materiais II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Estruturas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hiperestáticas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturas de madeira</td>
<td>ENC531</td>
<td>36</td>
<td></td>
<td>Resistência dos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>materiais II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Estruturas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hiperestáticas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instalações prediais: elétrica e telefonia</td>
<td>ENC602</td>
<td>36</td>
<td></td>
<td>Eletrotécnica geral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infra-estrutura de vias terrestres</td>
<td>ENC222</td>
<td>72</td>
<td></td>
<td>Projeto topográfico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecânica dos solos</td>
<td>ENC202</td>
<td>72</td>
<td></td>
<td>Geologia de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>engenharia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturas de concreto armado II</td>
<td>ENC522</td>
<td>72</td>
<td></td>
<td>Estruturas de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>concreto armado I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Elementos estruturais de aço II</td>
<td>ENC542</td>
<td>72</td>
<td></td>
<td>Elementos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>estruturais de aço I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Instalações prediais: hidráulico – sanitárias</td>
<td>ENC403</td>
<td>72</td>
<td></td>
<td>Hidráulica e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hidrologia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Elementos estruturais de aço de seção tubular</td>
<td>ENC543</td>
<td>36</td>
<td></td>
<td>Elementos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>estruturais de aço I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ergonomia e segurança no trabalho</td>
<td>ENC304</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundações</td>
<td>ENC203</td>
<td>72</td>
<td></td>
<td>Mecânica dos solos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saneamento</td>
<td>ENC404</td>
<td>72</td>
<td></td>
<td>Hidráulica e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hidrologia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Edifícios industriais em estruturas de aço</td>
<td>ENC544</td>
<td>72</td>
<td></td>
<td>Elementos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>estruturais de aço I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Segurança das estruturas em situação de incêndio</td>
<td>ENC545</td>
<td>72</td>
<td></td>
<td>Elementos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>estruturais de aço I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fabricação, transporte e montagem de estruturas de aço</td>
<td>ENC546</td>
<td>36</td>
<td></td>
<td>Elementos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>estruturais de aço II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Superestrutura de vias terrestres</td>
<td>ENC223</td>
<td>72</td>
<td></td>
<td>Infra-estrutura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>de vias terrestres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Elementos estruturais mistos de aço e concreto</td>
<td>ENC547</td>
<td>36</td>
<td></td>
<td>Estruturas de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>concreto armado II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Elementos estruturais</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>de aço II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detalhamento de estruturas de aço e mistas de aço e concreto</td>
<td>ENC548</td>
<td>36</td>
<td></td>
<td>Estruturas de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>concreto armado II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Elementos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>estruturais</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Unidade curricular</td>
<td>CÓDIGO CONTAC</td>
<td>Carga Horária (horas)</td>
<td>Pré-requisito</td>
<td>CÓDIGO CONTAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>-----------------------</td>
<td>--</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patologia das construções</td>
<td>ENC302</td>
<td>36</td>
<td>Materiais de construção Elementos estruturais de aço II</td>
<td>ENC301 ENC542</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edifícios de andares múltiplos em estruturas de aço e mistas de aço e concreto</td>
<td>ENC549</td>
<td>72</td>
<td>Estruturas de concreto armado II Elementos estruturais de aço II</td>
<td>ENC522 ENC542</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Técnicas construtivas</td>
<td>ENC303</td>
<td>72</td>
<td>Materiais de construção Elementos estruturais de aço II</td>
<td>ENC301 ENC542</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pontes com estruturas de concreto, aço e mistas de aço e concreto</td>
<td>ENC550</td>
<td>72</td>
<td>Estruturas de concreto armado II Elementos estruturais de aço II</td>
<td>ENC522 ENC542</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trabalho de conclusão de curso</td>
<td>ENC701</td>
<td>72</td>
<td>3000 horas de UC´s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estágio curricular obrigatório</td>
<td>ENC702</td>
<td>360</td>
<td>2304 horas de UC´s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atividades Complementares</td>
<td></td>
<td>244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>964</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 8 – Pré-requisitos das unidades curriculares optativas ofertadas pelo curso de Engenharia Civil com ênfase em estruturas metálicas.

<table>
<thead>
<tr>
<th>Unidade curricular</th>
<th>CÓDIGO CONTAC</th>
<th>Carga Horária (horas)</th>
<th>Pré-requisito</th>
<th>CÓDIGO CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engenharia de avaliações e perícias</td>
<td>ENC305</td>
<td>36</td>
<td>Materiais de construção Estatística e probabilidade</td>
<td>ENC301 ENC301</td>
</tr>
<tr>
<td>Materiais de construção alternativos</td>
<td>ENC306</td>
<td>36</td>
<td>Materiais de construção</td>
<td>ENC301</td>
</tr>
<tr>
<td>Introdução ao método dos elementos finitos</td>
<td>ENC551</td>
<td>72</td>
<td>Resistência dos materiais II Estruturas hiperestáticas</td>
<td>ENC512 ENC507</td>
</tr>
<tr>
<td>Torres de transmissão de energia e de telecomunicações em estruturas de aço</td>
<td>ENC552</td>
<td>36</td>
<td>Elementos estruturais de aço II</td>
<td>ENC542</td>
</tr>
<tr>
<td>Obras de terra</td>
<td>ENC205</td>
<td>36</td>
<td>Geologia de engenharia</td>
<td>ENC201</td>
</tr>
<tr>
<td>Ensaios de campo</td>
<td>ENC206</td>
<td>36</td>
<td>Mecânica dos solos</td>
<td>ENC202</td>
</tr>
<tr>
<td>Aplicação de geossintéticos à engenharia civil</td>
<td>ENC204</td>
<td>36</td>
<td>Geologia de engenharia</td>
<td>ENC201</td>
</tr>
<tr>
<td>Ferrovias</td>
<td>ENC224</td>
<td>36</td>
<td>Infra-estrutura de vias terrestres Superestrutura de vias terrestres</td>
<td>ENC222 ENC223</td>
</tr>
<tr>
<td>Tópicos especiais em estradas</td>
<td>ENC225</td>
<td>36</td>
<td>Mecânica dos solos</td>
<td>ENC202 ENC223</td>
</tr>
</tbody>
</table>
9.4 Estágio curricular obrigatório

O “Estágio curricular obrigatório” constitui uma atividade prática exercida pelo aluno, por meio da qual ele vivencia uma situação real do exercício profissional através de atividades diretamente ligadas à profissão da Engenharia Civil, atividades estas que podem ser empreendidas em escritórios de projetos, institutos de pesquisas, obras civis, empresas construtoras, empresas de consultoria, instituições e entidades públicas ou privadas, com o objetivo de desenvolver as competências e habilidades inerentes ao exercício profissional do engenheiro civil e complementar o processo ensino-aprendizagem.

Esta atividade tem uma carga horária mínima de 360 horas. Para formalizar a atividade como curricular, o aluno deverá apresentar um plano de estágio junto à Coordenadoria do Curso de Engenharia Civil com ênfase em estruturas metálicas, indicando o Professor Orientador que fará o acompanhamento das atividades e será responsável pela avaliação do estágio.

A avaliação do trabalho exercido pelo aluno durante o estágio é realizada pelo Professor Orientador, que deverá avaliar a dedicação e freqüência do aluno às atividades propostas e a forma de apresentação do relatório do trabalho realizado, o qual deve conter a descrição das atividades desenvolvidas, as dificuldades enfrentadas e a contribuição que a atividade trouxe à sua formação. As regras gerais e específicas dessa
atividade serão definidas pelo Colegiado do Curso de Engenharia Civil com ênfase em estruturas metálicas.

9.5 Trabalho de conclusão de curso

Dentre as unidades curriculares obrigatórias, como atividade de síntese e integração de conhecimento para integralizar o currículo, o aluno deve cursar a unidade curricular “Trabalho de Conclusão de Curso” oferecida no último período do curso, com carga horária de 72 horas. A unidade curricular “Trabalho de Conclusão de Curso” objetiva complementar a formação acadêmica do aluno, dando-lhe a oportunidade de aplicar seu conhecimento teórico na solução de problemas práticos, em projeto de síntese e integração dos conhecimentos adquiridos ao longo do curso, estimulando a sua criatividade e o enfrentamento de desafios. Conforme a conveniência entre o Professor Orientador e o aluno, esta atividade poderá corresponder a uma pesquisa científica.

Essa atividade integradora do conhecimento consta essencialmente de duas etapas. Na primeira, cabe ao Professor Orientador avaliar o desenvolvimento do trabalho do aluno. O aluno, depois de escolhidos o tema e o docente orientador, deve protocolar um plano de trabalho para a unidade curricular, com o correspondente cronograma de atividades. O docente poderá orientar individualmente cada aluno, ou poderá estabelecer uma agenda de reuniões com todos os orientados. As atividades de pesquisa bibliográfica, coleta de dados ou amostras, realização de ensaios ou cálculos, tabulação dos resultados, entre outras, devem ser realizadas na primeira etapa. Ao final da primeira etapa, o aluno deve apresentar ao Professor Orientador um relatório sucinto do trabalho realizado, contendo, no mínimo, a revisão bibliográfica e os resultados obtidos de forma organizada.

A segunda etapa deverá ser dedicada à análise de resultados e às preparação da monografia sobre o trabalho desenvolvido na primeira etapa, de acordo com o regulamento específico proposto pelo colegiado do curso de Engenharia Civil com ênfase em estruturas metálicas. Essa monografia deverá conter, entre outros, capítulos dedicados à introdução, revisão bibliográfica, materiais e métodos, resultados obtidos e discussões, conclusões e bibliografia.

O trabalho desenvolvido na unidade curricular “Trabalho de Conclusão de Curso”, após sintetizado numa monografia em conformidade com o regulamento da atividade,
será apresentado a uma banca examinadora de forma oral, numa defesa pública de trabalho. A nota é atribuída ao aluno pela banca de examinadores, levando em consideração o trabalho desenvolvido, a contribuição do trabalho à comunidade e/ou ao meio científico, a qualidade da apresentação escrita e o desempenho do aluno durante a apresentação oral.

9.6 Atividades complementares

O projeto curricular proposto prescreve a realização de, no mínimo, 244 horas de atividades complementares para a integralização do currículo obrigatório mínimo do aluno. Constituem exemplos de atividades complementares:

- Visitas técnicas a empresas e conferências de empresários e engenheiros;
- Estágios em laboratórios de pesquisa, incluindo as atividades desenvolvidas na iniciação científica e tecnológica. As atividades de iniciação científica serão consignadas no currículo do estudante mediante elaboração de relatórios, apresentação de trabalho em congresso de iniciação científica ou através de documentos de agências de fomento;
- Monitoria, sendo esta atividade consignada no currículo do estudante mediante elaboração de relatórios correspondentes ou documentação comprobatória adequada;
- Organização e participação efetiva em congressos, encontros, palestras, simpósios em Engenharia Civil ou em áreas correlatas, bem como em outros eventos científicos relacionados com o exercício da profissão;
- Publicação de artigos científicos ou de divulgação de Engenharia Civil;
- Atividades que possibilitam o desenvolvimento das habilidades para o trabalho em equipes multidisciplinares e também para o empreendedorismo. Os trabalhos
em equipe e demais trabalhos multidisciplinares se relacionam às participações em competições, cuja consignação no currículo do estudante será feita mediante publicação dos resultados obtidos. Outras participações em projetos multidisciplinares serão consideradas a critério do colegiado do curso.

✔ Participação em empresa júnior, escritório modelo, incubadora de empresas, fórum de empresas (apresentações, feiras e mostras estabelecendo contatos profissionais). Atividades vinculadas à empresa júnior serão consignadas mediante comprovação de desenvolvimento de projetos, elaboração de relatórios técnicos ou consultorias;

✔ Atividades de extensão devidamente homologadas pelo órgão competente de instituições de ensino superior reconhecidas pelo Ministério de Educação e Cultura. Estas atividades devem contar com a participação ativa do corpo docente e de estudantes do curso de Engenharia Civil com ênfase em estruturas metálicas e podem envolver:

- Prestação de serviços à comunidade por meio de laboratórios e salas de aula;
- Desenvolvimento de projetos que atendam a reivindicações da comunidade;
- Intercâmbio com as empresas da região, buscando parcerias que atendam a interesses sociais;
- Consultorias, avaliações e proposições de soluções a problemas municipais, desenvolvendo uma relação de parceria institucional com as prefeituras locais;
- Promoção de seminários, cursos e palestras, com participação de convidados de outras instituições, de empresas e da comunidade local.

✔ Participação em atividades-treinamento ou bolsa-atividade;
✓ Intercâmbio de estudantes e programas de dupla diplomação, etc.

A Tabela 9 apresenta uma lista de atividades complementares que podem ser desenvolvidas pelos alunos com suas respectivas contagens de carga horária e exigências de comprovação. Ressalta-se que, a essa lista, podem ser acrescentadas outras atividades conforme decisão do colegiado do curso de Engenharia Civil com ênfase em estruturas metálicas.

Tabela 9 – Relação de atividades complementares com suas respectivas cargas horárias e critérios de comprovação correspondentes.

<table>
<thead>
<tr>
<th>1. Atividades de ensino</th>
<th>Forma de registro</th>
<th>Carga horária</th>
<th>Comprovação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoria</td>
<td>Por semestre</td>
<td>20 h</td>
<td>Certificado</td>
</tr>
<tr>
<td>Visita técnica (máximo de 20 h)</td>
<td>Por visita</td>
<td>5 h</td>
<td>Certificado</td>
</tr>
<tr>
<td>Optativas</td>
<td>Por semestre</td>
<td>36 ou 72 h</td>
<td>Histórico</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Atividade de pesquisa</th>
<th>Forma de registro</th>
<th>Carga horária</th>
<th>Comprovação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iniciação Científica (PIBIC/PIIC) e outros (por ano)</td>
<td>Relatório final</td>
<td>90 h</td>
<td>Certificado da PROPE ou Órgão de fomento ou do professor responsável.</td>
</tr>
<tr>
<td>Participação em eventos científicos</td>
<td></td>
<td>15 h</td>
<td>Certificado</td>
</tr>
<tr>
<td>Apresentação de resumo em congresso</td>
<td></td>
<td>15 h</td>
<td>Certificado de apresentação ou de aceite</td>
</tr>
<tr>
<td>Apresentação de resumo expandido em congresso</td>
<td></td>
<td>20 h</td>
<td>Certificado de apresentação ou de aceite</td>
</tr>
<tr>
<td>Apresentação oral em congresso</td>
<td></td>
<td>30 h</td>
<td>Certificado de apresentação ou de aceite</td>
</tr>
<tr>
<td>Trabalho completo em congresso</td>
<td>Não indexado</td>
<td>20 h</td>
<td>Certificado de aceite</td>
</tr>
<tr>
<td></td>
<td>Indexado</td>
<td>45 h</td>
<td>Certificado de aceite</td>
</tr>
<tr>
<td>Atividade/Produto</td>
<td>Forma de registro</td>
<td>Carga horária</td>
<td>Comprovação</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Publicação de artigo em periódico:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Não indexado</td>
<td></td>
<td>30 h</td>
<td>Certificado de aceite ou página de rosto do artigo</td>
</tr>
<tr>
<td>Indexado</td>
<td></td>
<td>60 h</td>
<td></td>
</tr>
<tr>
<td>Grupo de estudos orientado</td>
<td></td>
<td>15 h</td>
<td>Relatório</td>
</tr>
<tr>
<td>Seminário na instituição</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Por seminário</td>
<td>2 h</td>
<td>Certificado</td>
</tr>
<tr>
<td>3- Atividade de representação estudantil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participação no diretório acadêmico (máximo de 30 h)</td>
<td>Por ano</td>
<td>15 h</td>
<td>Certificado</td>
</tr>
<tr>
<td>Membro dos Conselhos Superiores ou Colegiado do curso (máximo de 30h)</td>
<td>Por mandato</td>
<td>15 h</td>
<td>Certificado</td>
</tr>
<tr>
<td>4- Atividade de extensão</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participação em projetos de extensão</td>
<td></td>
<td>90 h</td>
<td>Certificado do PROEX</td>
</tr>
<tr>
<td>Estágio extracurricular e estágio acadêmico (máximo de 90 h)</td>
<td>Cada 45 h</td>
<td>15 h</td>
<td>Certificado da Instituição acadêmica ou carteira de trabalho</td>
</tr>
<tr>
<td>Membro de comissão organizadora de evento reconhecido, aprovado ou cadastrado na UFSJ</td>
<td></td>
<td>20 h</td>
<td>Certificado</td>
</tr>
<tr>
<td>Minicursos ministrados em eventos acadêmicos</td>
<td>Por evento</td>
<td>O dobro da carga horária de aulas dadas.</td>
<td>Certificado ou carta de anuência do professor responsável ou tutor</td>
</tr>
<tr>
<td>Viagens acadêmicas e culturais sob a coordenação de professor da UFSJ</td>
<td>Por dia de viagem</td>
<td>5 h</td>
<td>Certificado</td>
</tr>
<tr>
<td>Bolsa de atividade realizada sob a orientação de um professor (máximo de 60 h)</td>
<td>Por bolsa</td>
<td>20 h</td>
<td>Certificado da instituição de fomento e do professor</td>
</tr>
<tr>
<td>Cursos, minicursos e oficinas</td>
<td>Por evento</td>
<td>Horas constantes no certificado do evento</td>
<td>Certificado</td>
</tr>
</tbody>
</table>
10. TRANSIÇÃO PARA A MATRIZ CURRICULAR PROPOSTA

O curso de Engenharia Civil com ênfase em estruturas metálicas do CAP/UFSJ já está em andamento desde fevereiro de 2008. Com a reformulação do projeto pedagógico, a inserção e a modificação de unidades curriculares, torna-se necessário padronizar uma equivalência entre os conteúdos curriculares da matriz curricular antiga relativamente àqueles da nova matriz proposta, de forma a garantir uma transição tranquila aos discentes, sem ônus para a conclusão do curso. Neste sentido, foi criada uma tabela de equivalências que é apresentada na Tabela 10.

Tabela 10 - Equivalências entre os conteúdos curriculares da matriz antiga e os conteúdos curriculares da nova matriz proposta.

<table>
<thead>
<tr>
<th>CÓDIGO</th>
<th>UNIDADE CURRICULAR 2010</th>
<th>CH</th>
<th>CÓDIGO</th>
<th>UNIDADE CURRICULAR 2008/2009</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT003</td>
<td>Cálculo Diferencial e Integral I</td>
<td>72</td>
<td>CT006</td>
<td>Funções de uma variável</td>
<td>108</td>
</tr>
<tr>
<td>CT003</td>
<td>Cálculo Diferencial e Integral I</td>
<td>72</td>
<td>CT206</td>
<td>Funções de uma variável</td>
<td>72</td>
</tr>
<tr>
<td>CT004</td>
<td>Metodologia Científica</td>
<td>36</td>
<td>CT003</td>
<td>Metodologia Científica</td>
<td>36</td>
</tr>
<tr>
<td>CT005</td>
<td>Química Geral</td>
<td>54</td>
<td>CT005</td>
<td>Estruturas atômicas, moleculares e cristalinas</td>
<td>72</td>
</tr>
<tr>
<td>CT006</td>
<td>Química Geral Experimental</td>
<td>18</td>
<td>CT005</td>
<td>Estruturas atômicas, moleculares e cristalinas</td>
<td>72</td>
</tr>
<tr>
<td>CT007</td>
<td>Geometria Analítica e Álgebra Linear</td>
<td>72</td>
<td>CT001</td>
<td>Geometria analítica</td>
<td>36</td>
</tr>
<tr>
<td>CT008</td>
<td>Algoritmos e Estrutura de Dados I</td>
<td>72</td>
<td>CT002</td>
<td>Linguagem de computação</td>
<td>72</td>
</tr>
<tr>
<td>CT009</td>
<td>Cálculo Diferencial e Integral II</td>
<td>72</td>
<td>CT006</td>
<td>Funções de uma variável</td>
<td>108</td>
</tr>
<tr>
<td>CT010</td>
<td>Fenômenos Mecânicos</td>
<td>72</td>
<td>CT004</td>
<td>Fenômenos Mecânicos</td>
<td>72</td>
</tr>
<tr>
<td>CT011</td>
<td>Indivíduos, Grupos e Sociedade Global</td>
<td>36</td>
<td>CT018</td>
<td>Indivíduos, Grupos e Sociedade Global</td>
<td>36</td>
</tr>
<tr>
<td>CT012</td>
<td>Meio Ambiente e Gestão para a Sustentabilidade</td>
<td>36</td>
<td>CT021</td>
<td>Meio Ambiente e Gestão para a Sustentabilidade</td>
<td>36</td>
</tr>
<tr>
<td>CT013</td>
<td>Algoritmos e Estrutura de Dados II</td>
<td>72</td>
<td>CT009</td>
<td>Métodos e Algoritmos Computacionais</td>
<td>72</td>
</tr>
<tr>
<td>EC002</td>
<td>Geologia de Engenharia</td>
<td>72</td>
<td>EC026</td>
<td>Elementos de Geologia Aplicada à Engenharia Civil</td>
<td>72</td>
</tr>
<tr>
<td>EC003</td>
<td>Projeto Arquitetônico e Computação Gráfica</td>
<td>72</td>
<td>CT030</td>
<td>Projeto e Computação Gráfica</td>
<td>072</td>
</tr>
<tr>
<td>CT014</td>
<td>Cálculo Diferencial e Integral III</td>
<td>72</td>
<td>CT008</td>
<td>Funções de várias variáveis</td>
<td>108</td>
</tr>
<tr>
<td>CT015</td>
<td>Estatística e Probabilidade</td>
<td>72</td>
<td>CT013</td>
<td>Estatística e Probabilidade</td>
<td>72</td>
</tr>
<tr>
<td>CT016</td>
<td>Fenômenos Térmicos, Ondulatórios e Fluidos</td>
<td>72</td>
<td>CT010</td>
<td>Fenômenos Térmicos, Ondulatórios e Fluidos</td>
<td>72</td>
</tr>
<tr>
<td>CT021</td>
<td>Equações Diferenciais A</td>
<td>72</td>
<td>CT011</td>
<td>Equações Diferenciais A</td>
<td>72</td>
</tr>
<tr>
<td>EC004</td>
<td>Materiais de Construção</td>
<td>72</td>
<td>EC027</td>
<td>Materiais de Construção</td>
<td>72</td>
</tr>
</tbody>
</table>
11. INFRA-ESTRUTURA FÍSICA

11.1 Laboratórios

Os laboratórios do curso de Engenharia Civil com ênfase em estruturas metálicas do CAP/UFSJ devem constituir-se em importantes instrumentos que proporcionem aos alunos oportunidade para a prática dos conhecimentos obtidos e para a complementação e consolidação de conhecimentos teóricos. Além de permitir aos alunos a realização de uma série de ensaios relacionados aos conteúdos básicos, profissionalizantes e específicos, os laboratórios devem cumprir, ainda, outro papel, não menos relevante, que é o de abrir as portas do CAP/UFSJ para a realização de projetos de extensão e de parcerias, com foco na prestação de serviços para as indústrias e construtoras da região do Alto Paraopeba.
A ação dos laboratórios deverá estar em sintonia com o desenvolvimento das atividades-fim da UFSJ, com o ensino institucional de graduação e de pós-graduação, com a pesquisa e com a prestação de serviços à comunidade regional. Os laboratórios, aglutinando recursos humanos (professores, alunos, técnicos e comunidade), devem assumir, no interior do CAP/UFSJ, o papel de centros catalisadores, possibilitando a realização de projetos interdisciplinares. Assim, os futuros trabalhos de pesquisa, em atendimento ao desenvolvimento de teses e dissertações, serão desenvolvidos com a utilização dessa infra-estrutura, onde se apoiarão, ainda, as linhas e projetos de pesquisa.

Na medida em que os laboratórios se caracterizam como espaços multi-usuários, ou seja, espaços utilizados por pesquisadores da universidade e da comunidade, serão gerados ações e projetos multidisciplinares.

Um Programa de Pesquisa e Extensão, estendido ao setor produtivo, viabilizado mediante convênios de pesquisa e financiado com recursos de empresas privadas atraídas pela capacitação pessoal e laboratorial, beneficiará alunos, professores, pesquisadores e técnicos, cujas pesquisas se tornarão projetos de uma equipe multi-institucional e multidisciplinar. Assim, as atividades laboratoriais passarão a incorporar novas culturas e técnicas de interação com o setor produtivo, construindo uma vertente muito superior àquela estabelecida pelas atividades de consultoria, ação esta tão necessária à academia na área de Engenharia.

Os laboratórios necessários ao funcionamento do curso de Engenharia Civil com ênfase em estruturas metálicas são apresentados na seqüência.

11.1.1 Laboratórios do ciclo básico

11.1.1.1 Laboratórios de ensino de informática

Tratam-se de 2 laboratórios de informática destinados às unidades curriculares “Algoritmo e Estrutura de Dados I” e “Algoritmo e Estrutura de Dados II”. Contemplam, ao todo, a seguinte infra-estrutura básica:

✔ 53 computadores, 2 projetores e acesso à internet;
11.1.1.2 Laboratório de Química Geral

Nesse laboratório, são ofertados os conteúdos práticos da unidade curricular “Química geral experimental”, contemplando a seguinte infra-estrutura básica:

- 04 agitadores magnéticos
- 01 balança de precisão
- 01 balança eletrônica analítica
- 02 banhos ultratermostatos
- 26 banquetas de madeira maciça c/ assento redondo
- 03 bombas de vácuo
- 02 capelas de exaustão de gases média 110 V
- 01 centrífuga
- 01 deionizador de água capacidade 50 l
- 01 espectrofotômetro biospectro
- 03 estantes de aço c/ 6 prateleiras
- 01 estufa de esterilização e secagem
- 02 evaporadores rotativos
- 03 mantas aquecedoras capacidade 2000 ml
- 03 mantas aquecedoras para balão 500 ml
- 01 máquina automática para fabricação de gelo em cubo c/gabinete em aço inoxidável
- 04 medidores de pH microprocessado c/ bancada
- 01 refrigerador com 1 porta gelo seco 340/380l.

11.1.1.3 Laboratório de Fenômenos Mecânicos

Nesse laboratório, são ofertados os conteúdos práticos da unidade curricular “Fenômenos mecânicos”, sendo equipado com a seguinte infra-estrutura básica:
Sensor de medição simultânea de aceleração em 3 eixos, força em dois sentidos e variação de altitude, com funcionamento através de bateria recarregável e transmissão de dados via freqüência eletromagnética e também com recurso de armazenamento de dados medidos para posterior descarga em software

Sensor de movimento para aquisição de dados de velocidade e deslocamento com conexão direta ao computador pelo software e via porta USB e sem a necessidade de interface

Sensor de movimento rotacional com motor e acessórios e respectiva interface para aquisição de dados pelo software

Trilho duplo com comprimento total de 2,40m

02 carros de baixo atrito para utilização sobre o trilho e com encaixe para os sensores supracitados

mini-ventilador elétrico de propulsão para os carros

03 massas de 500g cada para encaixe sobre os carros

Conjunto para experimento da Lei de Hooke

Conjunto para Dinâmica das Rotações

Paquímetro mecânico universal

Micrômetro externo

Balança mecânica

Balança de precisão

Conjunto para hidrostática

11.1.1.4 Laboratório de Fenômenos térmicos, ondulatórios e fluidos

Nesse laboratório, são ofertados os conteúdos práticos da unidade curricular “Fenômenos térmicos, ondulatórios e fluidos”, sendo equipado com a seguinte infra-estrutura básica:

Lentes convergentes (Diâmetro 50 mm)

Espelhos côncavos (Diâmetro 100 mm)

Espelhos convexos (Diâmetro 100 mm)
Calorímetros de isopor
Dilatômetro linear

11.1.1.5 Laboratório de Fenômenos Eletromagnéticos

Nesse laboratório, são ofertados os conteúdos práticos da unidade curricular “Fenômenos eletromagnéticos”, sendo equipado com a seguinte infra-estrutura básica:

- Sensor de campo magnético
- Placa protoboard gigante com conexões para plugs 4mm, sendo 240 soquetes em uma face e 432 soquetes em outra face
- 3 Capacitores 0.1 µF-100 V
- 1 Capacitor 1 µF-100 V
- 1 Capacitor 4.7 µF-63 V
- 1 Capacitor 10 µF-100 V
- 1 Resistor 1 Ohm- 2 W
- 2 Resistores 10 Ohm- 2 W
- 1 Resistor 22 Ohm- 2 W
- 1 Resistor 47 Ohm- 2 W
- 1 Resistor 100 Ohm- 2 W
- 1 Resistor 150 Ohm- 2 W
- 1 Resistor 220 Ohm- 2 W
- 1 Resistor 330 Ohm- 2 W
- 1 Resistor 470 Ohm- 2 W
- 1 Resistor 1 kOhm- 2 W
- 1 Resistor 2.2 kOhm- 2 W
- 1 Resistor 5.6 kOhm- 2 W
- 1 Resistor 10 kOhm- 0.5 W
- 1 Resistor 100 kOhm- 0.5 W
- 1 Potenciômetro 220 Ohm- 3 W
- 1 Potenciômetro 1 kOhm-1 W
- 1 bobina 500 voltas
2 bobinas 1000 voltas
4 pares de cabos 100cm
Conjunto com transformação de energia elétrica (transformador desmontável)
Conjunto para estudo lei de Ohm (capacitor variável de placas paralelas, gerador eletrostático para até 240kV e motor de 1/8 HP, gerador elétrico portátil para correntes até 1A, fonte de alimentação 0-30V e 3A, gerador de funções 2MHz, osciloscópio de 2 canais 20Mhz, multimetro analógico).

11.1.1.6 Laboratório de Fundamentos de Física Moderna

Nesse laboratório, são ofertados os conteúdos práticos da unidade curricular “Fundamentos de física moderna”, sendo necessários os equipamentos para realizar os seguintes experimentos de:
- Milikan (carga do elétron);
- difração de elétrons.

11.1.2 Laboratórios dos ciclos profissionalizante e específico

11.1.2.1 Laboratório de Materiais de Construção Civil

O laboratório de ensaios em Materiais de Construção Civil será equipado para o preparo e ensaio da maioria dos materiais e componentes da Construção Civil, tais como aglomerantes hidráulicos e aéreos, pastas, aglomerantes orgânicos, agregados, argamassas para várias finalidades, concretos em geral, blocos, artefatos, pré-moldados, caracterização de materiais metálicos e componentes para pisos, vedações, fachadas e coberturas. Dentre os objetivos desse laboratório, citam-se:

- Apoiar o estudo das unidades curriculares da área de Construção Civil, assegurando a realização de ensaios;
- Apoiar trabalhos de investigação desenvolvidos por alunos de pós-graduação, na área dos materiais;
- Favorecer a realização de ensaios para empresas e para a comunidade regional.
Os ensaios a serem realizados são:

1. **Caracterização de agregado miúdo**
 - Determinação da composição granulométrica (NBR 7217)
 - Determinação da massa específica real através do frasco de Chapman (NBR 9776)
 - Determinação da umidade superficial através do frasco de Chapman (NBR 9775)
 - Determinação da umidade total pelo método da frigideira
 - Determinação da umidade total pelo método da estufa
 - Determinação de impurezas orgânicas húmicas (NBR 7220)
 - Determinação do teor de argila em torrões e materiais friáveis (NBR 7218)
 - Determinação do teor de materiais pulverulentos (NBR 7219)
 - Determinação da massa unitária do agregado no estado solto (NBR 7251)
 - Determinação do inchamento simplificado (NBR 6467)

2. **Caracterização de agregado graúdo**
 - Determinação da composição granulométrica (NBR 7217)
 - Determinação da absorção e da massa específica de agregado graúdo (NBR 9937)
 - Determinação da umidade total pelo método da estufa (NBR 9939)
 - Determinação do teor de materiais pulverulentos (NBR 7219)
 - Determinação da massa unitária do agregado no estado solto (NBR 7251)

3. **Ensaios destructivos em concreto**
 - Ensaio de compressão de corpos-de-prova cilíndricos (NBR 5739)

4. **Ensaios não destructivos em concreto**
 - Concreto endurecido - avaliação da dureza superficial pelo esclerômetro de reflexão (NBR 7584).
5. Caracterização de cimento Portland
- Determinação da finura por meio da peneira 75 m\(\mu\) (Nº 200) (MB-3432)
- Determinação da água da pasta de consistência normal (MB-3433)
- Determinação dos tempos de pega (MB-3434)
- Determinação da expansibilidade (NBR 7215 antiga - item 5)
- Determinação da resistência à compressão (NBR 7215 atualizada)
- Determinação de massa específica (NBR NM 23)

6. Ensaios em blocos de concreto
- Blocos vazados de concreto para alvenaria - retração por secagem (MB 3458)
- Blocos vazados de concreto simples para alvenaria - determinação da absorção de água, do teor de umidade e da área líquida (MB 3459)
- Blocos vazados de concreto simples para alvenaria - determinação da resistência à compressão (NBR 7184)

7. Ensaios em peças de concreto para pavimentação
- Peças de concreto para pavimentação - determinação da resistência à compressão (NBR 9780)

8. Ensaios em blocos cerâmicos
- Bloco cerâmico portante para alvenaria - determinação da área líquida (NBR 8043)
- Bloco cerâmico para alvenaria - formas e dimensões (NBR 8042)
- Bloco cerâmico para alvenaria - verificação da resistência à compressão (NBR 6461)

9. Ensaios em telhas cerâmicas
- Telha cerâmica - verificação da impermeabilidade (NBR 8948)
- Telha cerâmica - determinação da massa e da absorção de água (NBR 8947)
Os equipamentos necessários à realização desses ensaios são:

- Argamassadeira eletromecânica
- Agitador de peneiras
- Betoneira
- Estufa de esterilização e secagem
- Extratora rotativa
- Máquina Los Angeles para ensaio de abrasão
- Prensa eletrohidráulica informatizada
- Mesa de consistência
- Aparelho de Vicat
- Medidor de ar incorporado ao concreto
- Balança eletrônica de precisão
- Esclerômetro para ensaio em concreto
- Prensa manual
- Permeabilímetro de Blaine
- Balança eletrônica de precisão
- Balança mecânica
- Capeadores de corpo de prova
- Capela para fogareiros
- Argamassadeira Votomassa
- Conjunto de peneiras

Além do espaço físico necessário à disposição desses equipamentos e da infraestrutura necessária à realização desses ensaios, o laboratório deve dispor de espaços físicos complementares destinados ao armazenamento dos materiais de construção (baias de agregados miúdo e graúdo, compartimentos de armazenamento de aglomerantes, blocos, telhas, peças de pavimentação, barras metálicas, entre outros), assim como à confecção de materiais de ensaio (argamassas e concretos).

11.1.2.2 Laboratório de Geotecnia e Estradas
O laboratório de Geotecnia e Estradas está voltado para a aplicação prática dos conceitos e técnicas que irão favorecer a consolidação dos conhecimentos ministrados nas unidades curriculares das áreas de Geotecnia (Mecânica dos Solos) e Estradas (Infra-estrutura de vias terrestres e Superestrutura de vias terrestres). Esse laboratório deverá ser equipado para os ensaios de caracterização geotécnica e investigação das propriedades mecânicas e hidráulicas de solos, de caracterização de materiais asfálticos e de investigação das propriedades de misturas asfálticas. Dentre os objetivos desse laboratório, citam-se:

✔ Propiciar base experimental às unidades curriculares da área de solos, pavimentação e fundações;

✔ Possibilitar a realização de projetos de conclusão de curso (Trabalho de Conclusão de Curso), de pesquisa e extensão na área de Geotecnia e Estradas;

✔ Possibilitar o intercâmbio e/ou prestação de serviço com instituições e órgãos públicos ou privados.

Para a realização dos ensaios e serviços supramencionados, será necessária a seguinte infra-estrutura física:

- Câmara úmida
- Sala de ensaios de compressão simples, triaxial estático e cisalhamento direto
- Sala de permeabilidade (cargas constante e variável)
- Sala de adensamento
- Sala de compactação e de caracterização de solos
- Sala de ensaios CBR
- Sala de ensaio triaxial dinâmico
- Sala de caracterização de materiais asfálticos
- Sala de moldagem de misturas asfálticas
- Sala de balanças
- Almoxarifado.
Os ensaios a serem realizados são:

1. **Análise granulométrica conjunta** (NBR 7181/84)
2. **Limite de Liquidez** (NBR 6459/84)
3. **Limite de Plasticidade** (NBR 7180/84)
4. **Limite de Contração** (NBR 7183/82)
5. **Compactação: Proctor Normal, Intermediário e Modificado** (NBR 7182/86)
6. **Compressão simples** (ASTM 2166-66/79)
7. **Densidade Máxima** (NBR 12004/90)
8. **Densidade Mínima** (NBR 12051/91)
9. **Erodibilidade: Crumb test** (NBR13601/96), **Pinhole test** (NBR 14114/98), **Sedimentométrico comparativo** (NBR 13602/96)
10. **Expansão**: livre, com sobrecarga variável e pressão de expansão
11. **Permeabilidade**: carga constante (NBR 13292/95) e carga variável (NBR 14545/00)
12. **Índice de Suporte Califórnia - CBR** (NBR 9895/87)
13. **Adensamento** (NBR 12007/90)
14. **Densidade real do solo** (NBR 6508/84)
15. **Cisalhamento direto**: consolidado rápido e consolidado lento (ASTM D3080-72/79)
16. **Determinação da expansibilidade** (DNER – ME 029/94)
17. **Ensaio triaxial**: não consolidado – não drenado (UU), consolidado – não drenado (CU), consolidado – drenado (CD), medida de pressão neutra, saturação (ASTM D2850-70/95)
18. **Ensaio de mini-MCV** (DNER – ME258/94)
19. **Ensaio de perda de massa por imersão** (DNER – ME256/94)
20. **Ensaio de mini-CBR** (DNER – ME228/94), expansão, contração
21. **Ensaios de caracterização de materiais betuminosos:**
 - Penetração (DNER – ME003/99);
 - Viscosidade (DNER – ME004/94);
 - Ductilidade (DNER – ME163/98);
- Ponto de amolecimento (DNER – ME148/94);
- Adesividade (DNER – ME059/94);

Os equipamentos necessários à realização desses ensaios são:

- Prensa de adensamento
- Prensa de cisalhamento direto automatizada
- Prensa Marshall
- Prensa de ensaio californiano
- Prensa triaxial estático automatizada
- Permeâmetro de carga constante
- Permeâmetro de carga variável
- Cilindros e soquetes de compactação
- Estufas
- Balanças
- Conjunto de peneiras
- Agitador de peneiras
- Densímetros
- Aparelho de Casagrande
- Destilador
- Extrator de amostras
- Prensa triaxial dinâmico automatizada
- Prensa de compressão simples
- Equipamento de ensaio MCT (Miniatura, Compactado, Tropical)
- Penetrômetro
- Ductilômetro
- Extrator de betume
- Vidraria (provetas, picnômetros, etc.)
- Licenças de softwares geotécnicos (estabilidade de taludes, dimensionamento de obras geotécnicas, fluxo em meio poroso, fundações, infraestrutura e superestrutura de estradas, entre outros)
Além do espaço físico necessário à disposição dos equipamentos supracitados e da infra-estrutura necessária à realização dos referidos ensaios, este laboratório deve dispor de espaços físicos complementares destinados ao armazenamento de solos e misturas betuminosas, assim como uma área destinada ao campo experimental de fundações.

11.1.2.3 Laboratório de Topografia

O laboratório de topografia servirá para as aulas relativas aos temas de medições topográficas em planimetria e altimetria. Este laboratório propiciará aos discentes uma sólida formação no uso de plantas, cartas, bússolas, equipamentos topográficos e receptores GPS, sendo fundamental para o engenheiro tornar-se um profissional competitivo no mercado atual. A teorização se concretizará com o desenvolvimento de pesquisa a campo. Nesse contexto, as atividades em grupo possibilitam o planejamento das ações. As aulas práticas, conhecidas como aulas de campo, são iniciadas em sala, onde são direcionadas as atividades em grupo, passando os mesmos a planejar as ações. Dentre os objetivos desse laboratório, citam-se:

- Complementar as atividades didáticas relacionadas às unidades curriculares Projeto topográfico, Infra-estrutura de vias terrestres, Fundações, Superestrutura de vias terrestres, Técnicas construtivas e Fabricação, transporte e montagem de estruturas de aço;

- Favorecer o desenvolvimento de atividades de pesquisa e extensão, auxiliando na aplicação de técnicas e métodos topográficos;

- Auxiliar os discentes na elaboração do projeto do Trabalho de Conclusão de Curso;

- Auxiliar a comunidade na realização de levantamentos topográficos, através de projetos didáticos específicos;
Desenvolver consultoria técnica na área de geomensuração.

Os ensaios a serem realizados são:

1. Levantamentos topográficos plani-altimétricos (NBR 13.133/94)
2. Atividades de locação de obras civis
3. Monitoramento de recalques em obras civis
4. Geração de modelos digitais do terreno, com a finalidade de determinação de volumes de terraplenagem e de pavimentos
5. Locação e definição em campo de traçados horizontais e verticais de rodovias
6. Cálculo de estaqueamento com subdivisões e inserções
7. Criação e divisão de plantas de glebas, a partir de vários elementos como linhas, poli-linhas e arcos, oriundos de levantamentos topográficos de campo.

Os equipamentos necessários à realização desses ensaios são:

- Teodolitos eletrônicos, com acessórios
- Níveis automáticos, com acessórios
- Estações totais, com acessórios
- Licenças de software de topografia com os seguintes módulos: Topografia, Volumes e Projetos
- Pares de receptores de sinal GNSS topográficos, com acessórios
- Receptores de sistema de posicionamento global, com acessórios
- Impressora plotter
- Computadores
- Pares de rádios comunicadores portáteis
- Trenas com mira a laser
- Bússolas tipo Brunton – Geológicas
- Alguns acessórios: bases nivelantes, tripés de alumínio, balizas, prismas com alvo, bastões telescópicos, níveis de cantoneiras, miras de alumínio, baterias recarregáveis, carregadores de baterias, dentre outros
Outros materiais permanentes: armários de aço, mesas secretárias e cadeiras secretárias giratórias sem braço.

Além dos materiais permanentes citados anteriormente, serão necessários os seguintes materiais de consumo:

- Trenas de fibra de vidro flexível
- Pranchetas com prendedor metálico
- Marretas com cabo OIT - 0,5 kg
- Guardas sol.

O laboratório de topografia necessitará de um espaço físico adequado para o armazenamento dos referidos equipamentos, visto que alguns deles são sensíveis ao excesso de calor e umidade, e para a execução do procedimento de aferição e checagem de equipamentos, assim que o discente iniciar e encerrar a sua utilização.

11.1.2.4 Laboratório de Estruturas

Este laboratório deverá possuir as divisões de dinâmica das estruturas, de métodos ópticos e de ensaios e monitoração de estruturas, para dar apoio às linhas de pesquisa de sistemas estruturais de concreto, aço, madeira, alvenaria e materiais especiais.

Para a execução de ensaios nesse laboratório, deve-se contar com um sistema completo de programas de computador e de interfaces que possibilitem medições de carga, aquisição de dados, armazenamento das leituras e interpretação dos resultados, de modo que todo o processo de ensaio seja gerenciado automaticamente. Os ensaios poderão ser integralmente assistidos por instrumentação de aquisição automática de dados que, transferidos para microcomputador via interface apropriada, serão interpretados e trabalhados com o uso de software específico.

Para um melhor desenvolvimento das pesquisas, o laboratório deverá possuir oficinas de apoio, tais como oficina mecânica, uma carpintaria e uma oficina para fabricação de modelos reduzidos. Dentre os objetivos desse laboratório, citam-se:
Complementar o estudo das unidades curriculares da área de Estruturas, com a verificação de deslocamentos, cargas e modos de ruptura de vigas, pilares, treliças e pequenas placas;

Favorecer a realização de ensaios;

Prestar serviços à comunidade na forma de ensaios de determinação de resistência, medição do controle de qualidade de peças pré-moldadas e desenvolvimento e testes de novos produtos.

Os ensaios a serem realizados são:

1. Análise experimental de estruturas em modelo real e reduzido
2. Determinação de deslocamentos e deformações em peças estruturais
3. Estudo de ligações em peças estruturais.

Os equipamentos necessários à realização desses ensaios são:

- Pórtico estrutural com macacos hidráulicos.
- Prensa hidráulica.
- Relógios comparadores.
- Computadores.
- Licenças de softwares de análise e dimensionamento estrutural.

11.1.2.5 **Laboratório de Hidráulica e Saneamento**

As atividades a serem desenvolvidas nesse laboratório serão de estudo, pesquisa básica e pesquisa tecnológica. Suas principais atividades serão a determinação das propriedades dos fluidos, determinação dos princípios de hidrostática, determinação de vazão, medição de vazão em condutos forçados, determinação das perdas de cargas em condutos forçados e o estudo do transporte de
sedimentos com controle computadorizado. Dentre os objetivos desse laboratório, citam-se:

- Complementar o estudo das unidades curriculares Mecânica dos fluidos, Hidráulica e hidrologia, Instalações prediais: hidráulico-sanitárias e Saneamento, assegurando a realização de experiências.

Os ensaios a serem realizados são:

1. Determinação das propriedades dos fluidos
2. Determinação dos princípios de hidrostática
3. Determinação de vazão
4. Simulação da experiência de Reynolds
5. Medição de vazão em condutos forçados
6. Determinação das perdas de cargas
7. Estudo do transporte de sedimentos.

Os equipamentos necessários à realização desses ensaios são:

- Equipamentos para determinação das propriedades dos fluidos e determinação dos princípios de hidrostática
- Bancadas para determinação de vazão: medições gravimétricas e volumétricas, aparelho para simulação de fluxo através de orifício, medidor Venturi (medicação em condutos forçados)
- Medidor do impacto de jatos
- Aparelho de Hele-Shaw (simulação de escoamentos potenciais bidimensionais e escoamento em torno de cilindro ou em torno de aerofólio)
- Aparelho para simulação da experiência de Reynolds
- Equipamento para medição de vazão em condutos forçados
- Painel para determinação das perdas de cargas em condutos forçados
- Canal de fundo móvel com ajustamento de declividade
- Canal para estudo do transporte de sedimentos com controle computadorizado
11.1.2.6 Laboratório de Computação Gráfica

O laboratório de Computação Gráfica será dirigido aos alunos de graduação, de uma forma geral, tendo como objetivo principal auxiliar o desenvolvimento de atividades acadêmicas diversas como projetos, pesquisas e trabalhos dos acadêmicos dos cursos de Engenharia do CAP/UFSJ. Particularmente no que concerne ao curso de Engenharia Civil com ênfase em estruturas metálicas, esse laboratório dará suporte às seguintes unidades curriculares que envolvem ferramentas computacionais gráficas: Projeto arquitetônico e computação gráfica, Projeto topográfico, Instalações prediais: hidráulico-sanitárias e Detalhamento de estruturas de aço e mistas de aço e concreto.

Os equipamentos desse laboratório são:

- Microcomputadores para uso dos alunos
- Microcomputadores para uso exclusivo dos bolsistas
- Microcomputador servidor
- Scanner
- Impressoras
- Ploter
- Ar condicionado
- Softwares.

11.1.2.7 Laboratório de Computação aplicada à Engenharia

A informática tornou-se ferramenta indissociável do dia-a-dia da Engenharia, e, particularmente no âmbito da Engenharia Civil, ela se torna indispensável aos cálculos de projetos, ao detalhamento de projetos e às modelagens do meio físico sob condições similares àquelas encontradas em obras civis. Dentro do contexto do curso de “Engenharia Civil com ênfase em estruturas metálicas”, as ferramentas computacionais se
tornam ainda mais necessárias, pois, em acréscimo às demandas convencionais associadas às demais áreas da Engenharia Civil (Geotecnia, Estradas, Construção civil, Hidráulica, Saneamento, Estruturas de concreto e de madeira), a área de Estruturas metálicas demanda uma precisão nos cálculos e no detalhamento dos projetos que só pode ser conferida e obtida pela computação.

São as seguintes as unidades curriculares que demandarão a utilização de ferramentas computacionais:

- Instalações prediais: elétrica e telefonia
- Infra-estrutura de vias terrestres
- Instalações prediais: hidráulico – sanitárias
- Superestruturas de vias terrestres
- Resistência dos materiais I
- Resistência dos materiais II
- Estruturas de concreto armado I
- Estruturas de concreto armado II
- Elementos estruturais de aço I
- Elementos estruturais de aço II
- Estruturas isostáticas
- Estruturas hiperestáticas
- Estruturas de madeira
- Pontes com estruturas de concreto, aço e mistas de aço e concreto
- Detalhamento de estruturas de aço e mistas de aço e concreto
- Edifícios de andares múltiplos em estruturas de aço e mistas de aço e concreto
- Edifícios industriais em estruturas de aço
- Elementos estruturais de aço de seção tubular
- Elementos estruturais mistos de aço e concreto
- Segurança das estruturas em situação de incêndio
- Mecânica dos solos
- Projeto topográfico
- Fundações
✓ Geologia de engenharia
✓ Trabalho de Conclusão de Curso

Os equipamentos desse laboratório são:

- Microcomputadores para ensino
- Microcomputador servidor
- Scanner
- Impressoras
- Ploter
- Ar condicionado
- Softwares.

RECURSOS HUMANOS

Tendo como base a atual matriz curricular e os laboratórios do curso, apresentam-se nas Tabelas 11 e 12 as correspondentes demandas de docentes e de técnicos.

Tabela 11 - Distribuição do quadro docente por área de concentração do curso de Engenharia Civil com ênfase em estruturas metálicas.

<table>
<thead>
<tr>
<th>Área de concentração</th>
<th>Nº de docentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construção civil</td>
<td>1</td>
</tr>
<tr>
<td>Geotecnia e Estradas</td>
<td>3</td>
</tr>
<tr>
<td>Estruturas</td>
<td>9</td>
</tr>
<tr>
<td>Hidráulica e Saneamento</td>
<td>2</td>
</tr>
<tr>
<td>Computação gráfica</td>
<td>1</td>
</tr>
<tr>
<td>Outras áreas</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
</tr>
</tbody>
</table>

Tabela 12 - Distribuição do quadro técnico por laboratório do curso de Engenharia Civil com ênfase em estruturas metálicas.

<table>
<thead>
<tr>
<th>Laboratório</th>
<th>Nº de técnicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiais de construção civil</td>
<td>1</td>
</tr>
<tr>
<td>Geotecnia e Estradas</td>
<td>1</td>
</tr>
<tr>
<td>Estruturas</td>
<td>1</td>
</tr>
<tr>
<td>Hidráulica e Saneamento</td>
<td>1</td>
</tr>
</tbody>
</table>
Administração do curso

O curso será administrado por um Colegiado que é composto por 6 membros, sendo 5 docentes e 1 representante discente. Tal colegiado é presidido pelo coordenador do curso, que é um dos 5 docentes de sua composição. A escolha de tais membros é normatizada de acordo com o Regimento Interno do Colegiado de *Engenharia Civil com ênfase em estruturas metálicas*.

Núcleo Docente Estruturante (NDE)

O NDE representa um conjunto de professores, de elevada formação e titulação, contratados em tempo integral e parcial, que respondem mais diretamente pela criação, implantação e consolidação do Projeto Pedagógico do Curso. O NDE do curso de *Engenharia Civil com ênfase em estruturas metálicas* é formado pelos docentes do Colegiado de Curso (coordenador, vice-coordenador e mais três membros docentes) mais três professores dos ciclos profissionalizante e/ou específico do curso de *Engenharia Civil com ênfase em estruturas metálicas*.

EMENTÁRIO

Seguem as fichas das unidades curriculares com suas respectivas ementas e referências bibliográficas.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Cálculo diferencial e integral I</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º</td>
<td></td>
<td>BCT101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Teórica 72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prática 00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Propiciar o aprendizado dos conceitos de limite, derivada e integral de funções de uma variável real. Propiciar a compreensão e o domínio dos conceitos e das técnicas de Cálculo Diferencial e Integral. Desenvolver a habilidade de implementação desses conceitos e técnicas em problemas nos quais eles se constituem os modelos mais adequados. Desenvolver a linguagem matemática como forma universal de expressão da Ciência.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Geometria analítica e álgebra linear</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º</td>
<td>Teórica</td>
<td>BCT106</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prática</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Propiciar aos alunos a capacidade de interpretar geometricamente e espacialmente conceitos matemáticos e interpretar problemas e fenômenos abstraindo-os em estruturas algébricas multidimensionais.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

EMENTA

O que significa “Linguagem de computação”? A posição e as contribuições da Computação no desenvolvimento científico e tecnológico, com ênfase nas Engenharias. Breve histórico do desenvolvimento de computadores e linguagens de computação. Sistema de numeração, algoritmo, conceitos básicos de linguagens de programação, comandos de controle, estruturas homogêneas, funções e estruturas heterogêneas.

OBJETIVOS

Introduzir o aluno na área da computação, tornando-o capaz de desenvolver algoritmos e codificá-los em uma linguagem de alto nível a fim de resolver problemas de pequeno e médio porte com ênfase em problemas nas áreas das Engenharias.

BIBLIOGRAFIA BÁSICA

4. BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Metodologia científica</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°</td>
<td>Teórica: 36</td>
<td>BCT501</td>
</tr>
<tr>
<td></td>
<td>Prática: 00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total: 36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Conhecer e compreender os tipos de trabalhos científicos e os aspectos fundamentais que orientam a sua produção.

Compreender e problematizar perspectivas e princípios implicados no processo de investigação científica.

Problematizar a noção de progresso da ciência sob a ótica da epistemologia e da história da ciência.

Refletir sobre os objetivos, alcance e limitações da produção científica.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Introdução à Engenharia civil</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º</td>
<td></td>
<td>ENC101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>36</td>
<td>00</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hábitiltação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Familiarizar o aluno com a estrutura do Campus Alto Paraopeba e do curso de Engenharia Civil com ênfase em estruturas metálicas. Integrar o aluno ao curso, propiciando conhecimento sobre as diversas áreas que o curso oferece, sempre salientando os conceitos de responsabilidade acadêmica e profissional. Apresentar ao aluno as áreas de atuação do profissional da engenharia, sua postura perante os profissionais afins e a sociedade (ética profissional).

BIBLIOGRAFIA BÁSICA

3. KRICK, E. V. Introdução à Engenharia. Editores Livros Técnicos e Científicos, 1979 Rio de Janeiro - RJ.
4. VON LINSINGEN, I.; PEREIRA, L.T. V.; CABRAL, C.G.; BAZZO, W. A.
BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Química geral</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>00</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCT401</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Matéria, estrutura eletrônica dos átomos, propriedades periódicas dos elementos, teoria das ligações químicas, forças intermoleculares, reações em fase aquosa e estequiometria, cinética, equilíbrio químico, eletroquímica.

OBJETIVOS

Permitir que os alunos compreendam como os átomos se arranjam, por meio das ligações químicas, para formar diferentes materiais. Permitir que os alunos entendam os princípios envolvidos nas transformações químicas, as relações estequiométricas envolvidas e os aspectos relacionados com o conceito de equilíbrio químico das reações reversíveis bem como o conceito de reações eletroquímicas.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo 2010</th>
<th>Unidade curricular</th>
<th>Campus Alto Paraopeba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Química geral experimental</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1º</td>
<td></td>
<td>BCT402</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Normas de laboratório, elaboração de relatórios, medidas experimentais, introdução as técnicas de laboratório, determinação das propriedades das substâncias, reações químicas, soluções, cinética e equilíbrio químico.

OBJETIVOS

Desenvolver no aluno as habilidades básicas de manuseio de produtos químicos, realização de experimentos, conduta profissional e comunicação dos resultados na forma de relatórios científicos dentro de um laboratório de Química, além de permitir que o aluno visualize conceitos desenvolvidos nas aulas teóricas.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

2 - BACCAN, N. ANDRADE, J.C.; GODINHO, O.E.S.; BARONE, J.S. *Química*
4 - ROCHA FILHO, R.C.; DA SILVA, R.R Cálculos básicos da Química, São Carlos: Edufscar, 2006.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Cálculo diferencial e integral II</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periodo</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2º</td>
<td></td>
<td>BCT102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>00</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>BCT101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co-requisito</th>
</tr>
</thead>
</table>

EMENTA

OBJETIVOS

Propiciar o aprendizado das técnicas do Cálculo Integral de funções de uma variável real. Propiciar a compreensão e o domínio dos conceitos e das técnicas de Cálculo Diferencial em várias variáveis reais. Propiciar o aprendizado da Teria de Séries. Desenvolver a habilidade de implementação desses conceitos e técnicas em problemas nos quais eles se constituem os modelos mais adequados. Desenvolver a linguagem matemática como forma universal de expressão da Ciência.

BIBLIOGRAFIA BÁSICA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo 2010</th>
<th>Unidade curricular</th>
<th>Campus Alto Paraopeba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidade curricular</td>
<td>Algoritmos e estrutura de dados II</td>
<td></td>
</tr>
</tbody>
</table>

Carga Horária

<table>
<thead>
<tr>
<th>Período 2º</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teórica 54</td>
<td>BCT302</td>
</tr>
<tr>
<td>Prática 18</td>
<td></td>
</tr>
<tr>
<td>Total 72</td>
<td></td>
</tr>
</tbody>
</table>

Tipo

Obrigatória

Habilitação / Modalidade

Bacharelado

Pré-requisito

BCT301

Co-requisito

EMENTA

OBJETIVOS

Ao final do curso, os alunos deverão ter desenvolvido senso crítico com relação às soluções algorítmicas apresentadas e dominarão os principais algoritmos de pesquisa e de ordenação em memória principal e secundária.

BIBLIOGRAFIA BÁSICA

1. FEOFILOFF, P., Algoritmos em Linguagem C, Campus, 2009

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Curriculo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Fenômenos mecânicos</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período:</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2º</td>
<td>54</td>
<td>18</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BCT201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td></td>
<td>BCT101</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Vetores; Cinemática; Leis de Newton e suas aplicações; Trabalho, Energia e princípios de conservação; Impulso, momento linear e seu princípio de conservação; Cinemática e Dinâmica da Rotação.

OBJETIVOS

O curso tem como intenção primordial propiciar ao aluno conhecimento científico para a modelagem de sistemas físicos. Em especial, espera-se que o aluno adquira no curso capacidade para a descrição de fenômenos físicos com base nos princípios da Mecânica. O curso deverá preparar o aluno com embasamento para as unidades curriculares dos próximos semestres, em especial aquelas ligadas à Mecânica. Outros enfoques do curso são:

- Introdução aos fenômenos mecânicos e à utilização de aparelhos de medida.
- Obtenção, tratamento e análise de dados obtidos em experimentos. Apresentação e análise crítica de resultados através da teoria de erros.

BIBLIOGRAFIA BÁSICA

1- Chaves, Alaor, Sampaio, F. Física: Mecânica. Vol. 1; Ed. LAB<C.
4- Lopes, A., Introdução à Mecânica Clássica; Ed. EDUSP.
5- Feynman, R., The Feynman Lectures on Physics, vol. 1 e vol. 2.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Geologia de engenharia</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2º</td>
<td>Teórica: 72</td>
<td>ENC201</td>
</tr>
<tr>
<td></td>
<td>Prática: 00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total: 72</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Apresentar os elementos básicos de Geologia aplicada à Engenharia. Caracterizar as unidades geológicas sobre as quais as obras civis são construídas. Descrever os métodos de investigação dos maciços terrestres. Conhecer a influência da geologia no projeto, construção e conservação de obras de engenharia civil, ambiental e de minas.

BIBLIOGRAFIA BÁSICA

4. MACIEL FILHO, C.L. Introdução à Engenharia de Geologia. Ed. UFSM e CORM.
5. FLEURY, J.M. *Curso de Geologia Prática*. Goiânia: Ed. UFG.

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA COMPLEMENTAR</th>
</tr>
</thead>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Projeto arquitetônico e computação gráfica</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2º</td>
<td>Teórica 00 Prática 72 Total 72</td>
<td>ENC111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>BCT106</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Metodologia de desenvolvimento de projeto.
Processos de representação de projeto: Sistemas de Coordenadas e projeções: vistas principais, vistas especiais, vistas auxiliares; Projeções a partir de perspectiva, projeções a partir de modelos; Projeções cilíndricas e ortogonais; Fundamentos de geometria descritiva; Utilização de escalas.
Normas e convenções de expressão e representação de projeto: normas da ABNT.
Desenvolvimento de projeto arquitetônico: Elaboração de plantas, cortes, fachadas, diagrama de cobertura, situação, perfil de terreno; definições de parâmetros e nomenclaturas de projeto arquitetônico; estudo de viabilidade física, noções de topografia, noções de estrutura, projeto e engradamento de telhado, detalhes.
Ferramentas de computação gráfica e projeto assistido por computador aplicado a projetos de engenharia: Utilização de software de computação gráfica para desenvolvimento de projetos.
Modelagem tridimensional: Concepção e desenvolvimento do modelo geométrico tridimensional da edificação.
Simulação tridimensional: Prototipagem digital, aplicação de elementos de realidade virtual, luz, estudos de insolação, aplicação de material, textura; animação e trajetos virtuais.
BIM (Building Information Modeling): utilização do modelo tridimensional para documentação e cálculos.
Aulas práticas em laboratório.

OBJETIVOS

Capacitar o aluno para interpretar e desenvolver projetos de engenharia com ênfase em projeto arquitetônico; desenvolver a visão espacial; utilizar instrumentos de elaboração de projetos de engenharia assistido por computador com a utilização de computação gráfica; representar projetos de engenharia de acordo com as normas e convenções da expressão gráfica como meio de comunicação dos engenheiros; elaborar modelos tridimensionais com simulação e prototipagem digital.
BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

1. **ABNT** - Associação Brasileira de Normas Técnicas (Diversas Normas na Área de Desenho).
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Equações diferenciais A</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3º</td>
<td></td>
<td>BCT104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>72</td>
<td>00</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacharelado</td>
<td>BCT102</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Desenvolver a habilidade de solução e interpretação de equações diferenciais em diversos domínios de aplicação, implementando conceitos e técnicas em problemas nos quais elas se constituem os modelos mais adequados.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Cálculo diferencial e integral III</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3º</td>
<td></td>
<td>BCT103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>72</td>
<td>00</td>
<td>72</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Propiciar o aprendizado dos conceitos de campos vetoriais, integrais duplas e triplas, integrais de linha e integrais de superfície. Desenvolver a habilidade de implementação desses conceitos em problemas nos quais eles se constituem os modelos mais adequados. Desenvolver a linguagem matemática como forma universal de expressão da Ciência.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR
1. PINTO, Diomara. MORGADO, M. Cândida Ferreira. Cálculo Diferencial e Integral de Funções de Várias Variáveis. 3.a ed. (2005) Editora UFRJ.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Estatística e probabilidade</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3º</td>
<td></td>
<td>BCT107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td></td>
<td>BCT101</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Introduzir conceitos fundamentais ao tratamento de dados. Capacitar o aluno a aplicar técnicas estatísticas para a análise de dados na área de engenharia, e a apresentar e realizar uma análise crítica dos resultados.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Fenômenos térmicos, ondulatórios e fluídos</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período:</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3°</td>
<td></td>
<td>BCT202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Teórica</td>
<td>BCT201</td>
</tr>
<tr>
<td></td>
<td>Prática</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Movimento harmônico simples, Ondas Mecânicas, Ondas Sonoras, Introdução à Mecânica dos Fluídos, Temperatura e Calor, Propriedades Térmicas da Matéria, Primeira Lei da Termodinâmica, Segunda Lei da Termodinâmica, Entropia e Máquinas térmicas.

OBJETIVOS

O curso tem como intenção primordial propiciar ao aluno conhecimento científico para a modelagem de sistemas físicos, com ênfase especial àqueles que envolvem fenômenos de natureza termodinâmica, ondulatória ou sistemas fluidos. Em especial, espera-se que o aluno adquira no curso capacidade para a descrição e compreensão de tais fenômenos físicos. O curso deverá fornecer ao aluno embasamento para as unidades curriculares dos próximos semestres, em especial aquelas ligadas à propagação de ondas, Mecânica dos Fluídos, Transferência de Calor e Massa. O curso também pretende dar ao aluno uma base para a realização de experimentos relacionados com sistemas periódicos, sistemas termodinâmicos e fluidos.

BIBLIOGRAFIA BÁSICA

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA COMPLEMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Chaves, Alaor, Sampaio, F. Física: Mecânica. Vol. 2; Ed. LAB&LTC.</td>
</tr>
<tr>
<td>2- Serway, R., Jr., J. Jewett, Princípios de Física. Ed. Cengage Learning, Vol. 2.</td>
</tr>
<tr>
<td>3- Keller, Gettys & Skove, Física, Vols. 1 e 2, Ed. Makron Books.</td>
</tr>
<tr>
<td>4- Resnick, R., Halliday, D., Krane, K., Física, 5ª ed. Vol.2, Ed. LTC.</td>
</tr>
<tr>
<td>5- Feynman, R., The Feynman Lectures on Physics, vol. 1 e vol. 2.</td>
</tr>
<tr>
<td>6- Ieno & Negro, Termodinâmica, Ed. Pearson Education do Brasil.</td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Materiais de construção</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
</tr>
</thead>
<tbody>
<tr>
<td>3°</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>36</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>600 horas de UC’S</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Analisar as propriedades dos materiais de construção. Apresentar os principais materiais empregados na construção civil, incluindo suas características, propriedades e aplicação. Fornecer critérios e parâmetros para escolha e especificação dos materiais em consonância com as normas técnicas.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

4. PIZARRO, Rufino de Almeida. Materiais de Construção. Rio de Janeiro:
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Cálculo numérico</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4º</td>
<td></td>
<td>BCT303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Carga Horária</th>
<th>Pré-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Teórica: 54</td>
<td>BCT101, BCT301</td>
</tr>
<tr>
<td></td>
<td>Prática: 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total: 72</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Introduzir o aluno na área da Análise Numérica e do Cálculo Numérico, tornando-o capaz de analisar e aplicar algoritmos numéricos em problemas reais, codificando-os em uma linguagem de alto nível a fim de resolver problemas de pequeno e médio porte em Ciência e Tecnologia.

BIBLIOGRAFIA BÁSICA

1. CHAPRA, Steven C., CANALE, Raymond P. Métodos Numéricos para a Engenharia. 5ª Ed. MCGRAW-HILL BRASIL, 2008

BIBLIOGRAFIA COMPLEMENTAR

1. BARROSO, Leônidas, BARROSO, Magali Maria de Araújo, CAMPOS FILHO,

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Curriculo 2010</th>
<th>Unidade curricular</th>
<th>Campus Alto Paraopeba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fenômenos eletromagnéticos</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período: 4º</th>
<th>Carga Horária</th>
<th>Código CONTAC BCT203</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teórica 54</td>
<td>Prática 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>BCT201</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Carga elétrica, Força Elétrica e Lei de Coulomb; Campo Elétrico de Cargas puntuais e campo elétrico de distribuições de carga contínuas; Lei de Gauss; Potencial Elétrico; Capacitores e Dielétricos; Corrente Elétrica, Resistores e introdução aos circuitos elétricos (associação de resistores, circuitos RL, RC e RLC, Lei das Malhas); Campo Magnético e Força Magnética, Leis de Ampère e Biot-Savart, Indução Eletromagnética: Lei de Faraday e Lei de Lenz, Indutância e Corrente Alternada, Propriedades Magnéticas da Matéria;

OBJETIVOS

O curso tem como intenção primordial propiciar ao aluno conhecimento científico para a modelagem de sistemas físicos, com ênfase especial àqueles que envolvam fenômenos de natureza elétrica e magnética. O curso deverá fornecer ao aluno embasamento para as unidades curriculares dos próximos semestres, em especial aquelas ligadas à eletricidade e ao magnetismo.

O curso pretende proporcionar ao aluno um contato com experimentos envolvendo eletricidade e campos magnéticos, circuitos e afins.

BIBLIOGRAFIA BÁSICA

1- Halliday, Resnick, Walker. Fundamentos de Física. LTC Vol.3.
BIBLIOGRAFIA COMPLEMENTAR

<table>
<thead>
<tr>
<th>N°</th>
<th>Autor(s)</th>
<th>Título</th>
<th>Volume</th>
<th>Editora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chaves, Alaor, Sampaio, F.</td>
<td>Física: Mecânica</td>
<td>3</td>
<td>LAB&LTC.</td>
</tr>
<tr>
<td>2</td>
<td>Serway, R., Jr., J. Jewett</td>
<td>Princípios de Física</td>
<td>3</td>
<td>Cengage Learning</td>
</tr>
<tr>
<td>3</td>
<td>Keller, Gettes & Skove</td>
<td>Física</td>
<td>2</td>
<td>Makron Books</td>
</tr>
<tr>
<td>4</td>
<td>Resnick, R., Halliday, D., Krane, K.</td>
<td>Física, 5ª ed.</td>
<td>3</td>
<td>LTC.</td>
</tr>
<tr>
<td>5</td>
<td>Feynman, R.</td>
<td>The Feynman Lectures on Physics</td>
<td>1 e 2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Griffiths, D.</td>
<td>Introduction to Electrodynamics</td>
<td></td>
<td>Willey.</td>
</tr>
</tbody>
</table>

97
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Equações diferenciais B</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4º</td>
<td>Nº</td>
<td>ENC603</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>36</td>
<td>00</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacharelado</td>
<td>BCT104</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETivos

Oferecer aos alunos ferramental matemático avançado, mais apropriado para a resolução de problemas tecnológicos complexos.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

EMENTA

OBJETIVOS

Compreender o homem e suas práticas sociais e simbólicas como resultantes de um processo de construção ao longo da história. Entender a relação indivíduo-sociedade considerando o ethos e a visão de mundo que norteiam as práticas de um e de outro. Conhecer fundamentos teóricos da psicologia social. Compreender a relação dialética entre indivíduo/grupo/sociedade como construção social. Identificar e analisar os conceitos de subjetividade, cultura, sociedade e o processo de socialização na atual sociedade de consumo.

BIBLIOGRAFIA BÁSICA

<table>
<thead>
<tr>
<th></th>
<th>Autor(a)</th>
<th>Título</th>
<th>Localização</th>
<th>Edições/Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>BAUDRILLAR, Jean</td>
<td>A sociedade de consumo.</td>
<td>Lisboa/Portugal: Edições 70, s/d.</td>
<td></td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo 2010</th>
<th>Unidade curricular</th>
<th>Campus Alto Paraopeba</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Período 4º</th>
<th>Carga Horária</th>
<th>Código CONTAC ENC401</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teórica</td>
<td>Prática</td>
<td>Total</td>
</tr>
<tr>
<td>72</td>
<td>00</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>BCT202</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Analisar e interpretar o comportamento mecânico de fluidos, em repouso ou em escoamento, tendo em vista aplicações de engenharia civil.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Mecânica vetorial</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4º</td>
<td></td>
<td>ENC501</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72</td>
<td>00</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacharelado</td>
<td>BCT103, BCT201</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Analisar, interpretar e utilizar os principais instrumentos, através da abordagem geral dos vetores, para a resolução de problemas de engenharia estrutural.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Fundamentos de física moderna</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período:</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5º</td>
<td>ENC604</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carga Horária</th>
<th>Pré-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teórica</td>
<td>BCT202</td>
</tr>
<tr>
<td>Prática</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Habilitação / Modalidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacharelado</td>
</tr>
</tbody>
</table>

EMENTA

Introdução à Relatividade Especial, Natureza corpuscular da luz e Natureza ondulatória das partículas (dualidade onda-partícula), Mecânica Quântica, Estrutura atômica, Moléculas e Matéria Condensada;

OBJETIVOS

O curso tem como intenção primordial propiciar ao aluno conhecimento científico para a modelagem de sistemas físicos, com ênfase especial àqueles que envolvam fenômenos em altas velocidades ou microscópicos, em que são necessários conceitos sobre a Teoria da Relatividade Especial e da Física Quântica, respectivamente. Como característica principal, o curso tem a principal finalidade de romper com os paradigmas da Física Clássica, mostrando ao estudante o poder de alcance das diversas teorias físicas. O curso deverá fornecer ao aluno embasamento para as unidades curriculares dos próximos semestres, em especial àquelas em que são necessários conhecimentos sobre a estrutura da matéria. Em termos tecnológicos, é a disciplina que fornece ao estudante muitos dos principais conceitos que permitiram todo o avanço obtido no século XX, sendo considerada a base para a próxima geração de avanços no século XXI.

O curso pretende também mostrar aos alunos os principais experimentos que levaram à revolução da ciência no início do século XX, tais como a determinação da velocidade da luz, espectro de linhas de emissão dos átomos, interferência e difração, estrutura atômica e molecular.
BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

1- Chaves, Alaor, Sampaio, F. *Física: Mecânica*. Vol. 4; Ed. LAB<C.
5- Feynman, R., *The Feynman Lectures on Physics*, vol. 2 e vol. 3.
7- Typler, P., *Física Moderna*, Ed. Gen<C.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Estruturas isostáticas</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5º</td>
<td></td>
<td>ENC506</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td></td>
<td>ENC501</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>18</td>
<td>72</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Transmitir os conhecimentos fundamentais para concepção e análise estrutural: determinação de reações de apoio e esforços solicitantes em estruturas reticuladas isostáticas. Estudo do princípio dos trabalhos virtuais e sua aplicação por meio do método da carga unitária para cálculo de deslocamentos em estruturas isostáticas. Determinação das reações de apoio e dos esforços solicitantes nas estruturas isostáticas devido às cargas móveis, por meio do estudo das linhas de influência.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Resistência dos materiais I</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5º</td>
<td></td>
<td>ENC511</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Teórica 54</td>
<td>ENC501</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prática 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Compreender conceitos matemáticos e físicos que descrevem o comportamento de peças estruturais. Analisar e verificar as tensões e deformações introduzidas pelos esforços e pelos momentos de flexão e torção. Estudar peças estruturais submetidas à tração. Calcular os esforços e praticar resolução de problemas. Introduzir os conceitos e metodologias de análise de estruturas que serão objetos de sistematização e aprofundamento nas disciplinas de estruturas.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

<table>
<thead>
<tr>
<th>INFORMAÇÕES BÁSICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currículo</td>
</tr>
<tr>
<td>2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>00</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Fornecer conceitos essenciais de economia e administração para serem aplicados na formulação e avaliação de projetos de engenharia. Estimular a visão crítica sobre os processos de produção e comercialização de produtos industriais.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

13. PIRES, Silvio R. I. Gestão da cadeia de suprimentos: conceitos, estratégias,

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Eletrotécnica geral</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5º</td>
<td></td>
<td>ENC601</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>BCT106, BCT303</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Elementos de circuitos de corrente contínua, lei de Ohm, potência em corrente contínua, teoremas de Thevenin e Norton. Circuitos de corrente alternada, métodos das malhas para a resolução de circuitos, potência em corrente alternada, teorema da máxima transferência de potência e correção do fator de potência.

OBJETIVOS

Ao final desta unidade curricular o aluno estará capacitado a: definir o melhor método para resolução de um problema de circuito elétrico, interpretar o funcionamento de circuitos RLC mistos e calcular os seus parâmetros, analisar e corrigir o fator de potência de um determinado sistema elétrico.

BIBLIOGRAFIA BÁSICA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Departamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Trabalho de Contextualização e Integração Curricular I</td>
<td>CAP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5o</td>
<td>Teórica 72 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prática 0 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 72 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habilitação / Modalidade</td>
<td>Bacharelado</td>
<td>600h/aula cursadas</td>
</tr>
</tbody>
</table>

EMENTA

Tópicos relacionados ao desenvolvimento de um projeto na área de Ciência e Tecnologia e que deverá integrar conceitos de pelo menos duas unidades curriculares e pelo menos um aspecto das realidades socioculturais e/ou sistemas produtivos. A questão da sustentabilidade deve o quanto possível, ser envolvida nesse projeto.

OBJETIVOS

- Propiciar a interação e a integração entre os diferentes campos de conhecimentos adquiridos e em estudo, ao longo dos três primeiros anos da formação acadêmica regular;
- Propiciar uma visão aplicada de conceitos e teorias aprendidos em sala de aula;
- Contextualizar os conhecimentos adquiridos em relação às demandas sociais;
- Favorecer a articulação entre os conhecimentos teóricos e práticos;
- Estimular o desenvolvimento da autonomia do aluno;
- Estimular o trabalho em equipe.

CONTEÚDO PROGRAMÁTICO

Após a definição do tema/projeto, o professor-orientador, juntamente com o(s) co-orientador(es), se houver, deverão informar aos alunos, os conteúdos necessários para o entendimento e desenvolvimento do projeto.

CRITÉRIOS DE AVALIAÇÃO

O Trabalho de Contextualização e Integração Curricular deverá ser desenvolvido em grupos de 03 (três) alunos cada. Cada grupo terá um professor como orientador que poderá contar também com a ajuda de outros docentes na forma de co-orientadores. A avaliação de TCIC I será feita pelo orientador de cada projeto. Cada grupo deverá entregar, até o final do semestre, em data a ser estabelecida pelo orientador, um Relatório Parcial de Desenvolvimento do Projeto, de acordo com modelo fornecido pela Coordenação do TCIC. Tal relatório deverá conter: título do projeto, breve descrição do...
projeto e das atividades a serem desenvolvidas, objetivos do projeto, unidades curriculares associadas, resultados esperados, cronograma de execução do projeto e estado atual de desenvolvimento do projeto. O orientador do projeto avaliará o trabalho proposto e desenvolvido pelo grupo e dará uma nota de 0 (zero) a 10 (dez) para o grupo.

BIBLIOGRAFIA BÁSICA

Não se aplica. A bibliografia depende de cada projeto e deverá ser fornecida pelo orientador do grupo.

BIBLIOGRAFIA COMPLEMENTAR

Não se aplica. A bibliografia depende de cada projeto e deverá ser fornecida pelo orientador do grupo.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Meio ambiente e gestão para a sustentabilidade</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periodo</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6º</td>
<td>Teórica 36</td>
<td>BCT504</td>
</tr>
<tr>
<td></td>
<td>Prática 00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Compreender os conceitos de meio ambiente, problemas ambientais e desenvolvimento sustentável. Desenvolver postura ética e atitude crítica frente aos processos produtivos, em busca da sustentabilidade. Compreender princípios de negociação, legislação e direito ambiental. Fomentar o desenvolvimento e a aplicação de tecnologias para o desenvolvimento sustentável, com ênfase em ciclo de vida de produtos, produção limpa e eficiência energética.

BIBLIOGRAFIA BÁSICA

4. BRAGA, Benedito; HESPANHOL, I.; CONEJO, J. G. L. Introdução à
<table>
<thead>
<tr>
<th>N°</th>
<th>Autor(a)</th>
<th>Título</th>
<th>Edição</th>
<th>ISBN</th>
<th>Ano de Publicação</th>
<th>Editora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SÁNCHEZ, Luis Enrique.</td>
<td>Avaliação de impacto ambiental: conceitos e métodos.</td>
<td>1a</td>
<td></td>
<td>2006</td>
<td>Oficina de Textos</td>
</tr>
<tr>
<td>3</td>
<td>CHEHEBE, José Ribamar B.</td>
<td>Análise do Ciclo de vida de produtos: ferramenta gerencial da ISO 14000.</td>
<td>1a</td>
<td></td>
<td>2002</td>
<td>Qualitymark</td>
</tr>
<tr>
<td>4</td>
<td>MACHADO, Paulo Afonso Leme.</td>
<td>Direito ambiental brasileiro.</td>
<td>15</td>
<td></td>
<td>2007</td>
<td>Malheiros</td>
</tr>
<tr>
<td>5</td>
<td>POLETO, Cristiano (Org).</td>
<td>Introdução ao gerenciamento ambiental.</td>
<td></td>
<td></td>
<td>2010</td>
<td>Interciência</td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo 2010</th>
<th>Unidade curricular</th>
<th>Campus Alto Paraopeba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ciência, tecnologia e sociedade</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período 6°</th>
<th>Carga Horária</th>
<th>Código CONTAC BCT503</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teórica 36, Prática 00, Total 36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Refletir sobre as correlações entre Ciência, Tecnologia, Sociedade e Ambiente. Compreender diferentes concepções de ciência. Problematizar as noções de objetividade e neutralidade e método científico. Despertar uma atitude crítica e uma postura ética em relação ao papel social dos profissionais das áreas tecnológicas.

BIBLIOGRAFIA BÁSICA

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA COMPLEMENTAR</th>
</tr>
</thead>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Projeto topográfico</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6°</td>
<td></td>
<td>ENC221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipos</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Teórica: 54</td>
<td>ENC111</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prática: 18</td>
<td>ENC221</td>
</tr>
<tr>
<td>Total: 72</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

- Proporcionar ao discente fundamentação teórica sobre os elementos da topografia (Generalidades, Medidas de ângulos e Orientação das plantas).
- Capacitar o discente a desenvolver levantamentos planimétricos de áreas de pequeno porte através de métodos topográficos convencionais e modernos e realizar a sua representação gráfica.
- Capacitar o discente a desenvolver levantamentos altimétricos e realizar a sua representação gráfica por meio de perfil.

BIBLIOGRAFIA BÁSICA

<table>
<thead>
<tr>
<th>N°</th>
<th>Autor(s)</th>
<th>Título</th>
<th>Edição</th>
<th>Localização</th>
<th>Editora</th>
<th>Páginas</th>
<th>Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>COMASTRI, José A; TULER, José C.</td>
<td>Topografia – Altimetria</td>
<td>3ª</td>
<td>Viçosa: Editora UFV.</td>
<td>200p. 1999.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6º</td>
<td></td>
<td>ENC512</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>ENC511</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Aprofundar análise e verificação das tensões e deformações. Aprofundar estudo de peças estruturais submetidas à tração e compressão. Introduzir a análise da estabilidade do equilíbrio. Calcular os esforços e praticar resolução de problemas. Consolidar os conceitos e metodologias de análise de estruturas.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Hidráulica e hidrologia</td>
<td>Alto Paraopeba</td>
</tr>
<tr>
<td>Período</td>
<td>Carga Horária</td>
<td>Código CONTAC</td>
</tr>
<tr>
<td>6°</td>
<td>Teórica 36</td>
<td>ENC402</td>
</tr>
<tr>
<td></td>
<td>Prática 36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 72</td>
<td></td>
</tr>
<tr>
<td>Tipo</td>
<td>Habilitação / Modalidade</td>
<td>Pré-requisito</td>
</tr>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>ENC401</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Apresentar os conceitos fundamentais de hidráulica e hidrologia. Analisar o escoamento em condutos e canais para dimensionar estruturas hidráulicas na área de hidráulica. Processar e analisar informações hidrológicas, visando à utilização racional e sustentada dos recursos hídricos.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Estruturas hiperestáticas</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6º</td>
<td></td>
<td>ENC507</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>54</td>
<td>18</td>
<td>72</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Fornecer os fundamentos da análise estrutural, por meio do cálculo de esforços e deslocamentos em estruturas hiperestáticas utilizando-se o Método das Forças o Método dos Deslocamentos. Formulação de conceitos, princípios e teoremas de energia, bem como sua aplicação na análise. Analisar estruturas via programas computacionais.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

EMENTÁ

Tópicos relacionados ao desenvolvimento de um projeto na área de Ciência e Tecnologia e que deverá integrar conceitos de pelo menos duas unidades curriculares e pelo menos um aspecto das realidades socioculturais e/ou sistemas produtivos. A questão da sustentabilidade deve o quanto possível, ser envolvida nesse projeto.

OBJETIVOS

- Propiciar a interação e a integração entre os diferentes campos de conhecimentos adquiridos e em estudo, ao longo dos três primeiros anos da formação acadêmica regular;
- Propiciar uma visão aplicada de conceitos e teorias aprendidos em sala de aula;
- Contextualizar os conhecimentos adquiridos em relação às demandas sociais;
- Favorecer a articulação entre os conhecimentos teóricos e práticos;
- Estimular o desenvolvimento da autonomia do aluno;
- Estimular o trabalho em equipe.

CONTEÚDO PROGRAMÁTICO

Após a definição do tema/projeto, o professor-orientador, juntamente com o(s) co-orientador(es), se houver, deverão informar aos alunos, os conteúdos necessários para o entendimento e desenvolvimento do projeto.

CRITÉRIOS DE AVALIAÇÃO

O TCIC II é uma continuidade do TCIC I que consiste no desenvolvimento de um projeto na área de Ciência e Tecnologia por um grupo de alunos. Cada grupo é composto por 03 (três) alunos cada e tem um professor como orientador, que poderá contar também com a ajuda de outros docentes na forma de co-orientadores.

No TCIC II, o grupo de alunos será avaliado por uma Banca Avaliadora, composta por, pelo menos, 02 (dois) membros, sendo um deles o orientador do projeto. Ao final do semestre, cada grupo deverá entregar para a Banca Avaliadora um trabalho escrito.
impresso em papel A4 e em formato digital, margens 2,5 cm, fonte Arial tamanho 12, espaçamento 1,5, satisfatoriamente referenciado em termos bibliográficos, com dimensão entre 10 e 40 páginas, incluindo: Introdução, Justificativa, Fundamentos Teóricos e Conceituais, Revisão de Literatura, Desenvolvimento do Projeto, Conclusões ou Considerações Finais e Referências Bibliográficas. Cada grupo também deverá fazer uma apresentação oral sobre o trabalho com a duração de 20 a 40 minutos, conforme deliberação da banca, em data previamente agendada pela Coordenação do TCIC. Cada grupo receberá da Banca Avaliadora uma nota de 0 (zero) a 10 (dez).

BIBLIOGRAFIA BÁSICA

Não se aplica. A bibliografia depende de cada projeto e deverá ser fornecida pelo orientador do grupo.

BIBLIOGRAFIA COMPLEMENTAR

Não se aplica. A bibliografia depende de cada projeto e deverá ser fornecida pelo orientador do grupo.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Estruturas de concreto armado I</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7º</td>
<td></td>
<td>ENC521</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Teórica</td>
<td>ENC507, ENC512</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prática</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Estudar as propriedades mecânicas do concreto e do aço e fornecer os fundamentos teóricos e práticos para o dimensionamento de peças de concreto armado submetidas aos esforços de flexão e cisalhamento, além da verificação da fissuração.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo 2010</th>
<th>Unidade curricular</th>
<th>Campus Alto Paraopeba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elementos estruturais de aço I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período 7º</th>
<th>Carga Horária</th>
<th>Código CONTAC ENC541</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teórica 54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prática 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 72</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito ENC507, ENC512</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA
Viabilidade econômica e aspectos do uso do aço como material estrutural; Aços estruturais; Perfis estruturais; Segurança e desempenho estrutural; Comportamento e análise estrutural; Barras tracionadas em perfis soldados e laminados; Barras comprimidas em perfis soldados e laminados; Barras fletidas em perfis soldados e laminados; Barras sob combinação de esforços solicitantes em perfis soldados e laminados. (Observação: os cinco primeiros tópicos são gerais, devendo abordar perfis laminados, soldados e formados a frio).

OBJETIVOS
Apresentar fundamentos, características e propriedades do aço. Projetar, calcular, dimensionar, verificar e detalhar estruturas em aço.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR
1. **AISC, AMERICAN INSTITUTE OF STEEL CONSTRUCTIONS AND.** 2006.

5. **SALMON, CHARLES., JOHNSON, JOHN E. e MALHAS, FARIS A.** 2008.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Estruturas de madeira</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7º</td>
<td></td>
<td>ENC531</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>18</td>
<td>18</td>
<td>36</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Apresentar os fundamentos, características e propriedades da madeira, bem como projetar os elementos estruturais básicos e suas ligações.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Instalações prediais: elétrica e telefonia</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7º</td>
<td></td>
<td>ENC602</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>18</td>
<td>18</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacharelado</td>
<td>ENC601</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Ao final desta unidade curricular o aluno estará capacitado a entender o princípio de funcionamento de circuitos trifásicos e a projetar instalações elétricas industriais e prediais.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Infra-estrutura de vias terrestres</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7º</td>
<td>Teórica</td>
<td>Prática</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>ENC221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co-requisito</th>
</tr>
</thead>
</table>

EMENTA

OBJETIVOS

- Capacitar o discente a elaborar projetos geométricos de estradas, a partir de conhecimentos técnicos multidisciplinares e da interpretação de normas, especificações e recomendações técnicas vigentes no país;
- Apresentar ao discente os princípios de projeto de terraplenagem, no que concerne ao projeto e construção de rodovias.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo 2010</th>
<th>Unidade curricular</th>
<th>Campus Alto Paraopeba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mecânica dos solos</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período 7º</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ENC202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Teórica 36</td>
<td>ENC201</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prática 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Apresentar e analisar os conceitos básicos de tensões, deformações e fluxo de solos para resolução de problemas de engenharia geotécnica. Analisar os fundamentos da resistência dos solos e os critérios para dimensionamento de obras geotécnicas.

BIBLIOGRAFIA BÁSICA

1. CAPUTO, H. P. *Mecânica dos Solos e Suas Aplicações*. Volumes 1, 2 e 3. Livros Técnicos e Científicos Editora, São Paulo - SP.
3. PINTO, C. S. *Curso Básico de Mecânica dos Solos*. Editora Oficina de Textos, São Paulo - SP.

BIBLIOGRAFIA COMPLEMENTAR

1. BARATA, F. E. *Propriedades Mecânicas dos Solos*. Livros Técnicos e

3. FIORI, A. P. & CARMIGNANI, L. *Fundamentos de Mecânica dos Solos e das Rochas*. Editora da UFPR. Curitiba - PR.

5. NOGUEIRA, J. B. *Mecânica dos Solos - Ensaios de Laboratório*. Publicação do Departamento de Geotecnia da EESC-USP, São Carlos - SP.

EMENTA

OBJETIVOS

Complementar os fundamentos teóricos e práticos para o dimensionamento de peças de concreto armado submetidas aos esforços de flexo-compressão e torção, além do cálculo de deformações por flexão considerando as seções fissuradas.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Elementos estruturais de aço II</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8º</td>
<td>Carga Horária</td>
<td>ENC542</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td></td>
<td>ENC541</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Barras tracionadas em perfis formados a frio; Barras comprimidas em perfis formados a frio; Barras fletidas em perfis formados a frio; Barras sob combinação de esforços solicitantes em perfis formados a frio; Ligações; Bases de pilares. (Observação: os dois últimos tópicos são gerais, devendo abordar perfis laminados, soldados e formados a frio).

OBJETIVOS

Apresentar fundamentos, características e propriedades do aço. Projetar, calcular, dimensionar, verificar e detalhar estruturas em aço.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

EMENTA

Instalação de água potável quente e fria. Esgoto sanitário e pluvial. Instalações para prevenção contra incêndio.

OBJETIVOS

Analisar e utilizar as normas técnicas para execução de projetos hidráulicos, instalações prediais de água fria, instalações prediais de água quente, instalações prediais de esgoto sanitário, instalações prediais de água fluvial e instalações de prevenção e combate contra incêndios. Utilizar computação gráfica e ferramentas de projeto auxiliado por computador.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

1- BACELLAR, Ruy Honório. Instalações Hidráulicas e Sanitárias: domiciliares e
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Publisher / Edition</th>
</tr>
</thead>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Elementos estruturais de aço de seção tubular</td>
<td>Alto Paraopeba</td>
</tr>
<tr>
<td>Período</td>
<td>Carga Horária</td>
<td></td>
</tr>
<tr>
<td>8º</td>
<td>Código CONTAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teórica</td>
<td>Prática</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Tipo
Obrigatória

Habilitação / Modalidade
Bacharelado

Pré-requisito
ENC541

Co-requisito

EMENTA

Aspectos gerais das construções com estruturas tubulares; Aços estruturais; Perfis estruturais; Aspectos particulares da análise e do comportamento estrutural de treliças; Barras tracionadas; Barras comprimidas; Barras fletidas; Barras submetidas à torção; Barras sob combinação de esforços solicitantes; ligações; Bases de pilares.

OBJETIVOS

Apresentar fundamentos, características e propriedades de estruturas tubulares. Projetar, calcular, dimensionar, verificar e detalhar estruturas e suas ligações.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8º</td>
<td></td>
<td>ENC304</td>
</tr>
<tr>
<td></td>
<td>Teórica: 36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prática: 00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total: 36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Introduzir conceitos de ergonomia e segurança do trabalho. Avaliar os fatores humanos e condições de trabalho. Avaliar os fatores do ambiente de trabalho. Analisar a ergonomia como prática organizacional, as normas de segurança e saúde no trabalho. Analisar as formas de prevenção de acidentes de acordo com as normas e legislações.

BIBLIOGRAFIA BÁSICA

4- BARREIRA, Thaís Helena de C. Um Enfoque Ergonômico Para as Posturas de Trabalho. Revista Brasileira de Saúde Ocupacional, S.I., vol.17, n. 67,
BIBLIOGRAFIA COMPLEMENTAR

5- SOUNIS, Emílio. **Manual de Higiene e Medicina do Trabalho.**
<table>
<thead>
<tr>
<th>INFORMAÇÕES BÁSICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currículo</td>
</tr>
<tr>
<td>2010</td>
</tr>
<tr>
<td>Período</td>
</tr>
<tr>
<td>8º</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>Obrigatória</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMENTA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJETIVOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A disciplina em questão irá abranger estudos relacionados ao comportamento do “estaqueamento” das fundações no subsolo. Serão abordados estudos relacionados aos diversos tipos de fundações existentes no mercado, fazendo um enfoque maior as fundações por sapatas e por estacas. No final do curso o aluno terá condições de fazer dimensionamento de fundações bem como optar por escolher o melhor tipo de fundação que se adequará a um determinado tipo de solo e edificação.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA BÁSICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ALONSO, U. R. Exercícios de fundações. Editora Edgard Blucher, São Paulo - SP.</td>
</tr>
<tr>
<td>2. HACHICH, W. Fundações - Teoria e Prática. Editora PINI, São Paulo - SP.</td>
</tr>
<tr>
<td>3. VELLOSO, D. A; LOPES, F. R. Fundações - Critérios de projeto, investigação do subsolo e fundações superficiais e profundas. Volumes 1 e 2. Editora da UFRJ, Rio de Janeiro - RJ.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA COMPLEMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ALONSO, U. R. Dimensionamento de fundações profundas. Editora Edgard Blucher, São Paulo - SP.</td>
</tr>
</tbody>
</table>
2. ALONSO, U. R. *Previsão e controle das fundações*. Editora Edgard Blucher, São Paulo - SP.

3. JOPPERT JUNIOR, I. *Fundações e contenções de edifícios*. Editora PINI, São Paulo - SP.

7. SIMONS, N. E. ; MENZIES, B. K. *Introdução à engenharia de fundações*. Editora Interiência, São Paulo - SP.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Saneamento</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>9º</td>
<td></td>
<td>ENC404</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54</td>
<td>18</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>ENC402</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Transmitir os conceitos fundamentais de hidráulica urbana, do ciclo urbano de utilização da água, numa perspectiva de desenvolvimento sustentável. Introduzir noções de saneamento. Projetar sistemas de abastecimento de água, sistemas de esgotos e sistemas de drenagem de águas pluviais. Utilizar computação gráfica e ferramentas de projeto auxiliado por computador.

BIBLIOGRAFIA BÁSICA

<table>
<thead>
<tr>
<th>Número</th>
<th>Autor(es)</th>
<th>Título</th>
<th>Edição</th>
<th>Localização</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Sperling, Marcos Von, (1996)</td>
<td>Introdução à Qualidade das Águas e ao Tratamento de Esgotos, 2ª ed.</td>
<td>Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental; UFMG.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SPERLING, M. V.</td>
<td>Princípios básicos do tratamento de esgotos.</td>
<td>Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental, Universidade federal de Minas Gerais, 1996.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SPERLING, M. V.</td>
<td>Lagoas de estabilização.</td>
<td>Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental, Universidade federal de Minas Gerais, 1996.</td>
<td></td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Edifícios industriais em estruturas de aço</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>9º</td>
<td>Teórica</td>
<td>Prática</td>
</tr>
<tr>
<td></td>
<td>Código ENC544</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>ENC542</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Tipos de edifícios industriais; Metodologia de desenvolvimento da memória de cálculo e dos desenhos de projeto; Definição da tipologia do edifício; Ações e combinações de ações; Forças devidas ao vento; Ações devidas a pontes rolantes; Fadiga e cargas dinâmicas devidas a equipamentos; Quadro de carga; Noções de pré-dimensionamento e consumo de material; Programas computacionais; Determinação de esforços nas barras e deslocamentos; Cálculo dos elementos estruturais e construtivos.

OBJETIVOS

Ensinar o aluno a executar a memória de cálculo e os desenhos de projeto de um edifício industrial em aço com ponte rolante.

BIBLIOGRAFIA BÁSICA

|---|---|
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Segurança das estruturas em situação de incêndio</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período 9º</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teórica</td>
<td>Prática</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>ENC542</td>
</tr>
<tr>
<td>Co-requisito</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Conceitos de segurança contra incêndio; Normas, regulamentos e leis; Combustão e noções elementares de transferência de calor; Comportamento do incêndio em compartimentos; Curvas do incêndio-padrão; Tempo requerido de resistência ao fogo e método de tempo equivalente; Isolamento térmico e estanqueidade; Noções de medidas urbanísticas e arquitetônicas; Compartimentação horizontal e vertical; Estruturas de concreto em situação de incêndio; Estruturas de aço em situação de incêndio; Estruturas mistas de aço e concreto em situação de incêndio.

OBJETIVOS

Abordar os conceitos fundamentais de engenharia de segurança contra incêndio, permitindo ao aluno um conhecimento das diversas formas de verificação e proteção das estruturas em situação de incêndio.

BIBLIOGRAFIA BÁSICA

161
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Fabricação, transporte e montagem de estruturas de aço</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>9º</td>
<td></td>
<td>ENC546</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Habilitação / Modalidade</td>
<td>Pré-requisito</td>
<td>Co-requisito</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Apresentar características e propriedades de técnicas de fabricação, transporte e montagem de estruturas metálicas.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

<table>
<thead>
<tr>
<th>INFORMAÇÕES BÁSICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currículo</td>
</tr>
<tr>
<td>2010</td>
</tr>
<tr>
<td>Período</td>
</tr>
<tr>
<td>9º</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>Obrigatória</td>
</tr>
</tbody>
</table>

EMENTA

Histórico, aplicações e vantagens; Conectores de cisalhamento; Vigas mistas; Pilares mistos; Lajes mistas; Ligações mistas.

OBJETIVOS

Apresentar fundamentos, características e propriedades dos elementos estruturais mistos de aço e concreto. Projetar, calcular, dimensionar, verificar e detalhar estruturas mistas de aço e concreto.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

3. **PINHEIRO, ANTÔNIO CARLOS DA FONSECA BRAGANÇA. 2005.**
Estruturas Metálicas - Cálculos, Detalhes, Exercícios e Projetos (2. Edição).
s.l. : Edgard Blucher, 2005.

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Curriculo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Superestrutura de vias terrestres</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>9º</td>
<td></td>
<td>ENC223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td></td>
<td>ENC222</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Proporcionar ao discente:
✓ Conhecimento de ensaios de laboratório e de métodos de caracterização de materiais empregados em pavimentação;
✓ Entendimento da influência das tensões e das deflexões causadas pelo tráfego nos pavimentos;
✓ Entendimento dos princípios, conceitos e teorias que embasam os métodos de dimensionamento de pavimentos;
✓ Entendimento e aplicação dos conceitos de gerência de pavimentos.

BIBLIOGRAFIA BÁSICA

3. MEDINA, Jacques de e MOTTA, Laura M. G. da. Mecânica dos Pavimentos.

Informações Básicas

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Detalhamento de estruturas de aço e mistas de aço e concreto</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10º</td>
<td></td>
<td>ENC548</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>ENC522, ENC542</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC548</td>
</tr>
</tbody>
</table>

Ementa

Documentação necessária a um projeto completo; Utilização de programas CAD para execução de desenhos; Execução de desenhos de fabricação e de montagem a partir de desenhos de projeto; Desenhos de fôrma e armação referentes às partes de concreto dos elementos de aço e concreto.

Objetivos

Detalhar as estruturas de aço e mistas de aço e concreto, incluindo os elementos estruturais e suas ligações.

Bibliografia Básica

Bibliografia Complementar

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Patologia das construções</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10º</td>
<td></td>
<td>ENC302</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Teórica 18</td>
<td>ENC301, ENC542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prática 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Apresentar características e técnicas relacionadas à inspeção, diagnóstico e reabilitação de edifícios correntes com anomalias. Apresentar as técnicas de reabilitação e reforço de estruturas. Analisar a vida útil das construções. Considerar aspectos de concepção e construção com durabilidade.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

1. COUTINHO, C. B. *Materiais Metálicos Para Engenharia*. Belo Horizonte:
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Edifícios de andares múltiplos em estruturas de aço e mistas de aço e concreto</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10º</td>
<td></td>
<td>ENC549</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>ENC522, ENC542</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código CONTAC</th>
<th>Carga Horária</th>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC549</td>
<td></td>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>ENC522, ENC542</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Sistemas estruturais; Metodologia de desenvolvimento da memória de cálculo e dos desenhos de projeto: planta de locação, detalhe de bases, elevações, detalhes das ligações e outros; Definição da tipologia do edifício; Ações usuais e combinações de ações; Quadro de carga; Deslocamentos e vibrações em pisos; Estabilização (contraventamentos, pórticos, paredes de cisalhamento); Noções de pré-dimensionamento e consumo de material; Programas computacionais; Cálculo de elementos estruturais à temperatura ambiente e em situação de incêndio.

OBJETIVOS

Ensinar o aluno a executar a memória de cálculo e os desenhos de projeto de um edifício com estruturas de aço e mistas de aço e concreto.

BIBLIOGRAFIA BÁSICA

4. VASCONCELLOS Filho, A. **Edifícios de Andares Múltiplos.** Belo Horizonte: Edições Engenharia, EE/UFMG, 1981
<table>
<thead>
<tr>
<th>número</th>
<th>autoria</th>
<th>título</th>
<th>editora</th>
<th>ano</th>
<th>páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manual da Construção em Aço</td>
<td>Edifícios de Pequeno Porte Estruturados em Aço</td>
<td>IBS/CBCA</td>
<td>2004</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>Vasconcellos Filho, A.</td>
<td>Edifícios de Andares Múltiplos</td>
<td>EE/UFMG</td>
<td>1981</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Queiroz, Gilson, Pimenta Roberval J., Paula Luciene A. C. de</td>
<td>Elementos das Estruturas Mistas Aço-Concreto</td>
<td></td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ABNT - Associação Brasileira de Normas Técnicas</td>
<td>Procedimento: NBR-14323. Dimensionamento de Estruturas de Aço e de Estruturas Mistas Aço-Concreto de Edifícios em Situação de Incêndio</td>
<td>ABNT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Técnicas construtivas</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10º</td>
<td></td>
<td>ENC303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td></td>
<td>ENC301, ENC542</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>36</td>
<td>72</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Capacitar o aluno com o conhecimento das técnicas construtivas usualmente adotadas em edificações. Apresentar materiais, equipamentos, processos e instrumental necessários à execução e acompanhamento das diversas fases de uma obra civil. Analisar várias técnicas construtivas, visando optar por aquelas mais econômicas e racionais. Fornecer noções de projeto, levantamento de materiais, planejamento e orçamento de obras.

BIBLIOGRAFIA BÁSICA

4- GEHBAUER, F. *Planejamento e Gestão de Obras*. Curitiba: Editora CEFET-
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

BIBLIOGRAFIA COMPLEMENTAR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo 2010</th>
<th>Unidade curricular</th>
<th>Campus Alto Paraopeba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pontes com estruturas de concreto, aço e mistas de aço e concreto</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período 10º</th>
<th>Carga Horária</th>
<th>Código CONTAC ENC550</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teórica</td>
<td>Prática</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>18</td>
</tr>
</tbody>
</table>

| Tipo | Obrigatória | Habilitação / Modalidade | Pré-requisito ENC522, ENC542 | Co-requisito |

EMENTA

OBJETIVOS

Apresentar os fundamentos necessários ao projeto e cálculo das pontes de concreto armado, de aço e com elementos estruturais mistos de aço e concreto.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Trabalho de Conclusão de Curso</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10º</td>
<td></td>
<td>ENC701</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>Bacharelado</td>
<td>3000 horas de UC's</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>00</td>
<td>72</td>
</tr>
</tbody>
</table>

Objetivos

1. Complementar a formação acadêmica do aluno, dando-lhe a oportunidade de aplicar seu conhecimento teórico na solução de problemas práticos, em projeto de síntese e integração dos conhecimentos adquiridos ao longo do curso, estimulando a sua criatividade e o enfrentamento de desafios.

2. Desenvolvimento de uma monografia de final de curso a respeito de um tema de interesse do aluno com a orientação de professor do curso, como contribuição para a sistematização do conhecimento em Engenharia Civil com ênfase em estruturas metálicas.

EMENTA

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Estágio Curricular Obrigatório</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>10º</td>
<td></td>
<td>ENC702</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrigatória</td>
<td>00</td>
<td>360</td>
<td>360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacharelado</td>
<td>2304 horas de UC’s</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Fazer com que o aluno vivencie uma situação real do exercício profissional através de atividades diretamente ligadas à profissão da Engenharia Civil, atividades estas que podem ser empreendidas em escritórios de projetos, institutos de pesquisas, obras civis, empresas construtoras, empresas de consultoria, instituições e entidades públicas ou privadas, com o objetivo de desenvolver as competências e habilidades inerentes ao exercício profissional do engenheiro civil e complementar o processo ensino-aprendizagem.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Engenharia de avaliações e perícias</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teórica</td>
<td>ENC305</td>
</tr>
<tr>
<td></td>
<td>Prática</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC301, BCT107</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Proporcionar ao discente:
1 – Aplicar as metodologias e técnicas da Engenharia de Avaliações e Perícias;
2 – Discernir sobre os inúmeros tipos de avaliações e efetuar pesquisas no mercado imobiliário;
3 – Traçar estratégias para execução de vistorias;
4 – Desenvolver a capacidade de argumentação e descrição de fatos observados;
5 – Elaborar pareceres e laudos técnicos, conforme normas técnicas vigentes;
6 – Atuar como avaliador, perito e assistente técnico na área de Engenharia de Avaliações e Perícias.

BIBLIOGRAFIA BÁSICA

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA COMPLEMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. IBAPE. Norma para avaliação de imóveis urbanos. IBAPE/SP, 2005.</td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Materiais de construção alternativos</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teórica</td>
<td>Prática</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td></td>
<td>ENC 301</td>
<td></td>
</tr>
</tbody>
</table>

Carga Horária

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Carga Horária</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teórica</td>
<td>36</td>
</tr>
<tr>
<td>Prática</td>
<td>00</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Estimular o discente:
1. Para o desenvolvimento de novos materiais, avaliando suas propriedades físicas e mecânicas, definindo possíveis campos de uso;
2. Para o desenvolvimento de novos produtos e produtos com propriedades específicas para atender a necessidades de uso, privilegiando o bom desempenho, a durabilidade e o menor custo;
3. Para o uso de resíduos, privilegiando a cultura de minimização do desperdício.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

1. AGOPYAN, V. *Estudos dos materiais de construção civil: materiais*

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Introdução ao método dos elementos finitos</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ENC551</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC507, ENC512</td>
<td></td>
</tr>
</tbody>
</table>

Carga Horária

<table>
<thead>
<tr>
<th></th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72</td>
<td>00</td>
<td>72</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Este curso tem como objetivo mostrar ao aluno a potencialidade de métodos numéricos na solução da maioria dos problemas de engenharia estrutural, os quais são, em um grande número, representados por equações diferenciais. Motivação suficiente para a introdução ao principal método numérico de solução de equações diferenciais, o método dos elementos finitos (MEF).

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo 2010</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Torres de transmissão de energia e de telecomunicações em estruturas de aço</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>18</td>
<td>36</td>
<td>ENC552</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC542</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Implantação de linhas de transmissão; Tipos de torres; Normas e especificações; Ações e combinações de ações; Hipótese de cálculo; Análise estrutural das torres; Projeto e dimensionamento de barras e ligações; Projeto e dimensionamento das fundações.

OBJETIVOS

Apresentar fundamentos, características e propriedades das torres. Projetar, calcular, dimensionar, verificar e detalhar estruturas em aço.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTAR

<table>
<thead>
<tr>
<th></th>
<th>References</th>
</tr>
</thead>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Curriculo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Obras de terra</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ENC205</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilidade / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC201</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>00</td>
<td>36</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

A disciplina em questão irá abranger estudos relacionados a obras de terra, que pode ser entendida como uma “estrutura” construída com solo. Esse curso abordará os aspectos geotécnicos dos maciços de solo relativos à movimentação de terra em diversas obras de engenharia. Será também dado enfoque aos casos de obras em que o solo e a rocha intervêm como material natural, interessando a sua condição intacta. São os casos de obras como as fundações das estruturas e as obras de contenção de taludes.

BIBLIOGRAFIA BÁSICA

4. NIEBLE, C. M. & GUIDICINI, G. Estabilidade de taludes naturais e de escavação. Editora
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Ensaios de campo</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ENC206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC202</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código CONTAC</th>
<th>ENC206</th>
</tr>
</thead>
</table>

EMENTA

OBJETIVOS

Apresentação dos conceitos necessários à compreensão, realização e interpretação de ensaios de campo.

Apresentação das vantagens e limitações desses métodos de ensaio, considerando-se comparações entre previsões e desempenho.

Apresentação de relatos de casos documentados como forma de explicar o uso dos métodos e os procedimentos recomendados.

BIBLIOGRAFIA BÁSICA

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA COMPLEMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Artigos de congressos e revistas.</td>
</tr>
<tr>
<td>2. Normas de ensaios.</td>
</tr>
<tr>
<td>3. Relatórios de casos de obras.</td>
</tr>
<tr>
<td>4. Teses de mestrado e doutorado.</td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Aplicação de geossintéticos à Engenharia Civil</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teórica</td>
<td>Prática</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC201</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC204</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Transmitir informações e conhecimentos básicos sobre os geossintéticos, suas aplicações, noções de dimensionamento e técnicas de instalação, preparando o aluno para que ele possa desenvolver profissionalmente atividades correlatas ao projeto, fiscalização e instalação de geossintéticos em obras de infra-estrutura civil.

BIBLIOGRAFIA BÁSICA

4. Artigos de congressos nacionais de geossintéticos.

BIBLIOGRAFIA COMPLEMENTAR
1. Artigos de congressos internacionais de geossintéticos
2. Relatórios de casos de obras
3. Teses de mestrado e doutorado da EESC-USP
4. Teses de mestrado e doutorado da UNB.
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Ferrovias</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teórica</td>
<td>Prática</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC222, ENC223</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Proporcionar ao discente:

1. Reconhecer os componentes da estrutura ferroviária (infra-estrutura e superestrutura), com ênfase no estudo dos elementos da superestrutura;
2. Ser capaz, ao final do curso, de efetuar o projeto e dimensionamento dos elementos integrantes da estrutura ferroviária;
3. Identificar e reconhecer os conceitos básicos de geometria de via permanente, os processos de correção/relocação da curva ferroviária, os conceitos de superelevação e superlargura na ferrovia;
4. Identificar as causas básicas de caminhamento dos trilhos;
5. Identificar e reconhecer os serviços usuais de conservação da via permanente;
6. Conhecer as técnicas do trilho longo soldado (TLS);
7. Compreender os princípios de funcionamentos e saber identificar os veículos que circulam na via férrea (material rodante);
8. Entender a funcionalidade, finalidade e disposição das linhas dos pátios e terminais das estações;
9. Conhecer a dinâmica de funcionamento dos complexos ferroviários (operação...
<table>
<thead>
<tr>
<th>BIBLIOGRAFIA BÁSICA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA COMPLEMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. NORMAS E INSTRUÇÃO DE VIA PERMANENTE. RFFSA. Volumes I a VII.</td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Tópicos especiais em estradas</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teórica</td>
<td>Prática</td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td></td>
<td>ENC202, ENC223</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Proporcionar ao discente:
1 – Entender as propriedades mecânicas e hidráulicas dos solos de interesse à pavimentação;
2 – Ter uma visão global e atualizada dos principais ensaios de laboratório aplicados à construção de pavimentos;
3 – Adquirir subsídios teóricos e práticos para a execução de ensaios importantes na área de infra-estrutura de transportes;
4 – Elaborar relatórios concisos e bem apresentados referentes aos ensaios executados em laboratório e campo;
5 – Utilizar planilhas eletrônicas para o processamento dos dados de laboratório e campo.

BIBLIOGRAFIA BÁSICA

2. DEPARTAMENTO NACIONAL DE INFRA-ESTRUTURA DE TRANSPORTES

BIBLIOGRAFIA COMPLEMENTAR

<table>
<thead>
<tr>
<th>Número</th>
<th>Autor(es)</th>
<th>Título</th>
<th>Ano</th>
<th>Editora</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Irrigação e drenagem</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ENC404</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC402</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periodo</th>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36</td>
<td>00</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habil. / Modalidade</th>
<th>Pré-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC402</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA BÁSICA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA COMPLEMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ABID – Associação Brasileira de Irrigação e Drenagem: Curso básico de irrigação, Projeto e Irrigação por Aspersão, Curso Básico de Drenagem.</td>
</tr>
<tr>
<td>4. GOMES, H. P. Engenharia de Irrigação - Hidráulica dos Sistemas</td>
</tr>
</tbody>
</table>

EMENTA

Introdução - finalidade, processos e estrutura das plantas, fatores que afetam a produção, o ambiente do solo. Movimento de água no solo. Medidas para projetos de irrigação e controle de água. Tecnologia de irrigação. Drenagem.

OBJETIVOS

Avaliar as necessidades de água para desenvolvimento ótimo das culturas para elaborar projetos de irrigação. Desenvolver projetos de drenagem para recuperar os solos e retirar o excesso de águas.

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA BÁSICA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>BIBLIOGRAFIA COMPLEMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ABID – Associação Brasileira de Irrigação e Drenagem: Curso básico de irrigação, Projeto e Irrigação por Aspersão, Curso Básico de Drenagem.</td>
</tr>
<tr>
<td>4. GOMES, H. P. Engenharia de Irrigação - Hidráulica dos Sistemas</td>
</tr>
</tbody>
</table>
INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Geoprocessamento</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ENC112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC111</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

EMENTA

Bases conceituais e teóricas sobre os sistemas de informações geográficas (SIG). Métodos de abstração, conversão e estruturação nesse sistema computacional. Potencial das técnicas de Geoprocessamento para a representação de fenômenos e modelos ambientais relacionados a diversos campos de estudo. Instrumentalização de técnicas do Geoprocessamento para diversas aplicações levando em consideração os componentes do espaço geográfico.

OBJETIVOS

Apresentar as geotecnologias; caracterizar SIGs, sistemas de geoprocessamento; apresentação do potencial da geomática; caracterizar as estruturas de dados digitais; apresentar diferentes possibilidades de aquisição, manipulação e integração de dados; caracterizar e construir consultas e análises espaciais; apresentação dos sistemas gratuitos e/ou livres; apresentação e conceituação do sensoriamento remoto; apresentação de diferentes imagens orbitais, seu uso e processamento; apresentação da tecnologia GPS e seu uso na engenharia civil.

BIBLIOGRAFIA BÁSICA

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Sensoriamento remoto</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ENC113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td>Bacharelado</td>
<td>ENC111</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código CONTAC</th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC113</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código CONTAC</th>
<th>Carga Horária</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC113</td>
<td></td>
</tr>
</tbody>
</table>

EMENTA

Estudo da técnica de Sensoriamento Remoto, envolvendo as fases de aquisição das informações sobre a superfície terrestre até a análise e interpretação desses dados sob a forma digital ou analógica (fotografias aéreas e imagens orbitais). Inclui estudos de caso de SR aplicado a levantamentos de recursos ambientais, mapeamento do uso e cobertura do solo e diagnóstico e monitoramento das atividades antrópicas e fenômenos naturais.

OBJETIVOS

Caracterizar o sensoriamento remoto; apresentar os principais conceitos e princípios físicos; caracterizar os principais sistemas sensores; diferenciar fotografia de imagem; apresentar as resoluções e custos das imagens; discutir a escolha do tipo de imagem a ser utilizada, em função de diferentes aplicações; apresentar as principais técnicas de processamento digital de imagens; apresentar diferentes estudos de caso.

BIBLIOGRAFIA BÁSICA

3. CARVALHO, V. C.; Apresentação de uma sistemática para a análise de dados multiespectrais, abril, 1978, publicação do INPE.

BIBLIOGRAFIA COMPLEMENTAR

1. CRÓSTA, Alvaro P; Processamento Digital de Imagens de Sensoriamento Remoto. Campinas. Instituto de Geociências

2. ENCONTRO NACIONAL DE SENSORIAMENTO REMOTO APLICADO AO PLANEJAMENTO MUNICIPAL; Campos do Jordão, outubro, 1987, Anais.

INFORMAÇÕES BÁSICAS

<table>
<thead>
<tr>
<th>Currículo</th>
<th>Unidade curricular</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Computação Gráfica aplicada a Projetos de Infra-estrutura</td>
<td>Alto Paraopeba</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Período</th>
<th>Carga Horária</th>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ENC114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Habilitação / Modalidade</th>
<th>Pré-requisito</th>
<th>Co-requisito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optativa</td>
<td></td>
<td>ENC111</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teórica</th>
<th>Prática</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código CONTAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC114</td>
</tr>
</tbody>
</table>

EMENTA

Bases conceituais e teóricas sobre os sistemas computacionais para projetos de infraestrutura: ambientais, de transporte e urbanização. Potencial das técnicas computacionais para concepção e desenvolvimento de projetos em um ambiente tridimensional. Instrumentalização de técnicas de computação gráfica para diversas aplicações em projetos de infraestrutura.

OBJETIVOS

Capacitar o aluno a utilizar softwares de computação gráfica aplicados à engenharia civil que proporcione conceber, analisar e executar projetos ambientais, de transportes e urbanização de alta qualidade, com precisão e velocidade. Possibilitar uma boa concepção de projeto através da análise de variações em situações hipotéticas que podem aprimorar o desempenho do projeto antes de iniciar a construção.

BIBLIOGRAFIA BÁSICA

2. RUSCHEL, Regina Coeli; CRESPO, Cláudia Campos. Ferramentas BIM: um desafio para a melhoria no ciclo de vida do projeto. p. 2-7, 2007 .DAC-FEC – UNICAMP.

205
<table>
<thead>
<tr>
<th>Curso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidade curricular</td>
</tr>
<tr>
<td>Língua Brasileira de Sinais – LIBRAS</td>
</tr>
<tr>
<td>Período</td>
</tr>
<tr>
<td>Carga Horária</td>
</tr>
<tr>
<td>Teórica</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>Optativa</td>
</tr>
<tr>
<td>Habilitação / Modalidade</td>
</tr>
<tr>
<td>Bacharelado</td>
</tr>
<tr>
<td>Código CONTAC</td>
</tr>
<tr>
<td>ENC102</td>
</tr>
</tbody>
</table>

EMENTA

OBJETIVOS

Criar condições iniciais para atuação na educação de surdos, por meio da Língua Brasileira de Sinais - LIBRAS, na respectiva área de conhecimento.

BIBLIOGRAFIA BÁSICA

5. BRASIL. Decreto nº 5.626, de 22/12/2005.

9. LODI, Ana Claudia B. *et al.* (Orgs.) *Letramento e minorias*. Porto
BIBLIOGRAFIA COMPLEMENTAR

| 17. | SEE-MG. Coleção Lições de Minas. | **Vocabulário Básico de LIBRAS – Língua Brasileira de Sinais.** Secretaria do Estado da Educação de Minas Gerais, 2002.. |
| 19. | STROBEL, Karin. | **As imagens do outro sobre a cultura surda.** Florianópolis. |
12. ANEXOS
12.1 ANEXO I

Seguem abaixo as matrizes curriculares de transição para os alunos ingressantes desde 2008/1. Vale ressaltar que não houve entrada de alunos em 2008/2.
Matriz de Transição – Ingresso 2008/1
<table>
<thead>
<tr>
<th>1º Período</th>
<th>2º Período</th>
<th>3º Período</th>
<th>4º Período</th>
<th>5º Período</th>
<th>6º Período</th>
<th>7º Período</th>
<th>8º Período</th>
<th>9º Período</th>
<th>10º Período</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funções de uma variável</td>
<td>Funções de várias variáveis</td>
<td>Equações diferenciais A</td>
<td>Cálculo numérico</td>
<td>Fundamentos de Física Moderna</td>
<td>Meio ambiente e gestão para a sustentabilidade</td>
<td>36h</td>
<td>36h</td>
<td>36h</td>
<td>36h</td>
</tr>
<tr>
<td>108h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>2º Período</td>
<td>3º Período</td>
<td>4º Período</td>
<td>5º Período</td>
<td>6º Período</td>
<td>7º Período</td>
<td>8º Período</td>
<td>9º Período</td>
<td>10º Período</td>
<td></td>
</tr>
<tr>
<td>Álgebra Linear</td>
<td>Metodologia e Algoritmos Computacionais</td>
<td>Campos Vetoriais</td>
<td>Fenômenos eletromagnéticos</td>
<td>ESTRUTURAS ISOSTÁTICAS</td>
<td>PROJETO TOPOGRÁFICO</td>
<td>ELEMEN TOS ESTRUTURAIS DE AÇO I</td>
<td>ELEMEN TOS ESTRUTURAIS DE AÇO II</td>
<td>EDIFÍCIOS INDUSTRIAIS EM ESTRUTURAS DE AÇO</td>
<td>EDIFÍCIOS DE ANDARES MÚLTIPLOS EM ESTRUTURAS DE AÇO E MISTAS DE AÇO E CONCRETO</td>
</tr>
<tr>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td></td>
</tr>
<tr>
<td>Linguagem de Computação</td>
<td>Especialização</td>
<td>Equações diferenciais B</td>
<td>RESISTÊNCIA DOS MATERIAIS II</td>
<td>INSTALAÇÕES PREDIAIS: HIDRÁULICO-SANITÁRIAS</td>
<td>SEGURANÇA DAS ESTRUTURAS EM SITUAÇÃO DE INCÊNDIO</td>
<td>TÉCNICAS CONSTRUTIVAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3º Período</td>
<td>4º Período</td>
<td>5º Período</td>
<td>6º Período</td>
<td>7º Período</td>
<td>8º Período</td>
<td>9º Período</td>
<td>10º Período</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metodologia científica</td>
<td>ELEMENTOS DE GEOLOGIA APLICADA À ENGENHARIA CIVIL</td>
<td>Fenômenos térmicos, ondulatorios e fluidos</td>
<td>MECÂNICA DOS FLUIDOS</td>
<td>FUNDAÇÕES</td>
<td>Economy and Administration for Engineers</td>
<td>INFRA-ESTRUTURA DE VIAS TERRESTRES</td>
<td>ELEMEN TOS ESTRUTURAIS DE AÇO DE SEÇÃO TUBULAR</td>
<td>FABRICAÇÃO, TRANSPORTE E MONTAGEM DE ESTRUTURAS DE AÇO</td>
<td></td>
</tr>
<tr>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4º Período</td>
<td>5º Período</td>
<td>6º Período</td>
<td>7º Período</td>
<td>8º Período</td>
<td>9º Período</td>
<td>10º Período</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturas Atômicas, Moléculares e Cristalinas (teoria + prática)</td>
<td>PROJETO ARQUITETÔNICO E COMPUTAÇÃO GRÁFICA</td>
<td>MATERIAIS DE CONSTRUÇÃO</td>
<td>MECÂNICA VETORIAL</td>
<td>ELETROTÉCNICA GERAL</td>
<td>ESTRUTURAS Hiperestáticas</td>
<td>MECÂNICA DOS SOLOS</td>
<td>SANEAMENTO</td>
<td>SUPER-ESTRUTURA DE VIAS TERRESTRES</td>
<td></td>
</tr>
<tr>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5º Período</td>
<td>6º Período</td>
<td>7º Período</td>
<td>8º Período</td>
<td>9º Período</td>
<td>10º Período</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6º Período</td>
<td>7º Período</td>
<td>8º Período</td>
<td>9º Período</td>
<td>10º Período</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7º Período</td>
<td>8º Período</td>
<td>9º Período</td>
<td>10º Período</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8º Período</td>
<td>9º Período</td>
<td>10º Período</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matriz de Transição – Ingresso 2009/1
<table>
<thead>
<tr>
<th>1º Período</th>
<th>2º Período</th>
<th>3º Período</th>
<th>4º Período</th>
<th>5º Período</th>
<th>6º Período</th>
<th>7º Período</th>
<th>8º Período</th>
<th>9º Período</th>
<th>10º Período</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funções de uma variável</td>
<td>Funções de várias variáveis</td>
<td>Equações diferenciais A</td>
<td>Cálculo numérico</td>
<td>Fundamentos de Física Moderna</td>
<td>Meio ambiente e gestão para a sustentabilidade</td>
<td>ESTRUTURAS DE CONCRETO</td>
<td>ESTRUTURAS DE CONCRETO ARMADO I</td>
<td>ESTRUTURAS DE CONCRETO ARMADO II</td>
<td>SANEAMENTO</td>
</tr>
<tr>
<td>108h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>Ciência, Tecnologia e Sociedade</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Algebras Lineares</td>
<td>Metodologia e Algoritmos Computacionais</td>
<td>Campos Vetoriais</td>
<td>Fenômenos eletromagnéticos</td>
<td>ESTRUTURAS ISOSTÁTICAS</td>
<td>PROJETO TOPOGRÁFICO</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO I</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO II</td>
<td>EDIFÍCIOS INDUSTRIAIS EM ESTRUTURAS DE AÇO</td>
<td>EDIFÍCIOS DE ANDARES MÚLTIPLOS EM ESTRUTURAS DE AÇO E MISTAS DE AÇO E CONCRETO</td>
</tr>
<tr>
<td>36h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Linguagem de Computação</td>
<td>Funções de uma variável</td>
<td>Estatística e Probabilidade</td>
<td>Equações diferenciais B</td>
<td>RESISTÊNCIA DOS MATERIAIS I</td>
<td>RESISTÊNCIA DOS MATERIAIS II</td>
<td>ESTRUTURAS DE MADEIRA</td>
<td>INSTALAÇÕES PREDIAIS: HIDRAULICO- SANITÁRIAS</td>
<td>SEGURANÇA DAS ESTRUTURAS EM SITUAÇÃO DE INCÊNDIO</td>
<td>TÉCNICAS CONSTRUTIVAS</td>
</tr>
<tr>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Metodologia científica</td>
<td>ELEMENTOS DE GEOLOGIA APLICADA À ENGENHARIA CIVIL</td>
<td>Fenômenos térmicos, ondulatórios e fluidos</td>
<td>MECÂNICA DOS FLUIDOS</td>
<td>Economia e Administração para Engenheiros</td>
<td>HIDRÁULICA E HIDROLOGIA</td>
<td>INFRA-ESTRUTURA DE VIAS TERRESTRES</td>
<td>FABRICAÇÃO, TRANSPORTE E MONTAGEM DE ESTRUTURAS DE AÇO</td>
<td>PONTES COM ESTRUTURAS DE CONCRETO, AÇO E MISTAS DE AÇO E CONCRETO</td>
<td></td>
</tr>
<tr>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>36h</td>
<td>36h</td>
<td>36h</td>
</tr>
<tr>
<td>Estruturas Atômicas, Moleculares e Cristalinas (teoria + prática)</td>
<td>PROJETO ARQUITETÔNICO E COMPUTAÇÃO GRÁFICA</td>
<td>MATERIAIS DE CONSTRUÇÃO</td>
<td>MECÂNICA VETORIAL</td>
<td>ELETROTÉCNICA GERAL</td>
<td>ESTRUTURAS HIPERESTÁTICAS</td>
<td>MECÂNICA DOS SOLOS</td>
<td>FUNDAÇÕES</td>
<td>SUPER-ESTRUTURA DE VIAS TERRESTRES</td>
<td>TRABALHO DE CONCLUSÃO DE CURSO</td>
</tr>
<tr>
<td>72h</td>
</tr>
<tr>
<td>Geometria Analítica</td>
<td>Indivíduos, grupos e sociedade global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36h</td>
<td>36h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
</tr>
</tbody>
</table>

Matriz de Transição – Ingresso 2009/2
<table>
<thead>
<tr>
<th>1º Período</th>
<th>2º Período</th>
<th>3º Período</th>
<th>4º Período</th>
<th>5º Período</th>
<th>6º Período</th>
<th>7º Período</th>
<th>8º Período</th>
<th>9º Período</th>
<th>10º Período</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funções de uma variável</td>
<td>Funções de várias variáveis</td>
<td>Equações diferenciais A</td>
<td>Cálculo numérico</td>
<td>Fundamentos de Física Moderna</td>
<td>Meio ambiente e gestão para a sustentabilidade</td>
<td>36h</td>
<td>ESTRUTURAS DE CONCRETO ARMADO I</td>
<td>ESTRUTURAS DE CONCRETO ARMADO II</td>
<td>SANAMENTO</td>
</tr>
<tr>
<td>108h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>36h</td>
</tr>
<tr>
<td>Álgebra Linear</td>
<td>Metodologia e Algoritmos Computacionais</td>
<td>Cálculo diferencial e integral III</td>
<td>Fenômenos eletromagnéticos</td>
<td>ESTRUTURAS ISOSTÁTICAS</td>
<td>PROJETO TOPOGRÁFICO</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO I</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO II</td>
<td>EDIFÍCIOS INDUSTRIAIS EM ESTRUTURAS DE AÇO</td>
<td>EDIFÍCIOS DE ANDARES MÚLTIPLOS EM ESTRUTURAS DE AÇO E MISTAS DE AÇO E CONCRETO</td>
</tr>
<tr>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Linguagem de Computação</td>
<td>Funções mecânicas</td>
<td>Estatística e Probabilidade</td>
<td>Equações diferenciais B</td>
<td>RESISTÊNCIA DOS MATERIAIS I</td>
<td>RESISTÊNCIA DOS MATERIAIS II</td>
<td>ESTRUTURAS DE MADEIRA</td>
<td>INSTALAÇÕES PREDIAIS: HIDRÁULICO- SANITÁRIAS</td>
<td>SEGURANÇA DAS ESTRUTURAS EM SITUAÇÃO DE INCÊNDIO</td>
<td>TÉCNICAS CONSTRUTIVAS</td>
</tr>
<tr>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Metodologia científica</td>
<td>ELEMENTOS DE GEOLOGIA APLICADA À ENGENHARIA CIVIL</td>
<td>Fenômenos térmicos, ondulatórios e fluidos</td>
<td>MECÂNICA DOS FLUIDOS</td>
<td>Economia e Administração para Engenheiros</td>
<td>Hidráulica e hidrologia</td>
<td>INFRA-ESTRUTURA DE VIAS TERRESTRES</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO DE SEÇÃO TUBULAR</td>
<td>FABRICAÇÃO, TRANSPORTE E MONTAGEM DE ESTRUTURAS DE AÇO</td>
<td></td>
</tr>
<tr>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Estruturas Atômicas, Moleculares e Cristalinas (teoria + prática)</td>
<td>PROJETO ARQUITETÔNICO E COMPUTAÇÃO GRÁFICA</td>
<td>MATERIAIS DE CONSTRUÇÃO</td>
<td>MECÂNICA VETORIAL</td>
<td>ELETRÔTÉCNICA GERAL</td>
<td>ESTRUTURAS HIPERESTÁTICAS</td>
<td>MECÂNICA DOS SOLOS</td>
<td>FUNDAÇÕES</td>
<td>SUPER-ESTRUTURA DE VIAS TERRESTRES</td>
<td>TRABALHO DE CONCLUSÃO DE CURSO</td>
</tr>
<tr>
<td>72h</td>
</tr>
<tr>
<td>Geometria Analítica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ESTÁGIO CURRICULAR OBRIGATÓRIO</td>
</tr>
<tr>
<td>36h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>360h</td>
<td>720h</td>
<td>720h</td>
</tr>
</tbody>
</table>

Matriz de Transição – ingresso 2010/1
<table>
<thead>
<tr>
<th>1º Período</th>
<th>2º Período</th>
<th>3º Período</th>
<th>4º Período</th>
<th>5º Período</th>
<th>6º Período</th>
<th>7º Período</th>
<th>8º Período</th>
<th>9º Período</th>
<th>10º Período</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funções de uma variável</td>
<td>Cálculo diferencial e integral II</td>
<td>Equações diferenciais A</td>
<td>Cálculo numérico</td>
<td>Fundamentos de Física Moderna</td>
<td>Meio ambiente e gestão para a sustentabilidade</td>
<td>36h</td>
<td>Ciência, Tecnologia e Sociedade</td>
<td>36h</td>
<td>36h</td>
</tr>
<tr>
<td>108h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Álgebra Linear</td>
<td>Algoritmos e estruturas de dados II</td>
<td>Cálculo diferencial e integral III</td>
<td>Fenômenos eletromagnéticos</td>
<td>ESTRUTURAS ISOSTÁTICAS</td>
<td>PROJETO TOPOGRÁFICO</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO I</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO II</td>
<td>EDIFÍCIOS INDUSTRIAL EM ESTRUTURAS DE AÇO</td>
<td>EDIFÍCIOS DE ANDARES MÚLTIPLOS EM ESTRUTURAS DE AÇO E MISTAS DE AÇO E CONCRETO</td>
</tr>
<tr>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Linguagem de Computação</td>
<td>Fenômenos mecânicos</td>
<td>Estatística e Probabilidade</td>
<td>Equações diferenciais B</td>
<td>RESISTÊNCIA DOS MATERIAIS I</td>
<td>RESISTÊNCIA DOS MATERIAIS II</td>
<td>ESTRUTURAS DE MADEIRA</td>
<td>INSTALAÇÕES PREDIAIS: ELÉTRICA E TELEFÔNIA</td>
<td>SEGURANÇA DAS ESTRUTURAS EM SITUAÇÃO DE INCÊNDIO</td>
<td>TÉCNICAS CONSTRUTIVAS</td>
</tr>
<tr>
<td>72h</td>
</tr>
<tr>
<td>Metodologia científica</td>
<td>GEOLOGIA DE ENGENHARIA</td>
<td>Fenômenos térmicos, ondulatórios e fluidos</td>
<td>MECÂNICA DOS FLUIDOS</td>
<td>Economia e Administração para Engenheiros</td>
<td>HIDRÁULICA E HIDROLOGIA</td>
<td>INFRA-ESTRUTURA DE VIAS TERRESTRES</td>
<td>ELEMENTOS ESTRUTURAIS DE AÇO DE SEÇÃO TUBULAR</td>
<td>PONTES COM ESTRUTURAS DE AÇO, MISTAS DE AÇO E CONCRETO</td>
<td></td>
</tr>
<tr>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>36h</td>
<td>36h</td>
<td>72h</td>
</tr>
<tr>
<td>Estruturas Atômicas, Moleculares e Cristalinas (teoria + prática)</td>
<td>PROJETO ARQUITETÔNICO E COMPUTAÇÃO GRÁFICA</td>
<td>MATERIAIS DE CONSTRUÇÃO</td>
<td>MECÂNICA VETORIAL</td>
<td>ELETROTÉCNICA GERAL</td>
<td>ESTRUTURAS HIPERESTÁTICAS</td>
<td>MECÂNICA DOS SOLOS</td>
<td>FUNDAÇÕES</td>
<td>SUPER-ESTRUTURA DE VIAS TERRESTRES</td>
<td>TRABALHO DE CONCLUSÃO DE CURSO</td>
</tr>
<tr>
<td>36h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
<td>72h</td>
</tr>
<tr>
<td>Geometria Analítica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ESTÁGIO CURRICULAR OBRIGATÓRIO</td>
</tr>
<tr>
<td>360h</td>
</tr>
</tbody>
</table>