

COORDENADORIA DO CURSO DE ENGENHARIA MECATRÔNICA

PLANO DE ENSINO

Disciplina: Mecanismos e Elementos de Máquinas			Período: 7º	Curr	ículo: 2010	
Docente Respon	sável: Tarsis Prado	Barbosa	Unidade Acadêmica: DETEM			
Pré-requisito: Mecânica dos Sólidos			Co-requisito: -			
C.H. Total: 72h	C.H. Prática: 0h	C.H. Teórica: 72h	Grau: Bacharelado	Ano: 2024	Semestre: 1º	

EMENTA

Noções sobre projeto mecânico. Aprofundamento dos conceitos de Mecânica dos Sólidos. Fadiga dos Materiais. Componentes de Máquinas, análise cinemática e dinâmica de mecanismos articulados planares. Eixos. Uniões eixocubo. Uniões eixo-eixo. Mancais, Pares de rolamento. Cames. Engrenagens e Sistemas de transmissão.

OBJETIVOS

Proporcionar conhecimentos básicos sobre projetos mecânicos e comportamento dos materiais sob a ação de cargas estáticas e variáveis. Dar suporte ao projeto, dimensionamento e utilização conjunta dos elementos de máquinas, mecanismos articulados tendo em atenção o problema de fadiga de componentes.

CONTEÚDO PROGRAMÁTICO

- 1. Introdução
 - 1.1. Plano de ensino e cronograma
 - 1.2. Métodos de avaliação
 - 1.3. Bibliografia
- 2. Engrenagens
 - 2.1. Conceitos e nomenclatura
 - 2.2. Engrenagens cilíndricas de dentes retos e helicoidais
 - 2.3. Engrenagens cônicas, parafuso e coroa sem-fim
 - 2.4. Cálculo de forças em sistemas de engrenagens
- 3. Mancais de elementos rolantes
 - 3.1. Conceito, classificação e aplicações
 - 3.2. Carga estática, carga dinâmica e vida de um rolamento
 - 3.3. Cálculo e seleção de rolamentos
- 4. Revisão de conceitos de mecânica (resistência dos materiais)
 - 4.1. Tensão e deformação
 - 4.2. Diagrama de esforços
 - 4.3. Círculo de Mohr
- 5. Teorias de falha estática e dinâmica (fadiga)
- 6. Dimensionamento de eixos, chavetas e acoplamentos
 - 6.1. Conceito e aplicações típicas
 - 6.2. Análise de deflexão em eixos
 - 6.3. Análise de tensões e resistência (dimensionamento estático e dinâmico)
- 7. Análise cinemática e dinâmica de mecanismos
 - 7.1. Conceito e classificação
 - 7.2. Mecanismo de 4 barras, biela-manivela e sistemas de retorno rápido

METODOLOGIA DE ENSINO

Aulas expositivas utilizando projeções e quadro. Aplicação de software de projeto mecânico 3D em conjunto com as aulas para concretizar o aprendizado.

CONTROLE DE FREQUÊNCIA E CRITÉRIOS DE AVALIAÇÃO

- 1º prova escrita 30 pontos ao final das 5 primeiras semanas
- 2º prova escrita 35 pontos ao final de 10 semanas
- 3º prova escrita 35 pontos ao final de 15 semanas

Prova Substitutiva - Será cobrada toda a matéria lecionada durante o semestre. O aluno não poderá ter sido reprovado por falta. A prova irá substituir a menor nota obtida pelo aluno.

Para ser aprovado o aluno deverá ter média igual ou maior que 6 pontos e 75% de frequência nas aulas do curso. O controle de frequência será feito todas aulas por chamada nominal de cada aluno e os dados serão inseridos diretamente no SIGAA.

BIBLIOGRAFIA BÁSICA

- 1. NORTON R.L. Machine Design: An Integrated Approach. 3a Edição.
- 2. SHIGLEY, J. E., Uicker, J. J. Theory of Machines and Mechanisms. Editora Prentice Hall., 1995.
- 3. FAIRES, V.M. Elementos orgânicos de máquinas.

BIBLIOGRAFIA COMPLEMENTAR

- 1. HALL Jr, A.S., HOLOWENICO, A.R., LAUGHLIN, H.G. Elementos orgânicos de máquinas.
- 2. FRATSCHNER, O. Elementos de máquinas.
- 3. HANCHEN, R. Resistência a la fadiga de los materiales.

4. SHIGLEY, J.E. Elementos de máquinas. 5. G. NIEMANN. Elementos de Maquinas. Volume 1. Editora E. Blucher.				
	Aprovado pelo Colegiado em / /			
Docente Responsável	Prof. Diego Raimondi Corradi Coordenador do Curso de Engenharia Mecatrônica			

FOLHA DE ASSINATURAS

Emitido em 08/02/2024

PLANO DE ENSINO Nº PE MEM 2024/1/2024 - CEMEC (12.56) (Nº do Documento: 242)

(Nº do Protocolo: 23122.004510/2024-51)

(Assinado digitalmente em 08/02/2024 10:00) DIEGO RAIMONDI CORRADI

> COORDENADOR DE CURSO CEMEC (12.56) Matrícula: ###512#4

(Assinado digitalmente em 08/02/2024 15:49) TARSIS PRADO BARBOSA

PROFESSOR DO MAGISTERIO SUPERIOR DETEM (12.17) Matrícula: ###088#5

Visualize o documento original em https://sipac.ufsj.edu.br/public/documentos/ informando seu número: 242, ano: 2024, tipo: PLANO DE ENSINO, data de emissão: 08/02/2024 e o código de verificação: 225ed7c4a3