

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI – UFSJ Instituída pela Lei nº 10.425, de 19/04/2002 – D.O.U. DE 22/04/2002 PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO – PROEN COORDENADORIA DE MATEMÁTICA – COMAT

CURSO: Matemática

Grau Acadêmico: Licenciatura Turno: Noturno Currículo: 2019

Unidade curricular: Geometria Analítica 2

Natureza: Obrigatória

Unidade Acadêmica:
DEMAT

Período: 4°

Carga Horária:

Total: 66 h/ 72 ha **Teórica:** 66 h/ 72 ha **Prática:** 0 h/ 0 ha

Docente Responsável: Wilman Rodas Huarcaya

EMENTA

Coordenadas polares, cilíndricas e esféricas. Mudanças de Coordenadas: Mudanças de Coordenadas no plano: cartesianas e polares; Mudanças de Coordenadas no espaço: cartesianas, cilíndricas e esféricas. Cônicas: Caracterização das cônicas. Elipse, Hipérbole e Parábola. Quádricas: Elipsoide, Hiperboloide, Paraboloide, Cone elíptico e Cilindro Quádrico.

CRONOGRAMA

Aula 01	O circulo: Equação geral, equação reduzida. A Parábola: Definição de parábola; elementos da parábola;
Aula 02	Exemplos e exercícios: parábola com centro na origem,equação da parábola de vértice fora da origem.
Aula 03	Equação da parábola na forma explícita; exemplos e exercícios.
Aula 04	Elipses: Definição de elipse; elementos de uma elipse; Equação da elipse com centro fora da origem.
Aula 05	Exemplos e exercícios: elipse com centro fora da origem.

Aula 06	Hipérbole. Definição de Hipérbole; Elementos de uma Hipérbole; Equação da Hipérbole de centro na origem. Exemplos.
Aula 07	Equação da hipérbole de centro fora da origem do sistema;
Aula 08	Exercícios de Revisão.
Aula 09	Aula de dúvidas.
Aula 10	Prova 01
Aula 11	Superfícies quádricas, superfícies quadricas centradas.
Aula 12	Elipsoide. Definição e exemplos. Esboco de graficos.
Aula 13	Hiperboloides: hiperboloide de uma folha exemplos e exercicios.
Aula 14	Hiperboloide de duas folhas,exemplos e exercícios.
Aula 15	Exemplos e exercícios: Superfícies Quádricas Centradas.
Aula 16	Superfícies quádricas não centradas; paraboloides: paraboloide elíptico; paraboloide hiperbólico.
Aula 17	SEMAT 2023
Aula 18	Superfície Cônica, Superfície Cilíndrica, exemplos e exercícios.
Aula 19	Revisao de exercícios.
Aula 20	Aula de dúvidas.
Aula 21	Prova 02
Aula 22	Mudanças de Coordenadas no plano: cartesianas e polares.
Aula 23	Exemplos sobre mudanças de coordenadas no plano: cartesianas e polares.
Aula 24	Mudanças de coordenadas no espaço: cartesianas e cilíndricas.
Aula 25	Exemplos e Aplicações sobre mudanças de coordenadas no espaço.
Aula 26	Mudanças de coordenadas no espaço: cartesianas e esféricas.

Aula 28	Aula extra de exercícios para completar a carga horária da disciplina.
Aula 29	Aula extra de exercícios para completar a carga horária da disciplina.
Aula 30	Aula extra de exercícios para completar a carga horária da disciplina.
Aula 31	Exercícios de Revisão.
Aula 32	Aula de dúvidas.
Aula 33	Prova 03
Aula 34	Vista da prova 03.
Aula 35	Prova substitutiva – Matéria toda.
Aula 36	Vista da prova substitutiva.

OBJETIVOS

Apresentar aos alunos os conceitos de cônicas, quádricas, coordenadas polares e esféricas.

METODOLOGIA

- 1. Aulas expositivas com apresentação e discussão de conteúdo;
- 2. Listas de exercícios dos livros texto;
- 3. Atendimento extraclasse;
- 4. Uso da sala virtual, Portal Didático, para disponibilização das listas de exercicios e informações sobre a disciplina.

CRITÉRIOS DE AVALIAÇÃO

Serão aplicadas três provas no valor de 10 pontos cada. A nota final (NF) do aluno será a média aritmética entre as notas das três provas, ou seja, NF=(P1+P2+P3)/3, onde P1 = nota da prova 1, P2 = nota da prova 2 e P3 = nota da prova 3. Será aprovado o aluno que tenha frequência de no mínimo 75% das aulas e que obtiver pontuação maior ou igual a 6,0 (Resolução 022/2021 do CONEP.)

Se o aluno não atingir a pontuação necessária para sua aprovação, será aplicada uma prova substitutiva no final do período, também no valor de 10 pontos. Caso obtenha uma pontuação melhor, esta substituirá a menor nota dentre as três avaliações. Caso a nota obtida na prova substitutiva seja menor que a nota anterior do discente, esta não será utilizada. A nota final, neste caso, não excederá 6,0 pontos. A prova substitutiva não poderá ser utilizada para aumentar a média.O conteúdo da prova substitutiva será a matéria toda do curso.

BIBLIOGRAFIA BÁSICA

[1] BOULOS, P.; CAMARGO, I. Geometria Analítica: um tratamento vetorial. 3ª edição.

Prentice Hall. São Paulo. 2005.

- [2] DELGADO, J.; FRENSEL, K. e CRISSAFF, L., Geometria Analítica, Coleção Profmat, SBM, Rio de Janeiro, 2ª Edição, 2017.
- [3] FURUYA, Y. Y. e BALDIN, Y. K. S., Geometria Analítica Para Todos E Atividades Com Octave E Geogebra, Edufscar, São Carlos, 2011.
- [4] STEINBRUCH, A.; WINTERLE, P. Geometria analítica.2. ed. São Paulo: McGraw-Hill, 1987.

BIBLIOGRAFIA COMPLEMENTAR

- [5] ANTON, H. Álgebra Linear. 3ª edição. Editora Campus.
- [6] CAROLI, A.; CALLIOLI, C.A.; FEITOSA, M.D. Matrizes, Vetores, Geometria Analítica.

Ed. Nobel.

- [7] EFIMOV, N. Curso breve de geometria analítica. Moscu: Editorial Paz.
- [8] IEZZI, G. et. al., Fundamentos de Matemática Elementar (11 Volumes), Editora Atual, São Paulo, 2007.
- [9] JUDICE, E. D. Elementos de geometria analítica. 2ª edição. Belo Horizonte: Vega, 1971.
- [10] KINDLE, J. H. Geometria Analítica plana e no espaço. São Paulo: McGraw-Hill do

Brasil, 1976.

- [11] LEHMANN, C. H. Geometria Analítica. 9. ed. São Paulo: Globo, 1998.
- [12] LEITHOLD, L. O cálculo com geometria analítica. Volume 1. 3ª edição. Harbra. São

Paulo. 1994.

- [13] NATHAN, M. S. Vetores e Matrizes. Livros Técnicos e Científicos. Editora S. A. 1988.
- [14] SANTOS, R. J; Matrizes, Vetores e Geometria Analítica. Belo Horizonte: Imprensa Universitária da UFMG, 2012.
- [15] STEINBRUCH, A.; BASSO, D. Geometria analítica plana. Makron Books. São Paulo.

1991.

[16] WINTERLE, P. Vetores e Geometria Analítica. São Paulo: Makron Books.

Assinatura do professor	Assinatura do Coordenador
Data 19/08/2023	Data/