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Abstract

This paper presents a study of interval arithmetic concepts applied
in the Fast Fourier Transform (FFT) calculations. The main objetive
is to show the errors arising from equipment and measurements taken
into account when FFT is calculated. The errors serves to define the
lower and upper limits of the signal in the time domain. The FFT is
calculated taking the values within these limits. It is shown that the
average FFT signal variance has an asymptotic behavior in relation
to the number of events held. The final standard deviation used for
frequency spectrum is the final asymptotic average.
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1. Introduction

The Fast Fourier Transform (FFT) is an efficient algorithm for comput-
ing the Discrete Fourier Transform (DFT). The FFT is an essential element
for the areas of math, science, engineering, signal processing, mechanical,
electrical, chemical, physical, medical areas and telecommunications. It is
also a powerful tool in the analysis of linear systems, because there are cases
in which analysis in the frequency domain is easier than in the time domain
[1, 2, 3, 4].

There are studies that suggested a significant presence of erros in FFT
calculations, including rounding and truncation errors [1, 5, 6, 7, 8, 9, 10].
Searchs that consider these errors generated in differents calculations gained
strength and scientific foundation to the implementation of floating-point
arithmetic as described in IEEE Standard [11]. And, new searchs showed
to that the errors from rounding and truncation, for certain functions and
initial conditions, are significant and incompatibles with the expected math-
ematically [12, 13, 14, 15, 16].
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Although those studies are important, the pre-defined error rates in the
technical specifications of a tool and the interferences during the data col-
lection, commonly, not are taken into account. This gap can generate in-
consistent results with actual process and, even using supercomputers, you
need to consider and implement these types of errors before any estimate
or computational analysis. An alternative approach to resolve the problem
was demonstrated by Liu and Kreinovich (2010) where they have proposed,
in a first analysis, an FFT algorithm considering a fixed error and time-
invariant for the entire signal range. The steps of the FFT are replaced
by corresponding operations on interval arithmetic and they demonstrate
how to do the calculations of the convolution and the FF'T, in order to get
the intervals represented of the output signal y(¢) at time n.log(n). In their
studies, rounding and truncation errors are not considered because, in signal
processing applications, these errors are generally insignificant compared to
the measurements errors [4].

Therefore, the purpose of this article is to describe how to find the spec-
trum limits from the use of existing functions, statistical concepts (mean
and standard deviation) and the concept of Infinite Evaluation of Arith-
metic Interval. Using these concepts will not be necessary to rebuild the
FFT algorithm to find the tracks and signal limitations in the frequency
domain.

2. Preliminary Concepts

In recent decades, a large part of the systems based on continuous time
analog circuits are now implemented through digital discrete-time systems
(A/D). This phenomenon is due, in large part, to the ease of access to ded-
icated cards and general purpose computers. Thus, scientists and engineers
seek to represent the physical phenomena in functions of continuous vari-
ables and differential equations. Different numerical techniques are used and
developed to solve these equations and functions [17].

The A/D conversion, functions and equations that represent a real phys-
ical phenomenon can contain errors. There are three kind of errors in nu-
merical computation: error propagation in the data and initial parameters,
rounding error and the truncation error. Rounding and truncation errors,
as seen in [4], in signal processing applications are insignificant compared to
the measurement errors and parameter data. Then, to calculate an FFT,
priority should take into account the errors of data collection, equipment
and initial settings.



2.1. Fourier Transform

For Fourier Transform calculations is necessary to have the sampled val-
ues of z(t) because a digital computer requires discrete values. This to
say that the computer needs to sequence of numbers to do their jobs. Thus,
when using the samples of z(t) a limited signal in time and relate to samples
X (w) (values in the frequency domain) to obtain spectral sampling signal.
This sample has the following characteristics [3]:

e fo (initial frequency);
. T%) (time of sampling);

A sampled signal is repeated periodically every T seconds and the sam-
pled spectrum also repeats periodically [3].
The formula that defines DFT according [3] is:

ne—1
Xy = Z xne—jrﬁon (1)
n=0
and Qp = ]2\,—1, r=20,1,2,..., No— 1 and Ny = sample period.

DFT or FFT is required the initial period of sampling Ny, the sampling
time Ty and sampling frequency f, which must be, at least, twice the highest
frequency in Hz of sign. It is important to emphasize that even the FFT
reducing the number of calculations, it will generate the same answers that
the DFT [3].

According to Lathi(2007), Fast Fourier Transform (FFT) is an algorithm
which reduces the calculation time n? steps until n.loga(n). The only re-
quirement is that the number of values in the series is a power of 2 [3].

2.2. Interval Arithmetic

Consist of an alternative to reach limits that can guarantee the result
within the values range of the lower and upper limits, through strict and
automatic control of the error of the result. The intervals analysis aims to
answer the question of accuracy and efficiency in the practice of Scientific
Computing. It is interested in techniques that can be programmed by com-
puter, containing in its computing rigorous analysis, complete and automatic
of errors of result [18, 19, 20].

In this way, interval algorithms, in contrast to the specific algorithms,
compute a range as a solution, with the assurance that the answer belongs



to this range [15]. So, interval results always carry the security of their
quality and the degree of their uncertainty, because the diameter of a interval
solution is indicative of input data error error influence on the final result.
This is a type of sensitivity analysis, which can replace executions of repeated
simulation and expensive [18] .

The operations sum, subtraction, multiplication and division are de-
scribed below [20].
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2. Interval Subtraction: [z] — [y] = [z — 7, T — yl;

3. Interval Multiplication: [z]x[y] = [mim{zy, Ty, 27, Ty}, maz{zy, Ty, 27, Ty}];

4. Tnterval Division: {2 = [z] x
Yl [v]

3. Methodology

These proposed study disregard rounding and truncation errors, since
such errors are insignificant compared to the measurement errors, how is
described in Liu and Kreinovich (2010).

The simulated signal for this article was constructed from a known the-
oretical signal function, described below.

x(t) = Xo + X1 cos(2m fit + %) + X cos(27 fot + %) (2)

Xo = X1 = X9 =20; f1 =50; fo =100 and sampling frequency Fy = 8(f2);

The signal representation in the time domain can be seen in Figure 1.
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Figure 1 - Signal in the time domain.
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Figure 2 - Signal and tolerance of 10%

To define the sign limits was considered a hypothetical error of 10%. The
choice of this value is based on the percentage of errors found in capacitors,
resistors and other electrical equipment. However, this error can vary over
time, but for this first time consider a fixed error during the entire sign.
Then, applying the error to the input find the lower limit and the upper limit,



also called signal intervals. Figure 2 shows the original signal and the limits.
The estimated range for the FFT signal was based on the Finite Rating
theorem according described in Moore(1979). The definition is described
below.

Let M; and My arbitrary set and let g : M7 — Ms arbitrary mapping
(function) of M; in Ms. Denote by S(M;) and S(Mz) families of subsets of
M and Ms respectively. According W. Strother [21], is called the set-valued
mapping, g : S(My) — S(M2),

9(X) ={g(x) :x € X, X € S(M)} (3)

the extension unit g. You can also write

9(X) = Ugex{g(@)}. (4)

Therefore, g(X) is the union My of all sets contained in a single element
g(z) for some x in X. Sometimes g(X) is simply referred to as “the image
of the mapping g the set X

But even if ¢ and X have a finite representation, as a range, in general,
still not have the finite representation to g. Therefore, estimates are required
of g(X) considering different quantities and values in X. This estimate was
made as follows:

1. Each point of the original signal is represented by an interval X = [a, b
and the limits a and b of interval are defined according to the error
10% described above.

2. To select a value within the range X, the random function for ranges
was implemented in the algorithm. The random function is performed
within a repetition block (for()) according to the size of the original
signal.

3. Each new value found within the intervals given rise to a new repre-
sentation of the original signal.

4. This new representation of the signal is passed on to the function
fftn(). This function makes the calculations of the Fast Fourier Trans-
form.



5. The results generated by this function are saved in array A with di-
mensions L x C, where L is the amount of times the FFT is calculated
and C' is the size of signal. The signal size is always the same in all
cases.

6. First, it is calculated 5 FFTs considering the random values selected
within the interval X. Then, the same steps were repeated to calculate
10, 15, 20 until 1,000 FFTs, of 5 in 5. This process occurred 200 times.

7. Using the results of the matrix A, is calculated the standard deviation
of FFTs with the function std(). After, the mean of standard deviation
is calculated using the function mean().

8. And, it is estimated the average of the averages to define the variation
of the spectrum. This variation is added and subtracted from the
result of the FFT of the signal and the upper and lower limits of the
spectrum are defined.

4. Results

The main result obtained was the average standard deviation and its
graphical representation can be seen in Figure 3. It is can see, in the axis x,
the amounts of FFTs and, the axis y, average of standard deviations each
set. It is observed in this graphic an asymptotic behavior.
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Figure 3 - Average standard deviation of calculated FFTs Sets



Therefore, the final standard deviation the considered for Fourier spec-
trum is the average final asymptotic value 0.0472 (multiplied by three to
guarantee the results). Figure 4 shows signal spectrum appling the final
standard deviation and shows the boundaries in the frequency domain.
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Figure 4 - Signal in the Frequency Domain applying the final standard
deviation (3x).

5. Conclusion

According researches associated to Fast Fourier Transform, one must
take into consideration, before any analysis or calculation, problems gener-
ated during data collection and error percentage of equipment and electrical
signals generators. Such errors can influence in the final results of each
analysis.

To address and resolve the problem found, resorted the concepts of in-
terval arithmetic. Concepts that define the limits and intervals for a signal
before and after calculations.

So, this article demonstrates that, when such errors are considered and
applied to the signal in the time domain, before the calculation of the FFT,
in the frequency domain is also necessary to consider the interference of this
error in the resulting spectrum. The final results show that it is possible
to define the maximum and minimum of the significant frequencies of the
signal in the Fourier spectrum.



Recalling that all tests were done considering an initial fixed error. How-
ever, it is necessary to make analysis for errors variants in time, because in
fact most real situations of daily vary over time.
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