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Abstract: This paper shows how the sample rate and
discretization methods affect the parameter identifica-
tion of a NARX model, when applied to systems with
hysteresis, whose is a model non-linear behavior usually
found in electromagnetic devices. A Bouc-Wen model
for a magneto-rheological damper is used as a system to
be identified by a NARX model, considering the above
mentioned scenario and a least-square based technique
is used in this work to estimate model parameters.
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1. INTRODUCTION

System identification is a procedure widely used to
obtain mathematical models from a system input and
output data. Once the model is identified, it is possible
to obtain an estimate of system’s static and dynamic
behavior and this estimate can be used as an auxiliary
tool for several applications, such as model-based control
[6].

Mathematical models are used in systems project and
control, simulation and training. Since simulations al-
ways deal with discrete-time systems and models, it is
useful to study how the sample rate and discretization

methods affect a model performance.
Besides, system identification can be also used to

characterize and control systems with hysteresis. Hys-
teresis is a hard to model non-linear behavior usually
found in actuators, motors, sensors and others electro-
magnetic devices involving memory effects between in-
put and output [5, 8].

Concerning nonlinear systems with hysteresis, Bouc-
Wen model is frequently used for modelling, as in the
identification of magneto-rhelogical dampers [7]. This
model consists, essentially, in a first-order nonlinear dif-
ferential equation that relates the input displacement
to the output restoring force in a hysteretic way. How-
ever, a correct estimation of parameters must be well
performed. Otherwise, the model may become unstable
[7]. Furthermore, the use of the Bouc-Wen model in a
control scenario is a very hard task, since the inverse
model is not easily obtained [2, 11].

Given the limitations presented by the model above
mentioned, the use of polynomial NARX (Nonlinear
autoregressive with exogenous inputs) models has be-
come an alternative for modeling systems with hystere-
sis. Given the model structure, the inverse model can
be used in a feedforward control. Martins and Aguirre
[2] showed that polynomial NARX model can be used to
identify the non-linearities of a Bouc-Wen model. How-
ever, the mentioned work did not investigated how the



sample rate and the discretization method may affect
the model during parameter estimation.

It is well known that sample rate affects structure se-
lection of NARX model [10]. However, to the best of our
knowledge, there is no research showing how the sample
rate or discretization method affect the parameter iden-
tification of a NARX model, when applied to systems
with hysteresis. This is the main aim of this work.

This paper is organized as follows: a brief introduc-
tion and bibliographical review has been presented in
this section. Section 2 shows some basics concepts, nec-
essary for understanding the whole text. The methods
used to identified the influence of sample rate and dis-
cretization methods are presented in section 3. The re-
sults as well as the discussion are presented in section
4, while concluding remarks and perspectives for future
research are shown in section 5.

2. PRELIMINARIES

2.1. NARX polynomial models

A NARX model ((Non-linear AutoRegressive model
with eXogenous inputs) can be represented as [14]:

y(k) = F `[y(k − 1), ..., yk(−ny)

u(k − d), ..., u(k − nu)] + e(k), (1)

where u(k) and y(k) are respectively the input and out-
put signals, e(k) accounts for uncertainties and possible
noise and F ` is a polinomial with degree `. This poly-
nomial model has been extensively studied and used to
model nonlinear systems. However, it only has been re-
cently applied to systems with hysteresis [11].

2.2. Discretization Methods

Euler’s method, which employs the idea that a tan-
gent line can be used to approaching the values of a
function in a small neighborhood of the point tangency
[12]. Thereby if you wish approximations y1, y2, ..., ym
for exact results y(x1), y(x2), ..., y(xm). if unknown the
value y(x1), the approximation is y1. For this, draw the
tangency T on the curve y(x) in point (x0, y(x0):

y(x)− y(x0) = (x− x0)y(x0) (2)

If x = x1 and remember y(x0) = y0, x1 − x0 = h,
y′(x0) = f(x0), y(x0)) and y1 = y(x1), we get:

y1 = y0 + hf(x0, y(x0)) (3)

To estimate y2, we may advance the index i:

yi + 1 = yi + hf(xi, yi), i = 0, 1, ...,m− 1 (4)

therefore:

f(xi, yi) = (yi + 1− yi)/h (5)

The Eq. 5 offer an estimate for the output of a differ-
ential model, which h means the integration step. An

improvement of this estimative may be given by the Eu-
ler’s improved method [12]:

yi + 1 = yi + hf(xn/n, yn/n), xn = x1 + x2...xn (6)

3. METHODS

Initially a Bouc-Wen model for a magneto-rheological
damper [7] was considered:

f = c1ρ̇+ k1(x− x0),

ρ̇ = (1/c0 + c1)[αz + c0ẋ+ k0(x− ρ)],

ż = −γ|ẋ− ρ̇|z|z|n−1 − β(ẋ− ρ̇)|z|n +A(ẋ− ρ̇),

α = αa + αbubw,

c1 = c1a + c1bubw,

c0 = c0a + c0bubw,

u̇bw = −η(ubw − E). (7)

where f represents the restoring force, c1 and c0 are
the intensity of the damping dynamic, E is the input
voltage, the variable x is the displacement and ẋ is the
velocity of the model.

Using fourth order Runge-Kutta with h = 0, 002s,
the Bouc-Wen model was identified by a NARX model
in [2]:

y(k) = 0.8347y(k − 1) + 0.442u3(k − 1)

+0.6704u2(k − 1)× u1(k − 1)

−0.4648u3(k − 1)× u2(k − 1)× y(k − 1).

(8)

where u1 is the voltage (E), u2 reffers to the velocity
(ẋ) and u3 =sign(v).

To verify how discretization methods and sample rate
may interfere in parameter estimation, the model 7 was
integrated by mean of Euler’s and Euler’s improved
methods, considering different values of integration step,
considering the same identification procedure proposed
by [2].

To make sure that the Euler and Euler improved dis-
cretization methods were applied correctly, the values of
voltage (E) and the displacement (x) were set equal to
E(t) = 0.5sin(2π0.5t) + 1.6V and x(t) = sin(2π3t)cm,
with an integration step of 0.00002s and 0.0002s to Euler
and Euler improved respectively.

Then, in order to obtain the NARX parameters, the
inputs were considered as two independent realizations
of uniformly distributed random numbers. As the hys-
teresis is a quasi-static behaviour [9], it was used a low-
pass filter with a cutoff frequency of 6 Hz to filter the
inputs. The filter is a FIR Blackman-Harris windowed,
used to attenuate undesired frequency components.

We obtained two set of data for each method of dis-
cretization, one for estimating the parameters and the
other for model validation in both cases. Besides that,
to verify the influence of the sampling rate in the es-
timation of parameters a decimation of the data was



applied using a decimation factor D = 2 and obtaining
new parameters.

Model performance was quantified by the normalized
root mean square error, described as:

RMSE =

√∑N
k=1(y(k)− ŷ(k))2√∑N
k=1(y(k)− ȳ(k))2

, (9)

being ŷ(k) the model output, ȳ(k) the mean of the mea-
sured output y(k).

4. RESULTS AND DISCUSSION

Least square technique was applied to obtain the
model parameters. The table below present the param-
eters obtained using data from different methods of dis-
cretization for the model structure presented in Eq. (8).

Table 1 – Estimated parameters.

Euler Euler Im-
proved

Runge-kutta

θ1 0.910097160 0.813860860 0.84313718185
θ2 0.0134750630 0.0204311070 0.04358176662
θ3 0.106085470 0.0658137510 0.68215468661
θ4 −0.503710160 −0.630839010 −0.470401060

Similarly, it was obtained using the model parameters
decimated data, with a decimation factor equal to 2.
The values are presented in the following table:

Table 2 – Estimated parameters after decimation of
data.

Euler Euler Im-
proved

Runge-kutta

θ1 1.271140 0.526529950 0.84094462508
θ2 0.00657382870 0.0142511560 0.04434415683
θ3 0.136723070 0.0938125270 0.69031130036
θ4 −0.859561440 −0.444743290 −0.4755978577

Analyzing tables 1 and 2, it is possible to realize that
is a clear influence in the methods of discretization and
the sample rate in the parameters. The Euler discretiza-
tion method showed the worst method among all the
analyzed, because it presented the biggest RMSE, as
provided by Table 3. Furthermore, it is important to
mention that there are also cases where the RMSE tends
to ∞, meaning that the model output diverges. Figures
1, 2 and 3 show the force curve normalized with and
without decimation data obtained in relation to sam-
ples, considering h = 0.002s.
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Figure 1 – Validation of the model obtained through
the Euler method for discretization of the Bouc-Wen
model, with h = 0.002s. (-)Bouc-Wen model,(–) iden-
tified model
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Figure 2 – Validation of the model data obtained
by the Improved Euler method for discretization of
the Bouc-Wen model, with h = 0.002s. (-)Bouc-Wen
model,(–) identified model
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Figure 3 – Model validation obtained through data of
Runge-Kutta method for discretization of the Bouc-
Wen model, with h = 0.002s. (-)Bouc-Wen model,(–)
identified model

The influence of the sampling rate in the estima-



tion of the parameters is verified in Table 3. For each
method, the first value corresponds to the model per-
formance identified using h = 0.002s for Runge Kutta,
h = 0.0002s for Improved Euler and h = 0.00002s for
Euler, and the second one corresponds to model perfor-
mance after decimation of data.

Table 3 – erms computed for first and decimated val-
idation data sets

Euler Improved Euler Runge-Kutta
erms 1 erms 2 erms1 erms 2 erms1 erms2
1.859 ∞ 0.704 0.801 0.184 0.314

5. CONCLUSION

This work presented a analysis of the influence of
the discretization method and the sample rate the es-
timation of the parameters of a system with hysteresis
through NARX polynomial models. To this end, data
were obtained applying the Euler, Euler improved with
random noise and Runge-Kutta methods to a Bouc-Wen
model. After that, the parameters were estimated and
compared among themselves.

The results obtained presented that the discretization
method used to obtain data from one system influence
the estimation of parameters the same, the parameter
estimation using data obtained from the Euler’s method
was the most ineffective, with the largest mean square
error.

Besides that, it can be seen, also, the influence of the
sampling rate in the estimation of parameters. Apply-
ing a decimation factor, the model obtained by Euler
method was not able to represent the hysteresis of the
system, diverging completely.

Future work should present other discretization
methods and verify how these obtained model can be
used in a model based and hysterese compensation con-
trol scenario.
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