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Instituto Politécnico – Universidade do Estado do Rio de Janeiro

2016



19 a 21 de Outubro de 2016

Universidade Federal da Paraı́ba – João Pessoa - PB

A GENERALIZED LINEAR MATRIX INEQUALITY APPROACH TO

MULTIOBJECTIVE SYSTEMS IDENTIFICATION

Samir Angelo Milani Martins1 - martins@ufsj.edu.br

Alı́pio Monteiro Barbosa2 - alipio.barbosa@unifemm.edu.br
1Universidade Federal de São João del-Rei (UFSJ) - São João del-Rei, MG, Brasil
2Centro Universitário Monsenhor Messias (UNIFEMM) - Sete Lagoas, MG, Brasil

Abstract. This paper presents a generalization of the technique presented in Silva et al. (2012),

a linear matrix inequality approach to multiobjective parameter estimation in system identifica-

tion. It is shown how to incorporate in the model parameters any kind of auxiliary information

that can be expressed as affine information. Furthermore, it is investigated the performance

of the generalized LMI technique, incorporating several system’s characteristics in the model.

Finally, it is investigated the relevance of the incorporation of different types of auxiliary in-

formation in the model parameters, i.e., which ones are most important and really necessary to

obtaining representative models.

Keywords: Control Applications, Modeling and Control, Identification

1 Introduction

System Identification is a very relevant branch of science which studies different ways to

model and analyse systems, attempting to find patterns in observations (Billings, 1980). To

identify a system, it is necessary to propose a model which is able to describe its several char-

acteristics, considering dynamic, gain and static behaviour.

A model can be defined as the set of hypotheses about structure or behaviour of a physical

system. Under a mathematical point of view, a model is an abstraction of a real system expressed

by mean of equations.

In engineering, multiobjective system identification techniques can be applied in the iden-

tification of many systems such as in the modelling of electric heaters, DC-DC buck convert-

ers, chemical systems (Eklund et al., 2007) and in other areas such as in biological systems

(Buonomo et al., 2013) and economic (Griffith, 1992).

Literature is replete with system identification techniques, using several mathematical and

computational representations (Wang et al., 2012; Farina e Piroddi, 2010). Among them, it

can be cited Neural Networks, Fuzzy Logic, NARX Models (Non-linear AutoRegressive model

with eXogenous Input) and Individuals Based Models. Polynomial NARX representation al-

lows, with relative ease, the incorporation of a priori system information in the model. Such
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information (static curve, fixed points location and static gain, and other - see Nepomuceno

et al. (2007) for a list of them) may not be embedded into dynamical data. Thus, the addition

of such information can significantly improve the model quality regarding its robustness and

system representativeness.

From works of Johansen (1996), systems identification specialists began to investigate the

possibility of using auxiliary information of the system in the modelling scenario. Then, a new

approach for system identification comes up, the so-called multiobjective system identification

(Nepomuceno et al., 2007; Martins et al., 2013).

In parallel, Linear Matrix Inequalities (LMI) techniques have been evolving exponentially,

mainly used in the development of robust control techniques, in which uncertainties regarding

the model should be considered (Araujo et al., 2015; Lan e Zhou, 2011). LMI theory is pretty re-

cent and even more recent is its application as system identification techniques (Estrada-Manzo

et al., 2016; Wang et al., 2012). Hiramoto (2012) presents a method which uses the Schur com-

plement to obtain LMIs conditions equivalent to the problem of estimating model parameters

via least squares methods.

On the other hand, Silva et al. (2012) showed how to use, in addition to dynamic data,

information about the location of fixed points in a bi-objective optimization problem for iden-

tification of a chaotic system. However, the use of a generic number of auxiliary information

in obtaining model parameters is not well defined so far. Moreover, there is not a study about

which information, among that available previously, are really relevant in obtaining the model

parameters, leading to a global and representative model.

The purpose of this paper is to develop a methodology for multiobjective system identi-

fication with LMI, considering a generic number of objectives, in order to incorporate any

information expressed as affine information (Nepomuceno et al., 2007), a generalization of the

technique presented by Silva et al. (2012). Furthermore, the relevance of three affine informa-

tion is investigated, i.e., which information is really important and necessary to be used in the

modelling procedure, in order to obtain good models. The use of LMI to incorporate static

curve and static gain in the model parameters was not investigated yet, being this another aim

of the present work.

2 Preliminaries

21 System identification

Obtaining a model from experimental data requires five basic steps Ljung (1987): i) Data

acquisition; ii) Choice of the mathematical representation; iii) Structure detection; iv) Parameter

estimation and v) Model validation.

In order to acquire data with dynamic information embedded, a persistently exciting signal

has to be used as an input. In this sense, a Pseudo-Random Binary Signal (PRBS) was used as a

dynamic input. After acquired, the data were split in two distinct groups, one of them was used

for identification and the other one for validation.

The technique developed on this work is applicable to any classes of non-linear models

which are linear in the parameters. So, a polynomial NARX representation will be used, as

an example of such linear representation parameters. Since the structure selection Baldacchino

et al. (2012) is not the main purpose of this work, the Error Reduction Ratio (ERR) was applied

with the Akaike Information Criterion (AIC), in order to obtain the model structure. Model
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parameters was obtained using the generalized LMI multiobjective approach, presented in this

work in Section 3.

Once the models are already obtained, it is necessary to validate them. Thus, it can quan-

tified which ones are really representative, considering different system features. In this work,

some indexes were used to validate the obtained models. Since information about dynamic

behaviour, static curve and gain will be incorporated in the models, three indexes are used for

model validation: RMSE (Root Mean Squared Error), SMSE (Static curve Mean Square Error)

and GMSE (Gain Mean Square Error).

The normalized RMSE index is given by:

RMSE =

√

∑N

k=1
[y(k)− ŷ(k)]2

√

∑N

k=1
[y(k)− ȳ]2

, (1)

where ŷ(k) is the infinity step-ahead model simulation and ȳ is the average value of the measure

y(k). This index measures the error in a unit of measurement consistent with the real dynamic

data Nepomuceno et al. (2007). Good dynamic models are those ones which have normalized

RMSE lesser than unity. This means that, on average, the squared error given by the model is

lesser than the mean squared error given by the average of the time series.

The SMSE and GMSE indexes can be expressed as:

(S)(G)MSE =

∑NSG

k=1
(ySG − ŷSG)

2

NSG

(2)

where NSG is the number of points used for validation (static and gain), ySG is the real value of

the affine information and ŷSG its value estimated by model.

22 NARX polynomial models

NARX models Billings (1980) describe non-linear systems by mean of difference equations

which are linear in the parameters, relating the current output with past combinations of outputs

and inputs. NARX models can be used in control problems where the goal is to find a simple

description for the system. In particular, the NARX polynomial model can be represented as:

y(k) = F ℓ[y(k − 1), · · · , y(k − ny), u(k − 1), · · ·u(k − nu)] + Ξ(k),

where y(k) is the output and u(k) is the exogenous input at time k. Ξ(k) is the prediction error.

ny and nu are the maximum lags considered for the output y(k) and input u(k). The function

F ℓ can represent a wide variety of functions, including linear and non-linear functions. In this

paper, F ℓ is restricted to non-linear polynomial functions.

23 Linear Matrix Inequality (LMI)

Linear matrix inequalities have been used as an important tool, especially in the analysis

and control of uncertain systems. The improvement of techniques for the solution of convex

optimization problems makes LMIs techniques more useful in several practical applications.

Problems which are composed by LMIs, are smart and have a simple and easy computing

solution. Mathematically, every LMI can be written as:
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F (x) = F0 +
L
∑

i=1

xiFi ≻ 0 (3)

where xi is the i−th decision variables. L is the total number of decision variables. Fi ∈ ℜ
n×x

are known symmetric matrices.

A mathematical tool in the analysis and construction of LMI conditions is the Schur com-

plement. Schur complement is especially useful in the conversion of a set of non-linear matrix

inequality in linear matrix inequality (LMI).

Schur complement: Let Q(x) and R(x) be two symmetric matrices (Q(x) = QT (x) and

R(x) = RT (x)) that depend on the decision variable x, and S(x) be another matrix. Both LMI

below are equivalent:
[

Q(x) S(x)
ST (x) R(x)

]

≻ 0, (4)

given:

R(x) ≻ 0 (5)

Q(x)− S(x)R(x)−1ST (x) ≻ 0.

�

24 DC-DC Buck Converter.

A power electronic system known as DC-DC buck converter was used to verify the presented

approach. DC-DC buck converter (Fig. 1), is a step down converter which consists on the

voltage regulation on the load. The duty cicle of the converter can be controlled by a MOSFET

or IGBT. In this work a MOSFET IRF840 was used. Duty cycle is defined as the ratio where

the converter is on during the total operation time. The PRBS (Pseudo-Random Binary Signal)

was used as an input signal, applied to the switch. This signal is persistently exciting, in such a

way that the system can present in the output its non-linear dynamics.

Figure 1- DC-DC buck converter.

The static behavior of the DC-DC buck converter is described by the following equation:

ȳ =
4

3
vd −

vd
3
ū (6)

where vd = 24V is the DC voltage source and ū is the static input. Since it is a step down

converter, the gain is a negative value (actually, an attenuation). For the DC-DC buck converter

used, specifically, the attenuation is constant and can be given by: dȳ

dū
= −vd

3
= −8V
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3 Methodology

This section presents the generalized LMI approach to multiobjective system identification,

used to estimated the parameters of a polynomial NARX model. This method allows the inclu-

sion of any system feature that may be written by the model as affine information (Nepomuceno

et al., 2007).

Every affine information can be expressed as yi = ŷi + ξi or yi = Ψiθ̂ + ξi, where yi is the

i−th affine information (fixed points, static curve, static gain, dynamic data and other system

features), ŷi is the estimated value, given by the multiplication between the matrix of regressors

(Ψi) and the estimated parameter vector (θ̂). ξi is an error vector. In a least square approach, the

problem is to minimize the following cost function (Hiramoto, 2012):

JLS = (y − ŷ)T (y − ŷ) =
(

y −Ψθ̂
)T (

y −Ψθ̂
)

. (7)

It is known, by definition, that JLS > 0, since this is a quadratic function. It is also desired

that the function has its value as small as possible, say, lesser than λ, determined below. Thus,

according to Hiramoto (2012), Equation 7 can be rewritten as:

(y − ŷ)T I (y − ŷ) ≺ λI (8)

(y − ŷ)T I (y − ŷ)− λI ≺ 0,

λI − (y − ŷ)T I−1 (y − ŷ) ≻ 0.

where I is the identity matrix. Using the Schur complement, and since the matrix I ≻ 0, the

above LMIs can be represented by the LMI presented in Equation 9 Hiramoto (2012):

[

λI (y − ŷ)
(y − ŷ)T I

]

≻ 0. (9)

Therefore the optimization problem can be defined: minimize λ subject to LMI represented

by inequality 9, where ŷ = Ψθ̂.

A cost function composed of two objectives, fixed points and dynamic data, proposed by

Silva et al. (2012), can be expressed as:

JC =
[

ω1Ψ
T
1
(y1 −Ψ1θ̂) + ω2Ψ

T
2
(y2 −Ψ2θ̂)

]T [

ω1Ψ
T
1
(y1 −Ψ1θ̂) + ω2Ψ

T
2
(y2 −Ψ2θ̂)

]

where the subscript 1 is related to dynamic data and 2 is related to fixed point. In Equation 10

is presented a weighted sum of squared error, expressing both information considered in the

modelling process as affine information. Equation 10 can be rewritten as:

JC =

[

2
∑

i=1

ωiΨ
T
i (yi −Ψiθ̂)

]T [

2
∑

i=1

ωiΨ
T
i (yi −Ψiθ̂)

]

=

[

2
∑

i=1

ωiΨ
T
i yi −

2
∑

i=1

ωiΨ
T
i Ψiθ̂)

]T [

2
∑

i=1

ωiΨ
T
i yi −

2
∑

i=1

ωiΨ
T
i Ψiθ̂

]

(10)
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Equation 10 can be expanded to incorporate in the model parameters a generic number of

system feature (say, Z informations), which can be written as affine information Nepomuceno

et al. (2007). Therefore, rewriting it for the incorporation of Z objectives (system characteris-

tics):

JC =

[

Z
∑

i=1

ωiΨ
T
i (yi −Ψiθ̂)

]T [

Z
∑

i=1

ωiΨ
T
i (yi −Ψiθ̂)

]

=

[

Z
∑

i=1

ωiΨ
T
i yi −

Z
∑

i=1

ωiΨ
T
i Ψiθ̂

]T [

Z
∑

i=1

ωiΨ
T
i yi −

Z
∑

i=1

ωiΨ
T
i Ψiθ̂

]

(11)

or:

JC =
[

Y − ψθ̂
]T [

Y − ψθ̂
]

, (12)

where: Y =
∑Z

i=1
ωiΨ

T
i yi e ψ =

∑Z

i=1
ωiΨ

T
i Ψi.

Due to the similarities between Equation 12 and Equation 7, the LMI condition can be writ-

ten as the mono-objective problem with Z objectives incorporated into parameter estimation,

as:

[

λI (Y − ψθ̂)

(Y − ψθ̂)T I

]

≻ 0, (13)

Therefore, the generalized multiobjective problem is to minimize the sum of squared er-

ror of information estimation (λ ≻ 0), subject to the condition imposed by the LMI presented

in inequality 13. Then, varying the values of ωi (such that
∑Z

i=1
ωi = 1) different solutions

(Pareto-set solutions) of the multiobjective optimization problem are obtained. Thus, the rele-

vance and the importance of including different features system can be analysed.

4 Results and discussion

The approach developed in Section 3 was applied to obtain good models for a DC-DC buck

converter. First of all, to obtain models in different regions, the set of weights associated with

dynamic information, static information and gain (ω1, ω2 e ω3, respectively) has been defined

and are shown in Table 1. That is, a set of 15 weights (15 models) was chosen to represent

different points of the set of available solutions. Among all, it was also considered the mono-

objective case, that is, a condition in which two of the weights assume null values. It should be

emphasized that the condition ω1 = 1, ω2,3 = 0 is analogous to the least squares method. In the

least square method only the dynamic data are used to obtain the model parameters.

Table 2 lists all the models obtained by the sets of weights shown in Table 1, and also

the stability of each one. About the model structure, the Akaike information criterion (AIC)

suggested the use of 7 regressors in the model, which have been selected through the Error

Reduction Ratio (ERR) and are showed at the top of Table 2.
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Table 1- Weights assigned to dynamic (ω1), static (ω2) and gain (ω3) objectives.

Model ω1 ω2 ω3

M1 0.2 0.4 0.4

M2 0.4 0.2 0.4

M3 0.4 0.4 0.2

M4 0.6 0.2 0.2

M5 0.8 0.2 0

M6 0.8 0 0.2

M7 1 0 0

M8 0.2 0.6 0.2

M9 0.2 0.8 0

M10 0 0.8 0.2

M11 0 1 0

M12 0.2 0.2 0.6

M13 0 0.2 0.8

M14 0.2 0 0.8

M15 0 0 1

The modelsM10,M11,M13 andM15 were unstable. This can be explained because these

models do not use any dynamic information in the parameter estimation procedure. In front of

this, becomes evident the need and the importance of inclusion of dynamic data in the parameter

estimation, since their inclusion is directly related to the models stability.

The RMSE, SMSE and GMSE indexes validate the models obtained considering dynamic

data (RMSE), static curve (SMSE) and static gain (GMSE) and are shown in Table 3. The

indexes were not calculated for dynamically instable models.

The modelM7 (ω1 = 1 ω2 = 0 and ω3 = 0) had the best dynamic performance, the model

M9 (ω1 = 0, 2 ω2 = 0, 8 and ω3 = 0) had the smallest static error and the modelM14 (ω1 = 0, 2
ω2 = 0 and ω3 = 0, 8) had the smallest static gain. It is also observed that the model M9 had

a good dynamic behaviour, with RMSE less than one, but not as good as the model M7. This

suggests that a small loss in dynamic capability (decreasing ω1) can substantially improve other

model capabilities.

The dynamic behaviour (V ), the static curve (ys) and the static gain (G) of the models

M7, M9, and M14 are shown in Figures 2 and 3, respectively. The models M7 and M9

have satisfactory dynamic behaviour. This can not be observed in the model M14, once it

converges to a fixed value. The modelM7 has satisfactory static performance only in the range

1 ≤ ū ≤ 4, the same range of the dynamic input data (PRBS input signal covers from 2 V to

2.5 V). Moreover, the same model was not able to precisely estimate the gain in a wide range

of operation points. Finally, the model M9 has a good performance, considering aspects of

static curve and dynamic behaviour. This shows the relevance of incorporating the static curve

information to obtaining more global models, valid in a wide region of operation points.

In addition, it is necessary to highlight that the decision of which model is better, or which

model has to be used is not easy. For this reason, the choice should consider the specific

application of the model. If a model with good approximation with a set of three dynamic,

static curve and gain is required, it is suggested to choose ωi = 1/Z, ∀i = 1, · · · , Z, with Z
being the number of objectives. If this combination of weights leads to an unstable model, close

values of the weights can be used (always observing the constraint
∑Z

i=1
ωi = 1).
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Table 2- Structure and parameters obtained by mean of the multiobjective LMI approach presented. In

the first column, the capital letter S stands for Stable and the letter U stands for Unstable.

Mod. y(k − 1) y(k − 2) y(k − 1)2 u(k − 1)2 y(k − 2)2 y(k − 2)y(k − 1) C

M1 (S) 0.0018 0.9590 0.0737 -0.0357 -0.0433 -0.0301 0.7051

M2 (S) 0.0070 0.9100 0.0702 -0.0698 -0.0438 -0.0259 1.4912

M3 (S) 0.0055 0.8634 0.0680 -0.1241 -0.0425 -0.0238 2.2061

M4 (S) 0.0104 0.7974 0.0635 -0.1731 -0.0429 -0.0187 3.2566

M5 (S) 0.0023 0.1428 0.0275 -0.8564 -0.0331 0.0190 13.7588

M6 (S) 0.0063 0.7249 0.0481 -0.1843 -0.0559 -0.0019 6.4044

M7 (S) 0.0001 -0.2873 0.0194 -0.5637 -0.0362 0.0522 13.9648

M8 (S) 0.0016 0.9291 0.0721 -0.0669 -0.0427 -0.0285 1.1664

M9 (S) 0.0002 0.1433 0.0279 -0.8569 -0.0329 0.0184 13.7326

M10 (U) 0 1 1.7414 0 -0.8707 -0.8707 0

M11 (U) 0 -0.0640 0.0010 -0.0640 0 0 1.0236

M12 (S) 0.0020 0.9665 0.0738 -0.0255 -0.0437 -0.0300 0.6259

M13 (U) 0 1 100.8441 0 -50.4221 -50.4221 0

M14 (S) 0.0008 0.9748 0.0561 -0.0151 -0.0627 -0.0136 4.0815

M15 (U) 0 8.5E6 22.6E6 0 22.7E6 22.6E6 0

0 10 20 30 40 50 60 70 80
10

15

20

Samples

V

0 2 4 6 8 10
−100

0

100

u
s

y
s

0 2 4 6 8 10
−10

−5

0

5

u
s

G

Figure 2- Model (M7), the best dynamic performance of simulated models. (—) real values and (−•)

values estimated by the model.

Furthermore, the LMI approach allows the imposition of parametric constraints in the model

parameters, only adding others LMI with this information (θ̂1 ≻ 0, θ̂2 + θ̂3 ≻ 1, for instance).

If the resulting problem is feasible and convex, the solution can be easily computationally ob-

tained.

5 Conclusion

In this paper a new generalized multiobjective LMI method for parameter estimation was

proposed to estimate the parameter of linear in parameters models such as NARX models. The
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Table 3- Indexes used to quantify the models performance.

Model RMSE SMSE GMSE

M1 1.7003 0.0107 0.0453l

M2 1.2154 0.1050 0.1676

M3 0.8072 0.0332 0.5616

M4 0.6324 0.1972 1.0595

M5 0.5783 0.0031 27.9621

M6 0.9093 58.1658 1.2481

M7 0.4867 1611 32.9019

M8 1.0724 0.0052 0.1660

M9 0.6040 0.0004 27.9730

M10 — — —

M11 — — —

M12 2.3484 0.0296 0.0222

M13 — — —

M14 1.0868 225.9607 0.0084

M15 — — —
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Figure 3- Model (M9 - left), the lowest static error of simulated models and model (M14 - rigth), the

lowest gain error of simulated models. (—) real values and (−•) values estimated by the model.

incorporation of Z affine information was considered. Furthermore, the importance of incorpo-

rating three kinds of affine information (dynamic, static curve and static gain) was analysed and

discussed in the parameter estimation, their peculiarities, benefits and losses. It should be em-

phasized that the technique is useful to incorporate any other information that can be expressed

as affine information.

The main advantages of these procedure is that it does not present numerical conditioning

problems, once it is not required matrices inversion. The matrices inversion are often required in

mono-objective and multiobjective optimization techniques (least squares-based approaches).

The use of LMI approach applied in systems identification is potentially relevant. As a

future research, it is expected to use such tools to structure selection in non-linear models with

parametric linearity.
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