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Abstract: A theorem is presented which has applications in the numerical computation of fixed points of recursive functions. If a sequence of
functions { fn} is convergent on a metric space I⊆ℝ, then it is possible to observe this behaviour on the set D , ℚ of all numbers represented
in a computer. However, as D is not complete, the representation of fn on D is subject to an error. Then fn and fm are considered equal when its
differences computed on D are equal or lower than the sum of error of each fn and fm. An example is given to illustrate the use of the theorem.
Fig. 1 Simulation of (4)
1 Introduction

Recursive functions (RF) provides a description for a variety of pro-
blems [1]. For instance, there has been significant interest in finding
electronic circuits that represent the behaviour of RF with potential
applications in random number generation, frequency-hopping,
ranging and spread-spectrum communications [2, 3]. These circuits
are usually carefully designed to approximate one of the well-
known chaos maps, for example, a tent map [4] or a logistic map
[5], in order to obtain required statistical or frequency properties
of the generated signal [6].
Let I be a metric space such that I # R, with a distance between

any two points x and y of I given by a real number d(x, y) = |x− y|.
Let also f : I � R. An RF can be defined as

xn = f (xn−1) (1)

which may be written as a result of composite functions such that

xn = f1(xn−1) = f2(xn−2) = · · · = fn(x0) (2)

A discrete-time series can be generated by a simple iterative proced-
ure of (1). It can be chaotic if f is suitably chosen [6] or it
can present other behaviour such as fixed point of period 1 or
period > 1.
If f (x*) = x*, then x* is a fixed point of (1). The contractive

mapping principle gives a simple constructive means of finding
the fixed point by starting with an arbitrary element x0 and define
a sequence {xn} by xn = f (xn−1) [7]. If this sequence is convergent,
then xn� x* as n�1. In many cases, this calculation is per-
formed by digital computers. However, let D , Q be the set of
all numbers represented in a computer. D is not a complete
metric space, which implies that it is not possible to have sufficient
conditions to verify if a sequence is convergent. Nevertheless, if a
sequence is convergent then it can be observed on D.
Our main problem can be established as in the Definition 1.

Definition 1: Suppose { fn}, n = 1, 2, 3, …, is a sequence of func-
tions defined on a set E # R, and suppose that the sequence of
numbers { fn(x)} converges for every x∈ E. Function f is defined by

f (x) = lim
n�1 fn(x) (x [ E) (3)

The sequence { fn} converges on E and that f is the ‘limit’, or the
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‘limit function’, of { fn}. It is also possible to say that { fn} con-
verges to f pointwise on E if (3) holds [7, p. 143].

For example, consider the discrete logistic model [5] given by

xn+1 = rxn(1− xn) (4)

Let us simulate (4) with r = 327/100 and initial condition x0 = 100/
327 as shown in Algorithm 1 (see Fig. 1).

The result is presented in Fig. 2. It is clear that simulation con-
verges to fixed points of period 2 if we take into account only the
numerical results offered by Algorithm 1. Although, the correct
result is not that, and indeed, it must converge to only one fixed
point as easily shown
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and then x2 = x3, …, xn = 227/327, which means that (4) converges
to only one fixed point. This illustrates a situation in which the com-
putation of a fixed point is wrong. This Letter presents a theorem
that aims at avoiding this problem.
access article published by the IET under the Creative Commons
NonCommercial-NoDerivs License (http://creativecommons.org/

licenses/by-nc-nd/3.0/)
1



Fig. 2 Simulation of xn in (4) with r = 327/100 and x0 = 100/327 (repre-
sented by ◦ around the dot)
2 Convergence on D

Consider some basic definitions and theorems as follows [7, 8].

Definition 2: The extended real number system consists of all the
real field R and two symbols +∞ and −∞. We preserve the origin-
al order in R, and define −∞ < x < +∞ for every x [ R [7, p. 11].

Definition 3: A sequence {pn} in a metric space X is said to be
a Cauchy sequence if for every ε > 0 there is an integer such that
d(pn, pm) < ε if n≥N and m≥N.

Theorem 1: In any metric space X, every convergent sequence is a
Cauchy sequence.
The Cauchy criterion for uniform convergence is defined as
Theorem 2.

Theorem 2: The sequence of functions { fn}, defined on E, con-
verges uniformly on E if and only if for every ε > 0 there exists
an integer N such that m≥N, n≥N and x∈ E imply

d(fn(x), fm(x)) ≤ 1 (7)

Demonstrations of Theorems 1 and 2 are found in [7].
Let I # R be an interval, let x∈ I and let f : I � R be a function.

Let J # D be an interval, x̂ [ J be a representation of x and f̂ be an
approximation of f. Let δ≥ 0, we have

d(f (x), f̂ (x̂)) ≤ d (8)

For iterated functions, we use the notation fn. In case of iterated
functions we can also write

d(fn(x), f̂n(x̂)) ≤ dn (9)

From (9), we can state fm(x)≠ fn(x) only if

d(f̂m(x̂), f̂n(x̂)) . dn + dm (10)

This leads us to the following definition of fixed point.
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Definition 4: If d(f̂n( x̂
∗ ), f̂n−1( x̂

∗ )) ≤ dn + dn−1, then x̂∗ is a fixed
point.
For any fn there is an error δn associated. Let 1̂ such that

1̂ . k = sup (dn)+ sup (dm) (11)

The main contribution of this Letter is expressed like Theorem 3.

Theorem 3: If the sequence of functions { fn} defined on E con-
verges uniformly on E, then for every 1̂ . k there exists an
integer N such that m≥N, n≥N, x∈ I and x̂ [ J imply

k , d(f̂n(x̂), f̂m(x̂) ≤ 1̂ (12)

Proof: First let us consider the trivial condition when κ = 0 for all n,
m≥N. In this case, we have 1̂ . 0 and fn(x) = f̂n(x̂) and
fm(x) = f̂m(x̂) and Theorem 3 is equivalent to Theorem 2 for the
direct way.
Second, let us consider the condition when κ > 0 for some n, m≥N.
Using (7) and by triangle inequality we have

|fn(x)− fm(x)| + |f̂n(x̂)− fn(x)|
+ |fm(x)− f̂m(x̂)| + ≤ 1+ dn + dm

|fn(x)− fm(x)+ f̂n(x̂)− fn(x)

+ fm(x)− f̂m(x̂)| ≤ 1+ dn + dm

|f̂n(x̂)− f̂m(x̂)| ≤ 1+ dn + dm

(13)

If we choose 1 = 1̂− dn − dm then (13) implies (12). If 1̂ . k then
ε > 0 and that completes the proof. □

From (12), we see that for all m and n we must have
d(f̂n(x̂), f̂m(x̂)) . k, which has a practical result in limiting the
number of iterations. This leads us to Corollary 1.

Corollary 1: The maximum number of iterations k = max(m, n) is
subject to d(f̂n(x̂), f̂m(x̂)) ≤ (dn + dm) for all n and m.

Example: Consider r = 327/100 and initial condition x0 = 100/327
in (4). The value of δ0 is due representation of x0 = 100/327 as x̂0
and it is given by

d0 =
1

2
ulp( x̂0) (14)

where ulp is the unit in the last place [9]. As d( x̂0 , x0)) ≤ d0, we
also have d(f ( x̂0 ), f (x0)) ≤ b0. For β0 we have

b0 =
df ( x̂0 )

d x̂0
d0

∣∣∣∣
∣∣∣∣+ 1

2

d2f ( x̂0 )

d2 x̂0
d20

∣∣∣∣∣
∣∣∣∣∣

= |(r − 2r x̂0 )d0| + |(1/2)(− 2r)(d0)
2| (15)

However, we also have an approximation of the f as f̂ . We split f in
three arithmetic operations a0 = (1− x0), b0 = rx0 and c0 = a0b0.
Thus, we have the following error

g0 =
1

2
ulp(a0)+

1

2
ulp(b0)+

1

2
ulp(c0) (16)

and thus, the next value of δ1 = δ0 + β0 + γ0. By induction, the nth
term of error is estimated by

dn = dn−1 + bn−1 + gn−1 (17)
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Table 1 Simulation of (4) for the first three iterates

n x̂n d( x̂n , x̂n−1 ) δn

0 0.305810397553517 0 2.77555756156289 × 10−17

1 0.694189602446483 0.388379204892966 3.25197734863617 × 10−16

2 0.694189602446483 2.22044604925031 × 10−16 1.52284898079424 × 10−15

3 0.694189602446483 3.33066907387547 × 10−16 5.43916855498739 × 10−15
Table 1 summarises these results. When n = 1, d( x̂1 , x̂0 ) . d1 + d0
which satisfies Theorem 3. When n = 2, d( x̂2 , x̂1 ) , d2 + d1 and it
does not satisfy Theorem 3 and by Corollary 1 the iteration should be
finished. {xn} is convergent to 0.694189602446483 ≃ 227/327 as
shown in (6). This conclusion is also coherent with Definition 4 of
fixed point.
3 Conclusion

This Letter presents a theorem that makes it possible to observe con-
vergence of { fn} on D by limiting the absolute difference of any two
values of this sequence to the sum of each error associated to its com-
putation. By Corollary 1, we also limit the number of iterations in
order to avoid pseudo results of convergence. This result might be
extended to fixed points of higher periods and other invariant sets.
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