# Computer Arithmetic Master of Science in Electrical Engineering

# Erivelton Geraldo Nepomuceno

Department of Electrical Engineering Federal University of São João del-Rei

August 7, 2019

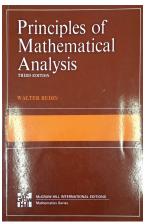
# Teaching Plan

#### Content

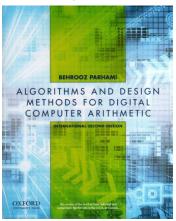
- The Real and Complex Numbers Systems
- Basic Topology
- Numerical Sequences and Series
- Continuity and Differentiation
- Sequences and Series of Functions
- Number Representation
- IEEE 754-2008: Standard for Floating-Point Arithmetic
- IEEE 1788-2008: Standard for Interval Arithmetic
- Programmable Logic Devices (VHDL/FPGA)
- Arithmetic Operation in a Computer

#### References

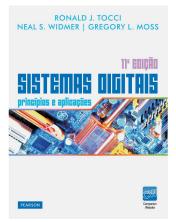
 Rudin, W. (1976), Principles of mathematical analysis, McGraw-Hill New York.



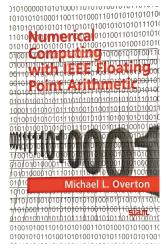
 Parhami, B. (2012). Computer arithmetic algorithms and hardware architectures. Oxford University Press, New York.



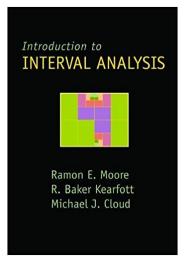
 Tocci, R. J., Widmer, N. S., & Moss, G. L. (2011). Sistemas Digitais. Princípios e Aplicações (11th ed.). São Paulo: Pearson Prentice Hall.



 Overton, M. L. (2001), Numerical Computing with IEEE floating point arithmetic, SIAM.



 Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to Interval Analysis. SIAM.



# **Assessment**

- $T_1 = 10$  points : Activities
- $T_{2 to 6} = 60$  points : Conference paper.
- $T_{7,8} = 30$  points: Exams.
- $N_F = \sum_{i=1}^{8} T_i$
- If  $N_F \ge 60$  then Succeed.
- If  $N_F < 60$  then Failed.
- Replacement exam is available upon request.

# 1. The real and complex number systems

#### 1.1 Introduction

- A discussion of the main concepts of analysis (such as convergence, continuity, differentiation, and integration) must be based on an accurately defined number concept.
- Number: An arithmetical value expressed by a word, symbol,or figure, representing a particular quantity and used in counting and making calculations. (Oxford Dictionary).
- Let us see if we really know what a number is.
- Think about this question:<sup>1</sup>

Is 
$$0.999... = 1$$
? (1)

9/89

Prof. Erivelton (UFSJ) Computer Arithmetic August 7, 2019

<sup>&</sup>lt;sup>1</sup>Richman, F. (1999) Is 0.999 ... = 1? *Mathematics Magazine*. 72(5), 386–400.

- The set N of natural numbers is defined by the Peano Axioms:
  - **1** There is an injective function  $s : \mathbb{N} \to \mathbb{N}$ . The image s(n) of each natural number  $n \in \mathbb{N}$  is called successor of n.
  - 2 There is an unique natural number  $1 \in \mathbb{N}$  such that  $1 \neq s(n)$  for all  $n \in \mathbb{N}$ .
  - If a subset  $X \subset \mathbb{N}$  is such that  $1 \in X$  and  $s(X) \subset X$  (that is,  $n \in X \Rightarrow s(n) \in X$ ) then  $X = \mathbb{N}$ .
- The set  $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2 \dots\}$  of integers is a bijection  $f : \mathbb{N} \to \mathbb{Z}$  such that f(n) = (n-1)/2 when n is odd and f(n) n/2 when n is even.
- The set  $\mathbb{Q} = \{m/n; m, n \in \mathbb{Z}, n \neq 0\}$  of rational numbers may be written as  $f : \mathbb{Z} \times \mathbb{Z}^* \to \mathbb{Q}$  such that  $\mathbb{Z}^* = \mathbb{Z} \{0\}$  and f(m,n) = m/n.

- The rational numbers are inadequate for many purposes, both as a field and as an ordered set.
- For instance, there is no rational p such that  $p^2 = 2$ .
- An irrational number is written as infinite decimal expansion.
- The sequence 1, 1.4, 1.41, 1.414, 1.4142 ... tends to  $\sqrt{2}$ .
- What is it that this sequence tends to? What is an irrational number?
- This sort of question can be answered as soon as the so-called "real number system" is constructed.

# Example 1

We now show that the equation

$$p^2=2 \tag{2}$$

is not satisfied by any rational p. If there were such a p, we could write p = m/n where m and n are integers that are not both even. Let us assume this is done. Then (2) implies

$$m^2 = 2n^2. (3)$$

This shows that  $m^2$  is even. Hence m is even (if m were odd,  $m^2$  would be odd), and so  $m^2$  is divisible by 4. It follows that the right side of (3) is divisible by 4, so that  $n^2$  is even, which implies that n is even. Thus the assumption that (2) holds thus leads to the conclusion that both m and n are even, contrary to our choice of m and n. Hence (2) is impossible for rational p.

- Let us examine more closely the Example 1.
- Let A be the set of all positive rationals p such that  $p^2 < 2$  and let B consist of all positive rationals p such that  $p^2 > 2$ .
- We shall show that A contains no largest number and B contains no smallest.
- In other words, for every  $p \in A$  we can find a rational  $q \in A$  such that p < q, and for every  $p \in B$  we can find a rational  $q \in B$  such that q < p.
- Let each rational p > 0 be associated to the number

$$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}.$$
 (4)

and

$$q^2 = \frac{(2p+2)^2}{(p+2)^2}. (5)$$

Let us rewrite

$$q = p - \frac{p^2 - 2}{p + 2} \tag{6}$$

Let us subtract 2 from both sides of (6)

$$q^{2}-2 = \frac{(2p+2)^{2}}{(p+2)^{2}} - \frac{2(p+2)^{2}}{(p+2)^{2}}$$

$$q^{2}-2 = \frac{(4p^{2}+8p+4)-(2p^{2}+8p+8)}{(p+2)^{2}}$$

$$q^{2}-2 = \frac{2(p^{2}-2)}{(p+2)^{2}}.$$
(7)

- If  $p \in A$  then  $p^2 2 < 0$ , (6) shows that q > p, and (7) shows that  $q^2 < 2$ . Thus  $q \in A$ .
- If  $p \in B$  then  $p^2 2 > 0$ , (6) shows that 0 < q < p, and (7) shows that  $q^2 > 2$ . Thus  $q \in B$ .

- In this slide we show two ways to approach  $\sqrt{2}$ .
- Newton's method

$$\sqrt{2} = \lim_{n \to \infty} x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}$$
 (8)

which produces the sequence for  $x_0 = 1$ 

Table 1: Sequence of  $x_n$  of (8)

| n | $x_n$ (fraction)  | x <sub>n</sub> (decimal) |
|---|-------------------|--------------------------|
| 0 | 1                 | 1                        |
| 1 | $\frac{3}{2}$     | 1.5                      |
| 2 | $\frac{17}{12}$   | 1.416                    |
| 3 | $\frac{577}{408}$ | 1.4142                   |

Now let us consider the continued fraction given by

$$\sqrt{2} = 1 + \frac{1}{2 +$$

represented by  $[1; 2, 2, 2, \ldots]$ , which produces the following sequence

Table 2: Sequence of  $x_n$  of (9)

| n | $x_n$ (fraction) | $x_n$ (decimal) |
|---|------------------|-----------------|
| 0 | 1                | 1               |
| 1 | 3/2              | 1.5             |
| 2 | 7/5              | 1.4             |
| 3 | 17/12            | 1.416           |

#### Remark 1

The rational number system has certain gaps, in spite the fact that between any two rational there is another: if r < s then r < (r + s)/2 < s. The real number system fill these gaps.

## **Definition 1**

If *A* is any set, we write  $x \in A$  to indicate that *x* is a member of *A*. If *x* is not a member of *A*, we write:  $x \notin A$ .

#### **Definition 2**

The set which contains no element will be called the empty set. If a set has at least one element, it is called nonempty.

#### **Definition 3**

If every element of A is an element of B, we say that A is a subset of B. and write  $A \subset B$ , or  $B \supset A$ . If, in addition, there is an element of B which is not in A, then A is said to be a proper subset of B.

17/89

#### 1.2 Ordered Sets

## **Definition 4**

Let S be a set. An order on S is a relation, denote by <, with the following two properties:

**1** If  $x \in S$  and  $y \in S$  then one and only one of the statements

$$x < y$$
,  $x = y$ ,  $y < x$ 

is true.

- 2 If  $x, y, z \in S$ , if x < y and y < z, then x < z.
  - The notation  $x \le y$  indicates that x < y or x = y, without specifying which of these two is to hold.

## **Definition 5**

An ordered set is a set S in which an order is defined.

18/89

Suppose S is an ordered set, and  $E \subset S$ . If there exists a  $\beta \in S$  such that  $x \leq \beta$  for every  $x \in E$ , we say that E is bounded above, and call  $\beta$  an upper bound of E. Lower bound are defined in the same way (with  $\geq$  in place of  $\leq$ ).

# Definition 7

Suppose *S* is an ordered set,  $E \subset S$ , and *E* is bounded above. Suppose there exists an  $\alpha \in S$  with the following properties:

- $\bullet$   $\alpha$  is an upper bound of E.
- ② If  $\gamma < \alpha$  then  $\gamma$  is not an upper bound of E.

Then  $\alpha$  is called the least upper bound of E or the supremum of E, and we write

$$\alpha = \sup E$$
.

The greatest lower bound, or infimum, of a set *E* which is bounded below is defined in the same manner of Definition 7: The statement

$$\alpha = \inf E$$
.

means that  $\alpha$  is a lower bound of E and that no  $\beta$  with  $\beta > \alpha$  is a lower bound of E.

# Example 2

If  $\alpha = \sup E$  exists, then  $\alpha$  may or may not be a member of E. For instance, let  $E_1$  be the set of all  $r \in Q$  with r < 0. Let  $E_2$  be the set of all  $r \in Q$  with r < 0. Then

$$\sup E_1 = \sup E_2 = 0,$$

and  $0 \notin E_1, 0 \in E_2$ .

An ordered set S is said to have the least-upper-bound property if the following is true: If  $E \subset S$ , E is not empty, and E is bounded above, then  $\sup E$  exists in S.

#### Theorem 1

Suppose S is an ordered set with the least-upper-bound property,  $B \subset S$ , B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then

$$\alpha = \sup L$$

exists in S and  $\alpha = \inf B$ .

#### 1.3 Fields

#### **Definition 10**

A field is a set F with two operations, called addition and multiplication, which satisfy the following so-called "field axioms" (A), (M) and (D):

- (A) Axioms for addition
  - (A1) If  $x \in F$  and  $y \in F$ , then their sum x + y is in F.
  - (A2) Addition is commutative: x + y = y + x for all  $x, y \in F$ .
  - (A3) Addition is associative: (x + y) + z = x + (y + z) for all  $x, y, z \in F$ .
  - (A4) F contains an element 0 such that 0 + x = x for every  $x \in F$ .
  - (A5) To every  $x \in F$  corresponds an element  $-x \in F$  such that x + (-x) = 0.
- (M) Axioms for multiplication
  - (M1) If  $x \in F$  and  $y \in F$ , then their product xy is in F.
  - (M2) Multiplication is commutative: xy = yx for all  $x, y \in F$ .

- (M3) Multiplicative is associative: (xy)z = x(yz) for all  $x, y, z \in F$ .
- (M4) F contains an element  $1 \neq 0$  such that 1x = x for every  $x \in F$ .
- (M5) If  $x \in F$  and  $x \neq 0$  then there exists an element  $1/x \in F$  such that

$$x\cdot (1/x)=1.$$

(D) The distributive law

$$x(y+z)=xy+xz$$

holds for all  $x, y, z \in F$ .

#### **Definition 11**

An ordered field is a field F which is also an ordered set, such that

- 2 xy > 0 if  $x \in F$ ,  $y \in F$ , x > 0, and y > 0.

#### 1.4 The real field

#### Theorem 2

There exists an ordered field R which has the least-upper-bound property. Moreover, R contains Q as a subfield.



Figure 1: Real Line

#### Theorem 3

- (a) If  $x \in R$ , and x > 0, then there is a positive integer n such that nx > y.
- (b) If  $x \in R$ , and x < y, then there exists a  $p \in Q$  such that x .

Let x > 0 be real. Let  $n_0$  be the largest integer such that  $n_0 \le x$ . Having chosen  $n_0, n_1, \dots, n_{k-1}$ , let  $n_k$  be the largest integer such that

$$n_0+\frac{n_1}{10}+\cdots+\frac{n_k}{10^k}\leq x.$$

Let E be the set of these numbers

$$n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k}$$
  $(k = 0, 1, 2, \dots).$  (10)

Then  $x = \sup E$ . The decimal expansion of x is

$$n_0 \cdot n_1 n_2 n_3 \cdots \tag{11}$$

# 1.5 The extended real number system

#### **Definition 13**

The extended real number system consists of the real field R and two symbols:  $+\infty$  and  $-\infty$ . We preserve the original order in R, and define

$$-\infty < x < +\infty$$

for every  $x \in R$ . A symbol for the extended real number system is  $\bar{R}$ .

- +∞ is an upper bound of every subset of the extended real number system, and that every nonempty subset has a least upper bound.
- The same remarks apply to lower bounds.
- The extended real number system does not form a field.
- It is customary to make the following conventions:
  - (a) If x is real then

$$x + \infty = \infty$$
,  $x - \infty = -\infty$ ,  $\frac{x}{+\infty} = \frac{x}{-\infty} = 0$ .

(b) If x > 0 then  $x \cdot (+\infty) = +\infty$ ,  $x \cdot (-\infty) = -\infty$ .

(c) If 
$$x < 0$$
 then  $x \cdot (+\infty) = -\infty$ ,  $x \cdot (-\infty) = +\infty$ .

# 1.6 The complex field

## **Definition 14**

A complex number is an ordered pair (a, b) of real numbers. Let x = (a, b), y = (c, d) be two complex numbers. We define

$$x+y=(a+c,b+d),$$

$$xy = (ac - bd, ad + bc).$$

- i = (0, 1).
- $i^2 = -1$
- If a and b are real, then (a, b) = a + bi.

# 1.7 Euclidean Space

#### **Definition 15**

For each positive integer k, let  $R^k$  be the set of all ordered k-tuples

$$\mathbf{x}=(x_1,x_2,\ldots,x_k),$$

where  $x_1, \ldots, x_k$  are real numbers called the coordinates of **x**.

- Addition of vectors:  $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_k + y_k)$ .
- Multiplication of a vector by a real number (scalar):  $\alpha \mathbf{x} = (\alpha x_1, \dots, \alpha x_k)$ .
- Inner product:  $x \cdot y = \sum_{i=1}^k x_i y_i$ .
- Norm:  $|x| = (x \cdot x)^{1/2} = \left(\sum_{i=1}^{k} x_i^2\right)^{1/2}$ .
- The structure now defined (the vector space  $R^k$  with the above product and norm) is called Euclidean k-space.

Prof. Erivelton (UFSJ) Computer Arithmetic August 7, 2019

28/89

## Theorem 4

Suppose  $\mathbf{x}, \mathbf{y}, \mathbf{z} \in R^k$  and  $\alpha$  is real. Then

- **1**  $|x| \ge 0$ ;
- $|\mathbf{x}| = 0$  if and only if  $|\mathbf{x} = 0|$ ;

- **6**  $|x + y| \le |x| + |y|$ ;
- **6**  $|x-z| \le |x-y| + |x-z|$ .
  - Items 1,2 and 6 of Theorem 4 will allow us to regard R<sup>k</sup> as a metric space.

# **Exercises Chapter 1**

- (1) Let the sequence of numbers 1/n where  $n \in \mathbb{N}$ . Does this sequence have an infimum? If it has, what is it? Explain your result and show if it is necessary any other condition.
- (2) Comment the assumption: Every irrational number is the limit of monotonic increasing sequence of rational numbers (Ferrar, 1938, p.20).
- (3) Prove Theorem 1.
- (4) Prove the following statements
  - a) If x + y = x + z then y = z.
  - b) If x + y = x then y = 0.
  - c) If x + y = 0 then y = -x.
  - d) -(-x) = x.

- (5) Prove the following statements
  - a) If x > 0 then -x < 0, and vice versa.
  - b) If x > 0 and y < z then xy < xz.
  - c) If x < 0 and y < z then xy > xz.
  - d) If  $x \neq 0$  then  $x^2 > 0$ .
  - e) If 0 < x < y then 0 < 1/y < 1/x.
- (6) Prove the Theorem 2. (Optional)
- (7) Prove the Theorem 3.
- (8) Write addition, multiplication and distribution law in the same manner of Definition 22 for the complex field.
- (9) What is the difference between R and  $\bar{R}$ ?
- (10) Prove the reverse triangle inequality:  $||a| |b|| \le |a b|$ .

# 2. Basic Topology

# 2.1 Finite, Countable, and Uncountable Sets

#### **Definition 16**

Consider two sets A and B, whose elements may be any objects whatsoever, and suppose that with each element x of A there is associated, in some manner, an element of B, which we denote by f(x). Then f is said to be a function from A to B (or a mapping of A into B). The set A is called the domain of f (we also say f is defined on A), and the elements of f(x) are called the values of f. The set of all values of f is called the range of f.

#### **Definition 17**

Let A and B be two sets and let f be a mapping of A into B. If  $E \subset A$ , f(E) is defined to be the set of all elements f(x), for  $x \in E$ . We call f(E) the image of E under f. In this notation, f(A) is the range of f. It is clear that  $f(A) \subset B$ . If f(A) = B, we say that f maps A onto B.

If  $E \subset B$ ,  $f^{-1}$  denotes the set of all  $x \in A$  such that  $f(x) \in E$ . We call  $f^{-1}(E)$  the inverse image of E under f.

• f is a 1-1 mapping of A into B provided that  $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2, x_1 \in A, x_2 \in A$ .

# **Definition 19**

If there exists a 1-1 mapping of A onto B, we say that A and B, can be put in 1-1 correspondence, or that A and B have the same cardinal number, or A and B are equivalent, and we write  $A \sim B$ .

- Properties of equivalence
  - It is reflexive: A ∼ A.
  - ▶ It is symmetric: If  $A \sim B$ , then  $B \sim A$ .
  - ▶ It is transitive: If  $A \sim B$  and  $B \sim C$ , then  $A \sim C$ .

Let  $n \in N$  and  $J_n$  be the set whose elements are the integers 1, 2, ..., n; let J be the set consisting of all positive integers. For any set A, we say:

- (a) A is finite if  $A \sim J_n$  for some n.
- (b) A is infinite if A is not finite.
- (c) A is countable if  $A \sim J$ .
- (d) A is uncountable if A is neither finite nor countable.
- (e) A is at most countable if A is finite or countable.

# Remark 2

A is infinite if A is equivalent to one of its proper subsets.

By a sequence, we mean a function f defined on the set J of all positive integers. If  $f(n) = x_n$ , for  $n \in J$ , it is customary to denote the sequence f by the symbol  $\{x_n\}$ , or sometimes  $x_1, x_2, x_3, \ldots$ . The values of f are called terms of the sequence. If A is a set and if  $x_n \in A$  for all  $n \in J$ , then  $\{x_n\}$  is said to be a sequence in A, or a sequence of elements of A.

- Every infinite subset of a countable set *A* is countable.
- Countable sets represent the "smallest infinity.

## **Definition 22**

Let A and  $\Omega$  be sets, and suppose that with each element of  $\alpha$  of A is associated a subset of  $\Omega$  which denote by  $E_{\alpha}$ . A collection of sets is denoted by  $\{E_{\alpha}\}$ .

The union of the sets  $E_{\alpha}$  is defined to be the set S such that  $x \in S$  if and only if  $x \in E_{\alpha}$  for at least one  $\alpha \in A$ . It is denoted by

$$S = \bigcup_{\alpha \in A} E_{\alpha}.$$
 (12)

If A consists of the integers 1, 2, ..., n, one usually writes

$$S = \bigcup_{m=1}^{n} E_m = E_1 \cup E_2 \cup \cdots \cup E_n. \tag{13}$$

• If A is the set of all positive integers, the usual notations is

$$S = \bigcup_{m=1}^{\infty} E_m. \tag{14}$$

• The symbol  $\infty$  indicates that the union of a countable collection of sets is taken. It should not be confused with symbols  $+\infty$  and  $-\infty$  introduced in Definition 13.

The intersection of the sets  $E_{\alpha}$  is defined to be the set P such that  $x \in P$  if and only if  $x \in E_{\alpha}$  for every  $\alpha \in A$ . It is denoted by

$$P = \bigcap_{\alpha \in A} E_{\alpha}.$$
 (15)

P is also written such as

$$P = \bigcap_{m=1}^{n} = E_1 \cap E_2 \cap \cdots E_n. \tag{16}$$

• If A is the set of all positive integers, we have

$$P = \bigcap_{m=1}^{\infty} E_m. \tag{17}$$

Prof. Erivelton (UFSJ)

Let  $\{E_n\}$ , n = 1, 2, 3, ..., be a sequence of countable sets, and put

$$S = \bigcup_{n=1}^{\infty} E_n. \tag{18}$$

#### Then S is countable.

- The set of all rational numbers is countable.
- The set of all real numbers is uncountable.

# 2.2 Metric Spaces

## **Definition 25**

A set X, whose elements we shall call points, is said to be a metric space if with any two points p and q of X there is associated a real number d(p,q) the distance from p to q, such that

- (a) d(p,q) > 0 if  $p \neq q$ ; d(p,p) = 0.
- (b) d(p,q) = d(q,p);
- (c)  $d(p,q) \leq d(p,r) + d(r,q)$ , for any  $r \in X$ .

## **Definition 26**

By the segment (a, b) we mean the set of all real numbers x such that a < x < b.

# **Definition 27**

By the interval [a, b] we mean the set of all real number x such that a < x < b.

If  $\mathbf{x} \in R^k$  and r > 0, the open (or closed) ball B with center at  $\mathbf{x}$  and radius r is defined to be the set of all  $y \in R^k$  such that  $|\mathbf{y} - \mathbf{x}| < r$  (or  $|\mathbf{y} - \mathbf{x}| \le r$ ).

## **Definition 29**

We call a set  $E \subset R^k$  convex if  $(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \in E$  whenever  $\mathbf{x} \in E$ ,  $\mathbf{y} \in E$  and  $0 < \lambda < 1$ .

# Example 3

Balls are convex. For if  $|\mathbf{y} - \mathbf{x}| < r$ ,  $|\mathbf{z} - \mathbf{x}| < r$ , and  $0 < \lambda < 1$ , we have

$$|\lambda \mathbf{y} + (\mathbf{1} - \lambda)\mathbf{z} - \mathbf{x}| = |\lambda(\mathbf{y} - \mathbf{x}) + (\mathbf{1} - \lambda)(\mathbf{z} - \mathbf{x})|$$

$$\leq \lambda |\mathbf{y} - \mathbf{x}| + (\mathbf{1} - \lambda)|\mathbf{z} - \mathbf{x}| < \lambda r + (\mathbf{1} - \lambda)r$$

$$= r.$$

Let X be a metric space. All points and sets are elements and subsets of X.

- (a) A neighbourhood of a point p is a set  $N_r(p)$  consisting of all points q such that d(p,q) < r.
- (b) A point p is a limit point of the set E if every neighbourhood of p contains a point  $q \neq p$  such that  $q \in E$ .
- (c) If  $p \in E$  and p is not a limit point of E, then p is called an isolated point of E.
- (d) *E* is closed is very limit point of *E* is a point of *E*.
- (e) A point p is an interior point of E if there is a neighbourhood N of p such that N ⊂ E.
- (f) E is open is every point of E is an interior point of E.
- (g) The complement of E (denoted by  $E^c$ ) is the set of all points  $p \in X$  such that  $p \notin E$ .

- (h) E is perfect if E is closed and if every point of E is a limit point of E.
  - (i) E is bounded if there is a real number M and a point  $q \in X$  such that d(p,q) < M for all  $p \in E$ .
  - (j) E is dense in X if every point of X is a limit point of E, or a point of E (or both).
- If p is a limit point of a set E, then every neighbourhood of p contains infinitely many points of E.
- A set *E* is open if and only if its complement is closed.

## **Definition 31**

If X is a metric space, if  $E \subset X$ , and if E' denotes the set of all limit points of E in X, then the closure of E is the set  $\bar{E} = E \cup E'$ .

If X is a metric space and  $E \subset X$ , then

- (a) Ē is closed.
- (b)  $E = \bar{E}$  if and only if E is closed.
- (c)  $E \subset F$  for every closed set  $F \subset X$  such that  $E \subset F$ .

## Theorem 7

Let E be a nonempty set of real numbers which is bounded above. Let  $y = \sup E$ . Then  $y \in \overline{E}$ . Hence  $y \in E$  if E is closed.

# 2.3 Compact Sets

## Definition 32

By an open cover of a set E in a metric space X we mean a collection  $\{G_{\alpha}\}\$  of open subsets of X such that  $E\subset\bigcup_{\alpha}G_{\alpha}$ .

# Definition 33

A subset K of a metric space X is said to be compact if every open cover of K contains a finite subcover.

## **Definition 34**

A set  $X \subset R$  is compact if X is closed and bounded<sup>a</sup>.

<sup>a</sup>Lima, E. L. (2006) *Análise Real v. 1.*. RJ: IMPA, 2006.

## Definition 35

If  $\{K_n\}$  is a sequence of nonempty compact sets such that  $K_n \supset K_{n+1}$  (n = 1, 2, 3...), then  $\bigcap_{i=1}^{\infty} K_n$  is not empty.

44/89

If  $\{I_n\}$  is a sequence of intervals in  $R^1$ , such that  $I_n \supset I_{n+1}$  (n = 1, 2, 3...),, then  $\bigcap_{1}^{\infty} I_n$  is not empty.

# Theorem 8

If a set E in  $\mathbb{R}^k$  has one of the following three properties, then it has the other two:

- E is closed and bounded.
- E is compact.
- Every infinite subset of E has a limit point in E.

## Theorem 9

(Weierstrass) Every bounded subset of  $R^k$  has a limit point in  $R^k$ .

#### 2.4 Perfect Sets

#### Theorem 10

Let P be a nonempty perfect set in  $\mathbb{R}^k$ . Then P is uncountable.

- Every interval [a, b](a < b) is uncountable. In particular, the set of all real numbers in uncountable.
- The Cantor ternary set is created by repeatedly deleting the open middle thirds of a set of line segments. One starts by deleting the open middle third (1/3,2/3) from the interval [0,1], leaving two line segments:  $[0,1/3] \cup [2/3,1]$ . Next, the open middle third of each of these remaining segments is deleted, leaving four line segments:  $[0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1]$ . This process is continued ad infinitum, where the nth set is

$$C_n = \frac{C_{n-1}}{3} \cup \left(\frac{2}{3} + \frac{C_{n-1}}{3}\right) . C_0 = [0, 1].$$

Prof. Erivelton (UFSJ)

• The first six steps of this process are illustrated in Figure 47.



Figure 2: Cantor Set. Source: Wikipedia.

#### 2.5 Connected Sets

#### **Definition 37**

Two subsets A and B of a metric space X are said to be separated if both  $A \cap \overline{B}$  and  $\overline{A} \cap B$  are empty, i.e., if no point of A lies in the closure of B and no point of B lies in the closure of A.

A set  $E \subset X$  is said to be connected if E is not a union of two nonempty separated sets.

## Theorem 11

A subset E of the real line  $R^1$  is connected if and only if it has the following property: If  $x \in E$ ,  $y \in E$ , and x < z < y, then  $z \in E$ .

# **Exercises Chapter 2**

- (1) Let A be the set of real numbers x such that  $0 < x \le 1$ . For every  $x \in A$ , be the set of real numbers y, such that 0 < y < x. Complete the following statements
  - (a)  $E_x \subset E_z$  if and only if  $0 < x \le z \le 1$ .
  - (b)  $\bigcup_{x\in A} E_x = E_1$ .

Basic Topology

- (c)  $\bigcap_{x \in A} E_x$  is empty.
- (2) Prove Theorem 5. Hint: put the elements of  $E_n$  in a matrix and count the diagonals.
- (3) Prove that the set of all real numbers is uncountable.
- (4) The most important examples of metric spaces are euclidean spaces  $R^k$ . Show that a Euclidean space is a metric space.

(5) For  $x \in R^1$  and  $y \in R^1$ , define

$$d_1(x,y) = (x-y)^2,$$

$$d_2(x,y) = \sqrt{|x-y|},$$

$$d_3(x,y) = |x^2-y^2|,$$

$$d_4(x,y) = |x-2y|,$$

$$d_5(x,y) = \frac{|x-y|}{1+|x-y|}.$$

Determine for each of these, whether it is a metric or not.

#### Work 1

To find the square root of a positive number a, we start with some approximation,  $x_0 > 0$  and then recursively define:

$$x_{n+1} = \frac{1}{2} \left( x_n + \frac{a}{x_n} \right).$$
 (19)

Compute the square root using (19) for

- (a) a = 2;
- (b)  $a = 2 \times 10^{-300}$
- (c)  $a = 2 \times 10^{-310}$
- (d)  $a = 2 \times 10^{-322}$
- (e)  $a = 2 \times 10^{-324}$

Check your results by  $x_n \times x_n$ , after defining a suitable stop criteria for n.

# 3. Numerical Sequences and Series

# 3.1 Convergent Sequences

## **Definition 38**

A sequence  $\{p_n\}$  in a metric space X is said to converge if there is point  $p \in X$  with the following property: For every  $\varepsilon > 0$  there is an integer N such that  $n \geq N$  implies that  $d(p_n, p) < \varepsilon$ . In this case we also say that  $p_n$  converges to p, or that p is the limit of  $\{p_n\}$ , and we write  $p_n \to p$ , or

$$\lim_{n\to\infty}p_n=p.$$

- If  $\{p_n\}$  does not converge, it is said to diverge.
- It might be well to point out that our definition of convergent sequence depends not only on  $\{p_n\}$  but also on X.
- It is more precise to say convergent in X.
- The set of all points  $p_n$  (n = 1, 2, 3, ...) is the range of  $\{p_n\}$ .
- The sequence  $\{p_n\}$  is said to be bounded if its range is bounded.

Prof. Erivelton (UFSJ) Computer Arithmetic August 7, 2019 52/89

# Example 4

Let  $s \in R$ . If  $s_n = 1/n$ , then

$$\lim_{n\to\infty} s_n = 0.$$

The range is infinite, and the sequence is bounded.

# Example 5

Let  $s \in R$ . If  $s_n = n^2$ , the sequence  $\{s_n\}$  is unbounded, is divergent, and has infinite range.

# Example 6

Let  $s \in R$ . If  $s_n = 1$  (n = 1, 2, 3, ...), then the sequence  $\{s_n\}$  converges to 1, is bounded, and has finite range.

Let  $\{p_n\}$  be a sequence in a metric space X.

- (a)  $\{p_n\}$  converges to  $p \in X$  if and only if every neighbourhood of p contains all but finitely many of the terms of  $\{p_n\}$ .
- (b) If  $p \in X$ ,  $p' \in X$ , and if  $\{p_n\}$  converges to p and to p', then p' = p.
- (c) If  $\{p_n\}$  converges, then  $\{p_n\}$  is bounded.
- (d) If  $E \subset X$  and if p is a limit point of E, then there is a sequence  $\{p_n\}$  in E such that  $p = \lim_{n \to \infty} p_n$ .

August 7, 2019

54/89

Suppose  $\{s_n\}$ ,  $\{t_n\}$  are complex sequences, and  $\lim_{n\to\infty}s_n=s$  and  $\lim_{n\to\infty}t_n=t$ . Then

- (a)  $\lim_{n\to\infty} (s_n + t_n) = s + t$ ;
- (b)  $\lim_{n\to\infty} cs_n = cs$ ,  $\lim_{n\to\infty} (c+s_n) = c+s$ , for any number c;
- (c)  $\lim_{n\to\infty} (s_n t_n) = st$ ;
- (d)  $\lim_{n\to\infty}\frac{1}{s_n}=\frac{1}{s}$ ;

# 3.2 Subsequences

# **Definition 39**

Given a sequence  $\{p_n\}$ , consider a sequence  $\{n_k\}$  of positive integers, such that  $n_1 < n_2 < n_3 < \cdots$ . Then the sequence  $\{p_{n_i}\}$  is called a subsequence of  $\{p_n\}$ . If  $\{p_{n_i}\}$ , its limit is called a subsequential limit of  $\{p_n\}$ . It is clear that  $\{p_n\}$  converges to p if and only if every subsequence of  $\{p_n\}$  converges to p.

- (a) If  $\{p_n\}$  is a sequence in a compact metric space X, then some subsequence of  $\{p_n\}$  converges to a point of X.
- (b) Every bounded sequence in R<sup>k</sup> contains a convergent subsequence.

## Theorem 15

The subsequential limits of a sequence  $\{p_n\}$  in a metric space X form a closed subset of X.

56/89

# 3.3 Cauchy Sequence

#### **Definition 40**

A sequence  $\{p_n\}$  is a metric space X is said to be a Cauchy sequence if for every  $\varepsilon > 0$  there is an integer N such that  $d(p_n, p_m) < \varepsilon$  if  $n \ge N$  and m > N.



Figure 3: Augustin-Louis Cauchy (1789-1857), French mathematician who was an early pioneer of analysis. Source: Wikipedia.

Let E be a subset of a metric space X, and let S be the set of all real number of the form d(p,q), with  $p \in E$  and  $q \in E$ . The sup of S is called the diameter of E.

• If  $\{p_n\}$  is a sequence in X and if  $E_N$  consists of the points  $p_N, p_{N+1}, p_{N+2}, \ldots$ , it is clear from the two preceding definitions that  $\{p_n\}$  is a Cauchy sequence if and only if

$$\lim_{N\to\infty} \text{diam } E_N=0.$$

#### Theorem 16

(a) If  $\bar{E}$  is the closure of a set E in a metric space X, then

diam 
$$\bar{E} = \text{diam } E$$
.

(b) If  $K_a$  is a sequence of compact sets in X such that  $K_n \supset K_{n+1}$  (n = 1, 2, 3, ...) and if

Prof. Erivelton (UFSJ) Com

- (a) In any metric space X, every convergent sequence is a Cauchy sequence.
- (b) If X is a compact metric space and if  $\{p_n\}$  is a Cauchy sequence in X, then  $\{p_n\}$  converges to some point X.
- (c) In R<sup>k</sup>, every Cauchy sequence converges.
- A sequence converges in R<sup>k</sup> if and only if it is a Cauchy sequence is usually called the Cauchy criterion for convergence.

# **Definition 42**

A sequence  $\{s_n\}$  of real numbers is said to be

- (a) monotonically increasing if  $s_n \le s_{n+1}$  (n = 1, 2, 3, ...);
- (b) monotonically decreasing if  $s_n \ge s_{n+1}$  (n = 1, 2, 3, ...);

59/89

# 3.4 Upper and Lower Limits

#### Theorem 18

Suppose  $\{s_n\}$  is monotonic. Then  $\{s_n\}$  converges if and only if it is bounded.

## **Definition 43**

Let  $\{s_n\}$  be a sequence of real numbers with the following property: For every real M there is an integer N such that  $n \ge N$  implies  $s_n \ge M$ . We then write  $s_n \to +\infty$ .

#### **Definition 44**

Let  $\{s_n\}$  be a sequence of real numbers. Let E be the set of numbers  $x \in \overline{R}$  such that  $s_{n_k} \to x$  for some subsequence  $\{s_{n_k}\}$ . This set E contains all subsequential limits plus possibly the numbers  $+\infty$  and  $-\infty$ . Let  $s^* = \sup E$ , and  $s_* = \inf E$ . These numbers are called upper and lower limits of  $\{s_n\}$ .

We can also write Definition 44 as

$$\lim_{n\to\infty}\sup s_n=s^*,\quad \lim_{n\to\infty}\inf s_n=s_*.$$

# 3.5 Some Special Sequences

- If  $0 \le x_n \le s_n$  for  $n \ge N$ , where N is some fixed number, and if  $s_n \to 0$ , then  $x_n \to 0$ . This property help us to compute the following the limit of the following sequences:
  - (a) If p > 0, then  $\lim_{n \to \infty} \frac{1}{n^p} = 0$ .
  - (b) If p > 0, then  $\lim_{n \to \infty} \sqrt[n]{p} = 1$ .
  - (c)  $\lim_{n\to\infty} \sqrt[n]{n} = 1$ .
  - (d) If p > 0 and  $\alpha$  is real, then  $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$ .
  - (e) If |x| < 1, then  $\lim_{n \to \infty} x^n = 0$ .

#### 3.6 Series

#### **Definition 45**

Given a sequence  $\{a_n\}$ , we use the notation

$$\sum_{n=p}^{q} a_n \quad (p \le q)$$

to denote the sum  $a_p + a_{p+1} + \cdots + a_q$ . With  $\{a_n\}$  we associate a sequence  $\{s_n\}$ , where  $s_n = \sum_{k=1}^n a_k$ . For  $\{s_n\}$  we also use the symbolic expression  $a_1 + a_2 + a_3 + \cdots$  or, more concisely,

$$\sum_{n=1}^{\infty} a_n. \tag{20}$$

The symbol (33) we call an infinite series, or just a series.

- The numbers  $s_n$  are called the partial sums of the series.
- If  $\{s_n\}$  converges to s, we say that the series converges, and we write

$$\sum_{n=1}^{\infty} a_n = s. \tag{21}$$

- s is the limit of a sequence of sums, and is not obtained simply by addition.
- If  $\{s_n\}$  diverges, the series is said to diverge.
- Every theorem about sequences can be stated in terms of series (putting  $a_1 = s_1$ , and  $a_n = s_n s_{n-1}$  for n > 1), and vice versa.

The Cauchy criterion can be restated as the following Theorem.

## Theorem 19

 $\sum a_n$  converges if and only if for every  $\varepsilon>0$  there is an integer N such that

$$\left|\sum_{k=n}^{m} a_{n}\right| \leq \varepsilon \tag{22}$$

if  $m \ge n \ge N$ .

## Theorem 20

If  $\sum a_n$  converges, then  $\lim_{n\to\infty} a_n = 0$ .

## Theorem 21

A series of nonnegative terms converges if and only if its partial sums form a bounded sequence.

- Comparison test
  - (a) If  $|a_n| \le c_n$  for  $n \ge N_0$ , where  $N_0$  is some fixed integer, and if  $\sum c_n$  converges, then  $\sum a_n$  converges.
  - (b) If  $a_n \ge d_n \ge 0$  for  $n \ge N_0$ , and if  $\sum d_n$  diverges, then  $\sum a_n$  diverges.
- Geometric series
  - If  $0 \le x < 1$ , then

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

If  $x \ge 1$ , the series diverges.

▶ **Proof** If  $x \neq 1$ , we have

$$s_n = \sum_{k=0}^n x^k = 1 + x + x^2 + x^3 \dots + x^n.$$
 (23)

If we multiply (23) by x we have

$$xs_n = x + x^2 + x^4 \cdots x^{n+1}$$
. (24)

Applying (23)-(24) we have

$$s_n - x s_n = 1 - x^{n+1}$$
  
 $s_n(1-x) = 1 - x^{n+1}$   
 $s_n = \frac{1 - x^{n+1}}{1 - x}$ .

The result follows if we let  $n \to \infty$ .

## 3.7 The Root and Ratio Tests

#### Theorem 22

(Root Test) Given  $\sum a_n$ , put  $\alpha = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$ . Then

- (a) If  $\alpha < 1$ ,  $\sum a_n$  converges;
- (b) If  $\alpha > 1$ ,  $\sum a_n$  diverges;
- (c) If  $\alpha = 1$ , the test gives no information.

## Theorem 23

(Ratio Test) The series  $\sum a_n$ 

- (a) converges if  $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ ,
- (b) diverges if  $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$  for  $n \ge n_0$ , where  $n_0$  is some fixed integer.
- The ratio test is frequently easier to apply than the root test.
   However, the root test has wider scope.

# **Exercises Chapter 3**

- (1) Let  $s \in R$ . and  $s_n = 1 + [(-1)^n/n]$ .  $\{s_n\}$  is bounded and its range is finite? Which value  $\{s_n\}$  converges to?
- (2) Write a Definition for  $-\infty$  equivalent to Definition 43.
- (3) Apply the root and ratio tests in the following series

$$\begin{array}{ll} \text{(a)} \ \ \frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots \,, \\ \text{(b)} \ \ \frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{3^2} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots \,, \end{array}$$

Prof. Erivelton (UFSJ)

# 4. Continuity and Differentiation

#### 4.1 Limits of Functions

#### **Definition 46**

Let *X* and *Y* be metric spaces: suppose  $E \subset X$ , f maps E into Y, and p is a limit point of E. We write  $f(x) \to q$  as  $x \to p$ , or

$$\lim_{x \to p} f(x) = q \tag{25}$$

if there is a point  $q \in Y$  with the following property: For every  $\varepsilon > 0$  there exists a  $\delta > 0$  such that

$$d_Y(f(x),q)<\varepsilon \tag{26}$$

for all points  $x \in E$  for which

$$0 < d_X(x, p) < \delta. \tag{27}$$

• Alternative statement for Definition 46 based on  $(\varepsilon, \delta)$  limit definition given by Bernard Bolzano in 1817. Its modern version is due to Karl Weierstrass <sup>2</sup>

#### **Definition 47**

The function f approaches the limit L near c means: for every  $\varepsilon$  there is some  $\delta > 0$  such that, for all x, if  $0 < |x - c| < \delta$ , then  $|f(x) - L| < \varepsilon$ .

• f approaches L near c has the same meaning as the Equation (28)

$$\lim_{x \to c} f(x) = L. \tag{28}$$

Prof. Erivelton (UFSJ) Computer Arithmetic August 7, 2019 70/89

<sup>&</sup>lt;sup>2</sup>Addapted from Spivak, M. (1967) *Calculus*. Benjamin: New York.

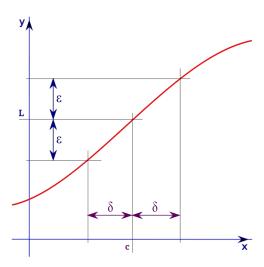


Figure 4: Whenever a point x is within  $\delta$  of c, f(x) is within  $\varepsilon$  units of L. Source: Wikipedia.

Prof. Erivelton (UFSJ) Computer Arithmetic August 7, 2019 71/89

Let X, Y, E, f, and p be as in Definition 46. Then

$$\lim_{x \to p} f(x) = q \tag{29}$$

if and only if

$$\lim_{n\to\infty} f(p_n) = q \tag{30}$$

for every sequence  $\{p_n\}$  in E such that

$$p_n \neq p, \quad \lim_{n \to \infty} p_n = p.$$
 (31)

Suppose  $E \subset X$ , a metric space, p is a limit point of E, f and g are complex functions on E, and

$$\lim_{x\to p} f(x) = A, \quad \lim_{x\to p} g(x) = B.$$

Then

(a) 
$$\lim_{x\to p}(f+g)(x)=A+B$$
;

(b) 
$$\lim_{x\to p} (fg)(x) = AB$$
;

(c) 
$$\lim_{x\to p}\left(\frac{f}{g}\right)(x)=\frac{A}{B}$$
, if  $B\neq 0$ .

#### 4.2 Continuous Functions

#### **Definition 48**

Suppose *X* and *Y* are metric spaces,  $E \subset X$ ,  $p \in E$ , and *f* maps *E* into *Y*. Then *f* is said to be continuous at *p* if for every  $\varepsilon > 0$  there exists a  $\delta > 0$  such that

$$d_Y(f(x), f(p)) < \varepsilon$$

for all points  $x \in E$  for which  $d_X(x, p) < \delta$ .

- If f is continuous at every point of E, then f is said to be continuous on F
- f has to be defined at the point p in order to be continuous at p.
- f is continous at p if and only if  $\lim_{x\to p} f(x) = f(p)$ .

Suppose X, Y, Z are metric spaces,  $E \subset X$ , f maps E into Y, g maps the range of f, f(E), into Z, and h is the mapping of E into Z defined by

$$h(x) = g(f(x)) \quad (x \in E).$$

If f is continuous at a point  $p \in E$  and if g is continuous at the point f(p), then h is continuous at p. The function  $h = f \circ g$  is called the composite of f and g.

# 4.3 Continuity and Compactness

## **Definition 49**

A mapping **f** of a set E into  $R^k$  is said to be bounded if there is a real number M such that  $|\mathbf{f}(x)| \leq M$  for all  $x \in E$ .

## Theorem 27

Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact.

#### Theorem 28

Suppose f is a continuous real function on a compact metric space X, and

$$M = \sup_{p \in X} f(p), \quad m = \inf_{p \in X} f(p). \tag{32}$$

Then there exist points  $p, q \in X$  such that f(p) = M and f(q) = m.

• The conclusion may also be stated as follows: There exist points p and q in X such that  $f(q) \le f(x) \le f(p)$  for all  $x \in X$ ; that is, f attains its maximum (at p) and its minimum (at q).

# **Definition 50**

Let f be a mapping of a metric space X into a metric space Y. We say that f is uniformly continuous on X if for every  $\varepsilon > 0$  there exists  $\delta > 0$  such that

$$d_{Y}(f(p), f(q)) < \varepsilon \tag{33}$$

for all p and q in X for which  $d_X(p,q) < \delta$ .

## Theorem 29

Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous on X.

# 4.4 Continuity and Connectedness

## Theorem 30

If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then f(E) is connected.

#### Theorem 31

(Intermediate Vaalue Theorem) Let f be a continuous real function on the interval [a,b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then there exists a point  $x \in (a,b)$  such that f(x) = c.

#### 4.5 Discontinuities

If x is a point in the domain of definition of the function f at which f
is not continuous, we say that f is discontinuous at x.

## **Definition 51**

Let f be defined on (a,b). Consider any point x such that  $a \le x < b$ . We write f(x+) = q if  $f(t_n) \to q$  as  $n \to \infty$ , for all sequences  $\{t_n\}$  in (x,b) such that  $t_n \to x$ . To obtain the definition of f(x-), for  $a < x \le b$ , we restrict ourselves to sequences  $\{t_n\}$  in (a,x).

• It is clear that any point x of (a,b),  $\lim_{t\to x} f(t)$  exists if and only if

$$f(x+) = f(x-) = \lim_{t \to x} f(t).$$

## **Definition 52**

Let f be defined on (a, b). If f is discontinuous at a point x and if f(x+) and f(x-) exist, then f is said to have a discontinuity of the first kind. Otherwise, it is of the second kind.

#### 4.6 Monotonic Functions

## **Definition 53**

Let f be real on (a, b). Then f is said to be monotonically increasing on (a, b) if a < x < y < b implies  $f(x) \le f(y)$ .

#### Theorem 32

Let f be monotonically increasing on (a, b). Then f(x+) and f(x-) exist at every point of x of (a, b). More precisely

$$\sup_{a < t < x} f(t) = f(x-) \le f(x) \le f(x+) = \inf_{x < t < b} f(t).$$
 (34)

Furthermore, if a < x < y < b, then

$$f(x+) \le f(x-). \tag{35}$$

# 4.7 Infinite Limits and Limits at Infinity

• For any real number x, we have already defined a neighborhood of x to be any segment  $(x - \delta, x + \delta)$ .

#### **Definition 54**

For any real c, the set of real numbers x such that x > c is called a neighborhood of  $+\infty$  and is written  $(c, +\infty)$ . Similarly, the set  $(-\infty, c)$  is a neighborhood of  $-\infty$ .

#### **Definition 55**

Let f be a real function defined on E. We say that

$$f(t) \rightarrow A$$
 as  $t \rightarrow x$ 

where A and x are in the extended real number system, if for every neighborhood U of A there is a neighborhood V of x such that  $V \cap E$  is not empty, and such that  $f(t) \in U$  for all  $t \in V \cap E$ ,  $t \neq x$ .

Three important theorems.

# Theorem 33

If f is continuous on [a, b] and f(a) < 0 < f(b), then there is some x in [a, b] such that f(x) = 0.

## Theorem 34

If f is continuous on [a, b], then f is bounded above on [a, b], that is, there is some number N such that  $f(x) \leq N$  for all x in [a, b].

## Theorem 35

If f is continuous on [a, b], then there is some number y in [a, b] such that  $f(y) \ge f(x)$  for all x in [a, b].

#### 4.8 The Derivative of a Real Function

#### **Definition 56**

Let f be defined (and real-valued) on [a, b]. For any  $x \in [a, b]$  form the quotient

$$\phi(t) = \frac{f(t) - f(x)}{t - x} \quad (a < t < b, t \neq x), \tag{36}$$

and define

$$f'(x) = \lim_{t \to x} \phi(t), \tag{37}$$

provided this limit exists. f' is called the *derivative of f*.

# Theorem 36

Let f be defined on [a,b]. If f is differentiable at a point  $x \in [a,b]$ , then f is continuous at x.

Suppose f and g are defined on [a,b] and are differentiable at point  $x \in [a,b]$ . Then f+g, fg abd f/g are differentiable at x, and

(a) 
$$(f+g)'(x) = f'(x) + g'(x);$$

(b) 
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
;

(c) 
$$\left(\frac{f}{g}\right)' = \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}$$
 with  $g(x) \neq 0$ .

# Theorem 5.1

Suppose f os continuous on [a,b], f'(x) exists at some point  $x \in [a,b]$ , g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If h(t) = g(f(t)) and  $(a \le t \le b)$ , then h is differentiable at x, and

$$h'(x) = g'(f(x))f'(x).$$
 (38)

# Example 7

Let f be defined by

$$f(x) = \begin{cases} x \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$
 (39)

Applying the theorems, we have

$$f'(x) = \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x} \quad (x \neq 0)$$
 (40)

At x = 0 there is no f'(x).

## **Definition 57**

Let f be a real function defined on a metric space X. We say that f has a *local maximum* at a point  $p \in X$  if there exists  $\delta > 0$  such that  $f(q) \le f(p)$  for all  $q \in X$  with  $d(p,q) < \delta$ .

## Theorem 38

Let f be defined on [a, b]; if f has a local maximum at a point  $x \in (a, b)$ , and if f'(x) exists, then f'(x) = 0.

## Theorem 39

If f is a real continuous function on [a,b] which is differentiable in (a,b), then there is a point  $x \in (a,b)$  at which f(b) - f(a) = (b-a)f(x).

# Theorem 40

Suppose f is a real differentiable function on [a, b] and suppose  $f'(a) < \gamma < f'(b)$ . Then there is a point  $x \in (a, b)$  such that  $f'(x) = \gamma$ .

86/89

Suppose f and g are areal and differentiable in (a,b) and  $g'(x) \neq 0$  for all  $x \in (a,b)$ , where  $\infty \leq < b \leq +\infty$ . Suppose

$$\frac{f'(x)}{g'(x)} \to A \quad as \quad x \to a. \tag{41}$$

lf

$$f(x) \rightarrow 0 \text{ and } g(x) \rightarrow 0 \text{ as } x \rightarrow a$$
 (42)

or if

$$g(x) \to +\infty \ as \ x \to a,$$
 (43)

then

$$\frac{f(x)}{g(x)} \to A \text{ as } x \to a. \tag{44}$$

## **Definition 58**

If f has a derivative f' on a interval, and if f' is itself differentiable, we denote the derivative of f' by f'' the second derivative of f'. Continuing in this manner, we obtain functions

$$f, f', f'', f^{(3)}, \ldots, f^{(n)},$$

each of wich is the derivative of the preceding one.  $f^{(n)}$  us cakked tge nth derivative, or the derivative of order n, of f.

Suppose f is a real function on [a,b], n is a positive integer,  $f^{(n-1)}$  is continuous on [a,b],  $f^{(n)}(t)$  exists for every  $t \in (a,b)$ . Let  $\alpha$ ,  $\beta$  be distinct points of [a,b], and define

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)(\alpha)}}{k!} (t - \alpha)^k.$$
 (45)

# Example 8

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
 for all  $x$  (46)

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \quad \text{for all } x$$
 (47)