Computer Arithmetic Master of Science in Electrical Engineering

Erivelton Geraldo Nepomuceno

Department of Electrical Engineering Federal University of São João del-Rei

August 16, 2018

Teaching Plan

Content

- The Real and Complex Numbers Systems
- Basic Topology
- Numerical Sequences and Series
- Continuity and Differentiation
- Sequences and Series of Functions
- Number Representation
- IEEE 754-2008: Standard for Floating-Point Arithmetic
- IEEE 1788-2008: Standard for Interval Arithmetic
- Programmable Logic Devices (FPGA)
- O Arithmetic Operation in a Computer

References

 Rudin, W. (1976), *Principles of mathematical analysis*, McGraw-Hill New York.

Prof. Erivelton (UFSJ)

• Parhami, B. (2012). *Computer arithmetic algorithms and hardware architectures*. Oxford University Press, New York.

 Tocci, R. J., Widmer, N. S., & Moss, G. L. (2011). Sistemas Digitais. Princípios e Aplicações (11th ed.). São Paulo: Pearson Prentice Hall.

Overton, M. L. (2001), Numerical Computing with IEEE floating point arithmetic, SIAM.

Prof. Erivelton (UFSJ)

 Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to Interval Analysis. SIAM.

Assessment

- $N_1 = 80$ points : Conference paper.
- N₂ = 20 points : Activities
- $N = N_1 + N_2$ points
- If $N \ge 60$ then Succeed.
- If N < 60 then Failed.
- Second chance.

1. The real and complex number systems

1.1 Introduction

- A discussion of the main concepts of analysis (such as convergence, continuity, differentiation, and integration) must be based on an accurately defined number concept.
- Number: An arithmetical value expressed by a word, symbol,or figure, representing a particular quantity and used in counting and making calculations. (Oxford Dictionary).
- Let us see if we really know what a number is.
- Think about this question:1

Is
$$0.999... = 1$$
? (1)

¹Richman, F. (1999) Is 0.999 ... = 1? *Mathematics Magazine*. 72(5), 386–400.

• The set \mathbb{N} of natural numbers is defined by the Peano Axioms:

- There is an injective function $s : \mathbb{N} \to \mathbb{N}$. The image s(n) of each natural number $n \in \mathbb{N}$ is called successor of n.
- 2 There is an unique natural number $1 \in \mathbb{N}$ such that $1 \neq s(n)$ for all $n \in \mathbb{N}$.
- **③** If a subset *X* ⊂ \mathbb{N} is such that 1 ∈ *X* and *s*(*X*) ⊂ *X* (that is, $n \in X \Rightarrow s(n) \in X$) then $X = \mathbb{N}$.
- The set $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2 \dots\}$ of integers is a bijection $f : \mathbb{N} \to \mathbb{Z}$ such that f(n) = (n-1)/2 when *n* is odd and f(n) n/2 when *n* is even.
- The set $\mathbb{Q} = \{m/n; m, n \in \mathbb{Z}, n \neq 0\}$ of rational numbers may be written as $f : \mathbb{Z} \times \mathbb{Z}^* \to \mathbb{Q}$ such that $\mathbb{Z}^* = \mathbb{Z} \{0\}$ and f(m, n) = m/n.

- The rational numbers are inadequate for many purposes, both as a field and as an ordered set.
- For instance, there is no rational *p* such that $p^2 = 2$.
- An irrational number is written as infinite decimal expansion.
- The sequence 1, 1.4, 1.41, 1.414, 1.4142 ... tends to $\sqrt{2}$.
- What is it that this sequence *tends to*? What is an irrational number?
- This sort of question can be answered as soon as the so-called "real number system" is constructed.

Example 1

We now show that the equation

$$p^2 = 2 \tag{2}$$

is not satisfied by any rational *p*. If there were such a *p*, we could write p = m/n where *m* and *n* are integers that are not both even. Let us assume this is done. Then (2) implies

$$m^2 = 2n^2. \tag{3}$$

This shows that m^2 is even. Hence *m* is even (if *m* were odd, m^2 would be odd), and so m^2 is divisible by 4. It follows that the right side of (3) is divisible by 4, so that n^2 is even, which implies that *n* is even. Thus the assumption that (2) holds thus leads to the conclusion that both *m* and *n* are even, contrary to our choice of *m* and *n*. Hence (2) is impossible for rational *p*.

Prof. Erivelton (UFSJ)

- Let us examine more closely the Example 1.
- Let A be the set of all positive rationals p such that p² < 2 and let B consist of all positive rationals p such that p² > 2.
- We shall show that A contains no largest number and B contains no smallest.
- In other words, for every *p* ∈ *A* we can find a rational *q* ∈ *A* such that *p* < *q*, and for every *p* ∈ *B* we can find a rational *q* ∈ *B* such that *q* < *p*.
- Let each rational p > 0 be associated to the number

$$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}.$$
 (4)

and

$$q^2 = \frac{(2p+2)^2}{(p+2)^2}.$$
 (5)

Let us rewrite

$$q = p - \frac{p^2 - 2}{p + 2}$$
(6)

• Let us subtract 2 from both sides of (6)

$$q^{2}-2 = \frac{(2p+2)^{2}}{(p+2)^{2}} - \frac{2(p+2)^{2}}{(p+2)^{2}}$$

$$q^{2}-2 = \frac{(4p^{2}+8p+4) - (2p^{2}+8p+8)}{(p+2)^{2}}$$

$$q^{2}-2 = \frac{2(p^{2}-2)}{(p+2)^{2}}.$$
(7)

- If $p \in A$ then $p^2 2 < 0$, (6) shows that q > p, and (7) shows that $q^2 < 2$. Thus $q \in A$.
- If *p* ∈ *B* then *p*² − 2 > 0, (6) shows that 0 < *q* < *p*, and (7) shows that *q*² > 2. Thus *q* ∈ *B*.

- In this slide we show two ways to approach $\sqrt{2}$.
- Newton's method

$$\sqrt{2} = \lim_{n \to \infty} x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}$$

which produces the sequence for $x_0 = 1$

Table 1: Sequence of x_n of (8)

n	x_n (fraction)	x _n (decimal)
0	1	1
1	3 2	1.5
2	17 12	1.41ē
3	577 408	1.4142

(8)

- Introduction
- Now let us consider the continued fraction given by

represented by [1; 2, 2, 2, ...], which produces the following sequence

Table 2: Sequence of x_n of (9)

n	<i>x_n</i> (fraction)	x _n (decimal)
0	1	1
1	3/2	1.5
2	7/5	1.4
3	17/12	1.416

(9)

Remark 1

The rational number system has certain gaps, in spite the fact that between any two rational there is another: if r < s then r < (r + s)/2 < s. The real number system fill these gaps.

Definition 1

If *A* is any set, we write $x \in A$ to indicate that *x* is a member of *A*. If *x* is not a member of *A*, we write: $x \notin A$.

Definition 2

The set which contains no element will be called the empty set. If a set has at least one element, it is called nonempty.

Definition 3

If every element of *A* is an element of *B*, we say that *A* is a subset of *B*. and write $A \subset B$, or $B \supset A$. If, in addition, there is an element of *B* which is not in *A*, then *A* is said to be a proper subset of *B*.

Prof. Erivelton (UFSJ)

1.2 Ordered Sets

Definition 4

Let S be a set. An order on S is a relation, denote by <, with the following two properties:

() If $x \in S$ and $y \in S$ then one and only one of the statements

$$x < y, \quad x = y, \quad y < x$$

is true.

If
$$x, y, z \in S$$
, if $x < y$ and $y < z$, then $x < z$.

The notation x ≤ y indicates that x < y or x = y, without specifying which of these two is to hold.

Definition 5

An ordered set is a set S in which an order is defined.

Prof. Erivelton (UFSJ)

Suppose *S* is an ordered set, and $E \subset S$. If there exists a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say that *E* is bounded above, and call β an upper bound of *E*. Lower bound are defined in the same way (with \geq in place of \leq).

Definition 7

Suppose *S* is an ordered set, $E \subset S$, and *E* is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- (1) α is an upper bound of *E*.
- 2 If $\gamma < \alpha$ then γ is not an upper bound of *E*.

Then α is called the least upper bound of *E* or the supremum of *E*, and we write

$$\alpha = \sup E.$$

The greatest lower bound, or infimum, of a set E which is bounded below is defined in the same manner of Definition 7: The statement

 $\alpha = \inf E$.

means that α is a lower bound of *E* and that no β with $\beta > \alpha$ is a lower bound of *E*.

Example 2

If $\alpha = \sup E$ exists, then α may or may not be a member of E. For instance, let E_1 be the set of all $r \in Q$ with r < 0. Let E_2 be the set of all $r \in Q$ with r < 0. Let E_2 be the set of all $r \in Q$ with r < 0. Then

$$\sup E_1 = \sup E_2 = 0,$$

and $0 \notin E_1$, 0 in E_2 .

An ordered set *S* is said to have the least-upper-bound property if the following is true: If $E \subset S$, *E* is not empty, and *E* is bounded above, then sup *E* exists in *S*.

Theorem 1

Suppose S is an ordered set with the least-upper-bound property, $B \subset S$, B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then

 $\alpha = \sup L$

exists in S and $\alpha = \inf B$.

1.3 Fields

Definition 10

A field is a set F with two operations, called addition and multiplication, which satisfy the following so-called "field axioms" (A), (M) and (D):

(A) Axioms for addition

- (A1) If $x \in F$ and $y \in F$, then their sum x + y is in F.
- (A2) Addition is commutative: x + y = y + x for all $x, y \in F$.
- (A3) Addition is associative: (x + y) + z = x + (y + z) for all $x, y, z \in F$.
- (A4) *F* contains an element 0 such that 0 + x = x for every $x \in F$.
- (A5) To every $x \in F$ corresponds an element $-x \in F$ such that x + (-x) = 0.
- (M) Axioms for multiplication
 - (M1) If $x \in F$ and $y \in F$, then their product xy is in F.
 - (M2) Multiplication is commutative: xy = yx for all $x, y \in F$.

- (M3) Multiplicative is associative: (xy)z = x(yz) for all $x, y, z \in F$.
- (M4) *F* contains an element $1 \neq 0$ such that 1x = x for every $x \in F$.
- (M5) If $x \in F$ and $x \neq 0$ then there exists an element $1/x \in F$ such that

$$x\cdot (1/x)=1.$$

(D) The distributive law

$$x(y+z)=xy+xz$$

holds for all $x, y, z \in F$.

Definition 11

An ordered field is a field F which is also an ordered set, such that

$$x + y < x + z \text{ if } x, y, z \in F \text{ and } y < z.$$

▶
$$xy > 0$$
 if $x \in F$, $y \in F$, $x > 0$, and $y > 0$.

1.4 The real field

Theorem 2

There exists an ordered field R which has the least-upper-bound property. Moreover, R contains Q as a subfield.

Figure 1: Real Line

Theorem 3

- (a) If $x \in R$, and x > 0, then there is a positive integer n such that nx > y.
- (b) If $x \in R$, and x < y, then there exists a $p \in Q$ such that x .

Theorem 4

For every real x > 0 and every integer n > 0 there is one and only one real y such that $y^n = x$.

Proof of Theorem 4:

- That there is at most one such y is clear, since 0 < y₁ < y₂, implies y₁ⁿ < y₂ⁿ.
- Let *E* be the set consisting of all positive real numbers *t* such that $t^n < x$.
- If t = x/(1+x) then 0 < t < 1. Hence $t^n < t < x$. Thus $t \in E$, and *E* is not empty. Thus 1 + x is an upper bound of *E*.
- If t > 1 + x then tⁿ > t > x, so that t ∉ E. Thus 1 + x is an upper bound of E and there is y = sup E.
- To prove that $y^n = x$ we will show that each of the inequalities $y^n < x$ and $y^n > x$ leads to contradiction.

$$b^n - a^n < (b - a)nb^{n-1}$$

when 0 < *a* < *b*.

• Assume $y^n < x$. Choose *h* so that 0 < h < 1 and

$$h<\frac{x-y^n}{n(y+1)^{n-1}}.$$

• Put
$$a = y, b = y + h$$
. Then

$$(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)^{n-1} < x - y^n.$$

- Thus (y + h)ⁿ < x, and y + h ∈ E. Since y + h > y, this contradicts the fact that y is an upper bound of E.
- Assume $y^n > x$. Put

$$k=\frac{y^n-x}{ny^{n-1}}.$$

Then 0 < k < y. If $t \ge y - k$, we conclude that

$$y^n - t^n \ge y^n - (y - k)^n < kny^{n-1} = y^n - x.$$

Prof. Erivelton (UFSJ)

- Thus tⁿ > x, and t ∉ E. It follows that y k is an upper bound of E. But y k < y, which contradicts the fact that y is the least upper bound of E.
- Hence $y^n = x$, and the proof is complete.

Let x > 0 be real. Let n_o be the largest integer such that $n_0 \le x$. Having chosen $n_0, n_1, \ldots, n_{k-1}$, let n_k be the largest integer such that

$$n_0+\frac{n_1}{10}+\cdots+\frac{n_k}{10^k}\leq x.$$

Let *E* be the set of these numbers

$$n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k}$$
 (k = 0, 1, 2, ...). (10)

Then $x = \sup E$. The decimal expansion of x is

$$n_0 \cdot n_1 n_2 n_3 \cdots . \tag{11}$$

1.5 The extended real number system

Definition 13

The extended real number system consists of the real field *R* and two symbols: $+\infty$ and $-\infty$. We preserve the original order in *R*, and define

 $-\infty < x < +\infty$

for every $x \in R$. A symbol for the extended real number system is \overline{R} .

- +∞ is an upper bound of every subset of the extended real number system, and that every nonempty subset has a least upper bound.
- The same remarks apply to lower bounds.
- The extended real number system does not form a field.
- It is customary to make the following conventions:

(a) If x is real then

$$\begin{array}{l} x + \infty = \infty, \quad x - \infty = -\infty, \quad \frac{x}{+\infty} = \frac{x}{-\infty} = 0. \\ \text{b) If } x > 0 \text{ then } x \cdot (+\infty) = +\infty, x \cdot (-\infty) = -\infty. \end{array}$$

1.6 The complex field

(c) If x < 0 then $x \cdot (+\infty) = -\infty, x \cdot (-\infty) = +\infty$.

Definition 14

A complex number is an ordered pair (a, b) of real numbers. Let x = (a, b), y = (c, d) be two complex numbers. We define

x+y=(a+c,b+d),

$$xy = (ac - bd, ad + bc).$$

- *i* = (0, 1).
- $i^2 = -1$.
- If a and b are real, then (a, b) = a + bi.

1.7 Euclidean Space

Definition 15

For each positive integer k, let R^k be the set of all ordered k-tuples

$$\mathbf{x}=(x_1,x_2,\ldots,x_k),$$

where x_1, \ldots, x_k are real numbers called the coordinates of **x**.

- Addition of vectors: $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_k + y_k)$.
- Multiplication of a vector by a real number (scalar): $\alpha \mathbf{x} = (\alpha x_1, \dots, \alpha x_k).$
- Inner product: $x \cdot y = \sum_{i=1}^{k} x_i y_i$.

• Norm:
$$|x| = (x \cdot x)^{1/2} = \left(\sum_{i=1}^{k} x_i^2\right)^{1/2}$$
.

• The structure now defined (the vector space *R^k* with the above product and norm) is called Euclidean *k*-space.

Theorem 5

Suppose $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{R}^k$ and α is real. Then

• $|\mathbf{x}| \ge 0;$ • $|\mathbf{x}| = 0$ if and only if $|\mathbf{x} = 0|;$ • $|\alpha \mathbf{x}| = |\alpha| |\mathbf{x}|;$ • $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|;$ • $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|;$ • $|\mathbf{x} - \mathbf{z}| < |\mathbf{x} - \mathbf{y}| + |\mathbf{x} - \mathbf{z}|.$

 Items 1,2 and 6 of Theorem 5 will allow us to regard R^k as a metric space.

Euclidean Space

Exercises Chapter 1

- (1) Let the sequence of numbers 1/n where $n \in \mathbb{N}$. Does this sequence have an infimum? If it has, what is it? Explain your result and show if it is necessary any other condition.
- (2) Comment the assumption: Every irrational number is the limit of monotonic increasing sequence of rational numbers (Ferrar, 1938, p.20).
- (3) Prove Theorem 1.
- (4) Prove the following statements

(5) Prove the following statements

a) If x > 0 then -x < 0, and vice versa.
b) If x > 0 and y < z then xy < xz.
c) If x < 0 and y < z then xy > xz.
d) If x ≠ 0 then x² > 0.
e) If 0 < x < y then 0 < 1/y < 1/x.

- (6) Prove the Theorem 2. (Optional)
- (7) Prove the Theorem 3.
- (8) Write addition, multiplication and distribution law in the same manner of Definition 22 for the complex field.
- (9) What is the difference between R and \bar{R} ?
- (10) Prove the reverse triangle inequality: $||a| |b|| \le |a b|$.

2. Basic Topology

2.1 Finite, Countable, and Uncountable Sets

Definition 16

Consider two sets *A* and *B*, whose elements may be any objects whatsoever, and suppose that with each element *x* of *A* there is associated, in some manner, an element of *B*, which we denote by f(x). Then *f* is said to be a function from *A* to *B* (or a mapping of *A* into *B*). The set *A* is called the domain of *f* (we also say *f* is defined on *A*), and the elements of f(x) are called the values of *f*. The set of all values of *f* is called the range of *f*.

Definition 17

Let *A* and *B* be two sets and let *f* be a mapping of *A* into *B*. If $E \subset A, f(E)$ is defined to be the set of all elements f(x), for $x \in E$. We call f(E) the image of *E* under *f*. In this notation, f(A) is the range of *f*. It is clear that $f(A) \subset B$. If f(A) = B, we say that *f* maps *A* onto *B*.

If $E \subset B$, f^{-1} denotes the set of all $x \in A$ such that $f(x) \in E$. We call $f^{-1}(E)$ the inverse image of E under f.

• *f* is a 1-1 mapping of *A* into *B* provided that $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2, x_1 \in A, x_2 \in A$.

Definition 19

If there exists a 1-1 mapping of *A* onto *B*, we say that *A* and *B*, can be put in 1-1 correspondence, or that *A* and *B* have the same cardinal number, or *A* and *B* are equivalent, and we write $A \sim B$.

Properties of equivalence

- It is reflexive: A ~ A.
- It is symmetric: If $A \sim B$, then $B \sim A$.
- It is transitive: If $A \sim B$ and $B \sim C$, then $A \sim C$.
Let $n \in N$ and J_n be the set whose elements are the integers 1, 2, ..., n; let J be the set consisting of all positive integers. For any set A, we say:

- (a) A is finite if $A \sim J_n$ for some n.
- (b) A is infinite if A is not finite.
- (c) A is countable if $A \sim J$.
- (d) A is uncountable if A is neither finite nor countable.
- (e) A is at most countable if A is finite or countable.

Remark 2

A is infinite if A is equivalent to one of its proper subsets.

By a sequence, we mean a function *f* defined on the set *J* of all positive integers. If $f(n) = x_n$, for $n \in J$, it is customary to denote the sequence *f* by the symbol $\{x_n\}$, or sometimes x_1, x_2, x_3, \ldots . The values of *f* are called terms of the sequence. If *A* is a set and if $x_n \in A$ for all $n \in J$, then $\{x_n\}$ is said to be a sequence in *A*, or a sequence of elements of *A*.

- Every infinite subset of a countable set A is countable.
- Countable sets represent the "smallest infinity.

Definition 22

Let *A* and Ω be sets, and suppose that with each element of α of *A* is associated a subset of Ω which denote by E_{α} . A collection of sets is denoted by $\{E_{\alpha}\}$.

The union of the sets E_{α} is defined to be the set *S* such that $x \in S$ if and only if $x \in E_{\alpha}$ for at least one $\alpha \in A$. It is denoted by

$$S = \bigcup_{\alpha \in A} E_{\alpha}.$$
 (12)

• If A consists of the integers 1, 2, ..., n, one usually writes

$$S = \bigcup_{m=1}^{n} E_m = E_1 \cup E_2 \cup \cdots \cup E_n.$$
(13)

• If A is the set of all positive integers, the usual notations is

$$S = \bigcup_{m=1}^{\infty} E_m.$$
(14)

The symbol ∞ indicates that the union of a countable collection of sets is taken. It should not be confused with symbols +∞ and -∞ introduced in Definition 13.
 Prof. Eriveton (UES)

The intersection of the sets E_{α} is defined to be the set *P* such that $x \in P$ if and only if $x \in E_{\alpha}$ for every $\alpha \in A$. It is denoted by

$$P = \bigcap_{\alpha \in A} E_{\alpha}.$$
 (15)

• P is also written such as

$$P = \bigcap_{m=1}^{n} = E_1 \cap E_2 \cap \cdots \in E_n.$$
 (16)

• If A is the set of all positive integers, we have

$$P = \bigcap_{m=1}^{\infty} E_m.$$
 (17)

Let $\{E_n\}, n = 1, 2, 3, ...,$ be a sequence of countable sets, and put

$$S = \bigcup_{n=1}^{\infty} E_n.$$
 (18)

Then S is countable.

- The set of all rational numbers is countable.
- The set of all real numbers is uncountable.

2.2 Metric Spaces

Definition 25

A set *X*, whose elements we shall call points, is said to be a metric space if with any two points *p* and *q* of *X* there is associated a real number d(p,q) the distance from *p* to *q*, such that

(a)
$$d(p,q) > 0$$
 if $p \neq q$; $d(p,p) = 0$.
(b) $d(p,q) = d(q,p)$;
(c) $d(p,q) \leq d(p,r) + d(r,q)$, for any $r \in Y$

Definition 26

By the segment (a, b) we mean the set of all real numbers x such that a < x < b.

Definition 27

By the interval [a, b] we mean the set of all real number x such that $a \le x \le b$.

Prof. Erivelton (UFSJ)

If $\mathbf{x} \in \mathbb{R}^k$ and r > 0, the open (or closed) ball B with center at \mathbf{x} and radius r is defined to be the set of all $y \in \mathbb{R}^k$ such that $|\mathbf{y} - \mathbf{x}| < r$ (or $|\mathbf{y} - \mathbf{x}| \le r$).

Definition 29

We call a set $E \subset R^k$ convex if $(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \in E$ whenever $\mathbf{x} \in E$, $\mathbf{y} \in E$ and $0 < \lambda < 1$.

Example 3

Balls are convex. For if $|\mathbf{y} - \mathbf{x}| < r$, $|\mathbf{z} - \mathbf{x}| < r$, and $0 < \lambda < 1$, we have

$$\begin{aligned} |\lambda \mathbf{y} + (\mathbf{1} - \lambda)\mathbf{z} - \mathbf{x}| &= |\lambda (\mathbf{y} - \mathbf{x}) + (\mathbf{1} - \lambda)(\mathbf{z} - \mathbf{x})| \\ &\leq \lambda |\mathbf{y} - \mathbf{x}| + (\mathbf{1} - \lambda)|\mathbf{z} - \mathbf{x}| < \lambda r + (\mathbf{1} - \lambda)r \\ &= r. \end{aligned}$$

Let X be a metric space. All points and sets are elements and subsets of X.

- (a) A neighbourhood of a point p is a set $N_r(p)$ consisting of all points q such that d(p,q) < r.
- (b) A point *p* is a limit point of the set *E* if every neighbourhood of *p* contains a point $q \neq p$ such that $q \in E$.
- (c) If $p \in E$ and p is not a limit point of E, then p is called an isolated point of E.
- (d) E is closed is very limit point of E is a point of E.
- (e) A point *p* is an interior point of *E* if there is a neighbourhood *N* of *p* such that $N \subset E$.
- (f) E is open is every point of E is an interior point of E.
- (g) The complement of *E* (denoted by E^c) is the set of all points $p \in X$ such that $p \notin E$.

Prof. Erivelton (UFSJ)

Computer Arithmetic

Metric Spaces

Definition 30

- (h) E is perfect if E is closed and if every point of E is a limit point of E.
- (i) *E* is bounded if there is a real number *M* and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- (j) *E* is dense in *X* if every point of *X* is a limit point of *E*, or a point of *E* (or both).
- If *p* is a limit point of a set *E*, then every neighbourhood of *p* contains infinitely many points of *E*.
- A set *E* is open if and only if its complement is closed.

Definition 31

If X is a metric space, if $E \subset X$, and if E' denotes the set of all limit points of E in X, then the closure of E is the set $\overline{E} = E \cup E'$.

Prof. Erivelton (UFSJ)

inc inc

Metric Spaces

Theorem 7

If X is a metric space and $E \subset X$, then

- (a) \overline{E} is closed.
- (b) $E = \overline{E}$ if and only if E is closed.
- (c) $E \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

Theorem 8

Let *E* be a nonempty set of real numbers which is bounded above. Let $y = \sup E$. Then $y \in \overline{E}$. Hence $y \in E$ if *E* is closed.

2.3 Compact Sets

Definition 32

By an open cover of a set *E* in a metric space *X* we mean a collection $\{G_{\alpha}\}$ of open subsets of *X* such that $E \subset \bigcup_{\alpha} G_{\alpha}$.

Definition 33

A subset K of a metric space X is said to be compact if every open cover of K contains a finite subcover.

Definition 34

A set $X \subset R$ is compact if X is closed and bounded^{*a*}.

^aLima, E. L. (2006) Análise Real v. 1.. RJ: IMPA, 2006.

Definition 35

If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$ (n = 1, 2, 3...), then $\bigcap_1^{\infty} K_n$ is not empty.

Prof. Erivelton (UFSJ)

If $\{I_n\}$ is a sequence of intervals in R^1 , such that $I_n \supset I_{n+1}$ (n = 1, 2, 3...), then $\bigcap_{1}^{\infty} I_n$ is not empty.

Theorem 9

If a set E in \mathbb{R}^k has one of the following three properties, then it has the other two:

- E is closed and bounded.
- 2 E is compact.
- Every infinite subset of E has a limit point in E.

Theorem 10

(Weierstrass) Every bounded subset of R^k has a limit point in R^k .

2.4 Perfect Sets

Theorem 11

Let P be a nonempty perfect set in R^k . Then P is uncountable.

- Every interval [a, b](a < b) is uncountable. In particular, the set of all real numbers in uncountable.
- The Cantor ternary set is created by repeatedly deleting the open middle thirds of a set of line segments. One starts by deleting the open middle third (1/3,2/3) from the interval [0,1], leaving two line segments: [0,1/3] ∪ [2/3,1]. Next, the open middle third of each of these remaining segments is deleted, leaving four line segments: [0,1/9] ∪ [2/9,1/3] ∪ [2/3,7/9] ∪ [8/9,1]. This process is continued ad infinitum, where the nth set is

$$C_n = rac{C_{n-1}}{3} \cup \left(rac{2}{3} + rac{C_{n-1}}{3}
ight) . C_0 = [0, 1].$$

• The first six steps of this process are illustrated in Figure 50.

Figure 2: Cantor Set. Source: Wikipedia.

2.5 Connected Sets

Definition 37

Two subsets *A* and *B* of a metric space *X* are said to be separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty, i.e., if no point of *A* lies in the closure of *B* and no point of *B* lies in the closure of *A*. A set $E \subset X$ is said to be connected if *E* is not a union of two nonempty separated sets.

Theorem 12

A subset E of the real line R^1 is connected if and only if it has the following property: If $x \in E$, $y \in E$, and x < z < y, then $z \in E$.

Exercises Chapter 2

(1) Let *A* be the set of real numbers *x* such that $0 < x \le 1$. For every $x \in A$, be the set of real numbers *y*, such that 0 < y < x. Complete the following statements

(a)
$$E_x \subset E_z$$
 if and only if $0 < x \le z \le 1$.
(b) $\bigcup_{x \in A} E_x = E_1$.
(c) $\bigcap_{x \in A} E_x$ is empty.

- (2) Prove Theorem 6. Hint: put the elements of E_n in a matrix and count the diagonals.
- (3) Prove that the set of all real numbers is uncountable.
- (4) The most important examples of metric spaces are euclidean spaces R^k. Show that a Euclidean space is a metric space.

(5) For $x \in R^1$ and $y \in R^1$, define

$$\begin{array}{rcl} d_1(x,y) &=& (x-y)^2,\\ d_2(x,y) &=& \sqrt{|x-y|},\\ d_3(x,y) &=& |x^2-y^2|,\\ d_4(x,y) &=& |x-2y|,\\ d_5(x,y) &=& \frac{|x-y|}{1+|x-y|}. \end{array}$$

Determine for each of these, whether it is a metric or not.

Work 1

To find the square root of a positive number *a*, we start with some approximation, $x_0 > 0$ and then recursively define:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right). \tag{19}$$

Compute the square root using (19) for

(a)
$$a = 2$$
;
(b) $a = 2 \times 10^{-300}$
(c) $a = 2 \times 10^{-310}$
(d) $a = 2 \times 10^{-322}$
(e) $a = 2 \times 10^{-324}$

Check your results by $x_n \times x_n$, after defining a suitable stop criteria for *n*.

3. Numerical Sequences and Series

3.1 Convergent Sequences

Definition 38

A sequence $\{p_n\}$ in a metric space *X* is said to converge if there is point $p \in X$ with the following property: For every $\varepsilon > 0$ there is an integer *N* such that $n \ge N$ implies that $d(p_n, p) < \varepsilon$. In this case we also say that p_n converges to *p*, or that *p* is the limit of $\{p_n\}$, and we write $p_n \rightarrow p$, or

$$\lim_{n\to\infty}p_n=p.$$

- If $\{p_n\}$ does not converge, it is said to diverge.
- It might be well to point out that our definition of convergent sequence depends not only on {*p_n*} but also on *X*.
- It is more precise to say convergent in X.
- The set of all points p_n (n = 1, 2, 3, ...) is the range of $\{p_n\}$.
- The sequence {*p_n*} is said to be bounded if its range is bounded.

Prof. Erivelton (UFSJ)

Computer Arithmetic

August 16, 2018

55 / 92

Example 4

Let $s \in R$. If $s_n = 1/n$, then

 $\lim_{n\to\infty} s_n = 0.$

The range is infinite, and the sequence is bounded.

Example 5

Let $s \in R$. If $s_n = n^2$, the sequence $\{s_n\}$ is unbounded, is divergent, and has infinite range.

Example 6

Let $s \in R$. If $s_n = 1$ (n = 1, 2, 3, ...), then the sequence $\{s_n\}$ converges to 1, is bounded, and has finite range.

Let $\{p_n\}$ be a sequence in a metric space X.

- (a) {*p_n*} converges to *p* ∈ *X* if and only if every neighbourhood of *p* contains all but finitely many of the terms of {*p_n*}.
- (b) If p ∈ X, p' ∈ X, and if {p_n} converges to p and to p', then p' = p.
- (c) If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- (d) If $E \subset X$ and if p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $p = \lim_{n \to \infty} p_n$.

Suppose $\{s_n\}$, $\{t_n\}$ are complex sequences, and $\lim_{n\to\infty} s_n = s$ and $\lim_{n\to\infty} t_n = t$. Then

(a)
$$\lim_{n \to \infty} (s_n + t_n) = s + t;$$

(b)
$$\lim_{n \to \infty} cs_n = cs, \lim_{n \to \infty} (c + s_n) = c + s, \text{ for any number } c;$$

(c)
$$\lim_{n \to \infty} (s_n t_n) = st;$$

(d)
$$\lim_{n \to \infty} \frac{1}{s_n} = \frac{1}{s};$$

3.2 Subsequences

Definition 39

Given a sequence $\{p_n\}$, consider a sequence $\{n_k\}$ of positive integers, such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence $\{p_{n_i}\}$ is called a subsequence of $\{p_n\}$. If $\{p_{n_i}\}$, its limit is called a subsequential limit of $\{p_n\}$. It is clear that $\{p_n\}$ converges to p if and only if every subsequence of $\{p_n\}$ converges to p.

Prof. Erivelton (UFSJ)

- (a) If {p_n} is a sequence in a compact metric space X, then some subsequence of {p_n} converges to a point of X.
- (b) Every bounded sequence in R^k contains a convergent subsequence.

Theorem 16

The subsequential limits of a sequence $\{p_n\}$ in a metric spaceX form a closed subset of X.

3.3 Cauchy Sequence

Definition 40

A sequence $\{p_n\}$ is a metric space X is said to be a Cauchy sequence if for every $\varepsilon > 0$ there is an integer N such that $d(p_n, p_m) < \varepsilon$ if $n \ge N$ and $m \ge N$.

Figure 3: Augustin-Louis Cauchy (1789-1857), French mathematician who was an early pioneer of analysis. Source: Wikipedia.

Prof. Erivelton (UFSJ)

Computer Arithmetic

Let *E* be a subset of a metric space *X*, and let *S* be the set of all real number of the form d(p,q), with $p \in E$ and $q \in E$. The sup of *S* is called the diameter of *E*.

If {*p_n*} is a sequence in *X* and if *E_N* consists of the points *p_N*, *p_{N+1}*, *p_{N+2}*,..., it is clear from the two preceding definitions that {*p_n*} is a Cauchy sequence if and only if

 $\lim_{N\to\infty} \operatorname{diam} E_N = 0.$

Theorem 17

(a) If \overline{E} is the closure of a set E in a metric space X, then

diam \overline{E} = diam E.

(b) If K_a is a sequence of compact sets in X such that $K_n \supset K_{n+1}$ (n = 1, 2, 3, ...) and if

Prof. Erivelton (UFSJ)

Computer Arithmetic

- (a) In any metric space *X*, every convergent sequence is a Cauchy sequence.
- (b) If X is a compact metric space and if {p_n} is a Cauchy sequence in X, then {p_n} converges to some point X.
- (c) In R^k, every Cauchy sequence converges.
- A sequence converges in *R^k* if and only if it is a Cauchy sequence is usually called the Cauchy criterion for convergence.

Definition 42

A sequence $\{s_n\}$ of real numbers is said to be

(a) monotonically increasing if $s_n \leq s_{n+1}$ (n = 1, 2, 3, ...);

(b) monotonically decreasing if $s_n \ge s_{n+1}$ (n = 1, 2, 3, ...);

3.4 Upper and Lower Limits

Theorem 19

Suppose $\{s_n\}$ is monotonic. Then $\{s_n\}$ converges if and only if it is bounded.

Definition 43

Let $\{s_n\}$ be a sequence of real numbers with the following property: For every real *M* there is an integer *N* such that $n \ge N$ implies $s_n \ge M$. We then write $s_n \to +\infty$.

Definition 44

Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of numbers $x \in \overline{R}$ such that $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$. This set E contains all subsequential limits plus possibly the numbers $+\infty$ and $-\infty$. Let $s^* = \sup E$, and $s_* = \inf E$. These numbers are called upper and lower limits of $\{s_n\}$.

We can also write Definition 44 as

$$\lim_{n\to\infty}\sup s_n=s^*,\quad \lim_{n\to\infty}\inf s_n=s_*.$$

3.5 Some Special Sequences

If 0 ≤ x_n ≤ s_n for n ≥ N, where N is some fixed number, and if s_n → 0, then x_n → 0. This property help us to compute the following the limit of the following sequences:

(a) If
$$p > 0$$
, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$.
(b) If $p > 0$, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.
(c) $\lim_{n \to \infty} \sqrt[n]{n} = 1$.
(d) If $p > 0$ and α is real, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$.
(e) If $|x| < 1$, then $\lim_{n \to \infty} x^n = 0$.

Series

3.6 Series

Definition 45

Given a sequence $\{a_n\}$, we use the notation

$$\sum_{n=p}^{q} a_n \quad (p \leq q)$$

to denote the sum $a_p + a_{p+1} + \cdots + a_q$. With $\{a_n\}$ we associate a sequence $\{s_n\}$, where $s_n = \sum_{k=1}^n a_k$. For $\{s_n\}$ we also use the symbolic expression $a_1 + a_2 + a_3 + \cdots$ or, more concisely,

$$\sum_{n=1}^{\infty} a_n$$

(20)

The symbol (33) we call an infinite series, or just a series.

- The numbers *s_n* are called the partial sums of the series.
- If {s_n} converges to s, we say that the series converges, and we write

$$\sum_{n=1}^{\infty} a_n = s.$$
 (21)

- *s* is the limit of a sequence of sums, and is not obtained simply by addition.
- If $\{s_n\}$ diverges, the series is said to diverge.
- Every theorem about sequences can be stated in terms of series (putting $a_1 = s_1$, and $a_n = s_n s_{n-1}$ for n > 1), and vice versa.

• The Cauchy criterion can be restated as the following Theorem.

Theorem 20

 $\sum a_n$ converges if and only if for every $\varepsilon > 0$ there is an integer N such that

$$\left|\sum_{k=n}^{m} a_{n}\right| \leq \varepsilon \tag{22}$$

if $m \ge n \ge N$.

Theorem 21

If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem 22

A series of nonnegative terms converges if and only if its partial sums form a bounded sequence.

Prof. Erivelton (UFSJ)

Computer Arithmetic

Comparison test

(a) If |a_n| ≤ c_n for n ≥ N₀, where N₀ is some fixed integer, and if ∑ c_n converges, then ∑ a_n converges.
(b) If a_n ≥ d_n ≥ 0 for n ≥ N₀, and if ∑ d_n diverges, then ∑ a_n diverges.

Geometric series

If 0 ≤ x < 1, then</p>

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

If $x \ge 1$, the series diverges.

• **Proof** If $x \neq 1$, we have

$$s_n = \sum_{k=0}^n x^k = 1 + x + x^2 + x^3 \dots + x^n.$$
 (23)

If we multiply (23) by x we have

$$xs_n = x + x^2 + x^4 \cdots x^{n+1}.$$
 (24)

Applying (23)-(24) we have

$$s_n - xs_n = 1 - x^{n+1}$$

 $s_n(1-x) = 1 - x^{n+1}$
 $s_n = \frac{1 - x^{n+1}}{1 - x}.$

The result follows if we let $n \to \infty$.

3.7 The Root and Ratio Tests

Theorem 23

(Root Test) Given
$$\sum a_n$$
, put $\alpha = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$. Then

(a) If $\alpha < 1$, $\sum a_n$ converges;

(b) If $\alpha > 1$, $\sum a_n$ diverges;

(c) If $\alpha = 1$, the test gives no information.

Theorem 24

(Ratio Test) The series
$$\sum a_n$$

(a) converges if $\lim_{n\to\infty} \sup \left| \frac{a_{n+1}}{a_n} \right| < 1$,
(b) diverges if $\left| \frac{a_{n+1}}{a_n} \right| \ge 1$ for $n \ge n_0$, where n_0 is some fixed integer.

• The ratio test is frequently easier to apply than the root test. However, the root test has wider scope.

Prof. Erivelton (UFSJ)

Computer Arithmetic

Exercises Chapter 3

(1) Let *s* ∈ *R*. and *s_n* = 1 + [(-1)ⁿ/n]. {*s_n*} is bounded and its range is finite? Which value {*s_n*} converges to?
 (2) Write a Definition for -∞ equivalent to Definition 43.
 (3) Apply the root and ratio tests in the following series

 (a) ¹/₂ + ¹/₃ + ¹/_{2²} + ¹/_{3²} + ¹/_{2³} + ¹/_{3³} + ¹/_{2⁴} + ¹/_{3⁴} + ··· ,
 (b) ¹/₂ + 1 + ¹/₈ + ¹/₄ + ¹/_{3²} + ¹/₁₆ + ¹/₁₂₈ + ¹/₆₄ + ··· ,

4. Continuity and Differentiation

4.1 Limits of Functions

Definition 46

Let *X* and *Y* be metric spaces: suppose $E \subset X$, *f* maps *E* into *Y*, and *p* is a limit point of *E*. We write $f(x) \rightarrow q$ as $x \rightarrow p$, or

$$\lim_{x \to p} f(x) = q \tag{25}$$

if there is a point $q \in Y$ with the following property: For every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$d_Y(f(x),q) < \varepsilon \tag{26}$$

for all points $x \in E$ for which

$$0 < d_X(x, p) < \delta.$$

Prof. Erivelton (UFSJ)

(27
Alternative statement for Definition 46 based on (ε, δ) limit definition given by Bernard Bolzano in 1817. Its modern version is due to Karl Weierstrass ²

Definition 47

The function *f* approaches the limit *L* near *c* means: for every ε there is some $\delta > 0$ such that, for all *x*, if $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

• f approaches L near c has the same meaning as the Equation (28)

$$\lim_{x \to c} f(x) = L.$$
(28)

²Addapted from Spivak, M. (1967) *Calculus*. Benjamin: New York.

Prof. Erivelton (UFSJ)

Computer Arithmetic

Figure 4: Whenever a point *x* is within δ of *c*, *f*(*x*) is within ε units of *L*. Source: Wikipedia.

Prof. Erivelton (UFSJ)

Theorem 25	
Let X, Y, E, f , and p be as in Definition 46. Then	
$\lim_{x\to p} f(x) = q$	(29)
if and only if	
$\lim_{n\to\infty}f(p_n)=q$	(30)
for every sequence $\{p_n\}$ in E such that	
$p_n \neq p, \lim_{n \to \infty} p_n = p.$	(31)

Suppose $E \subset X$, a metric space, p is a limit point of E, f and g are complex functions on E, and

$$\lim_{x\to p}f(x)=A,\quad \lim_{x\to p}g(x)=B.$$

Then

(a)
$$\lim_{x \to p} (f+g)(x) = A + B;$$

(b)
$$\lim_{x \to p} (fg)(x) = AB;$$

(c)
$$\lim_{x \to p} \left(\frac{f}{g}\right)(x) = \frac{A}{B}, \quad \text{if } B \neq 0.$$

4.2 Continuous Functions

Definition 48

Suppose *X* and *Y* are metric spaces, $E \subset X, p \in E$, and *f* maps *E* into *Y*. Then *f* is said to be continuous at *p* if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

 $d_Y(f(x), f(p)) < \varepsilon$

for all points $x \in E$ for which $d_X(x, p) < \delta$.

- If *f* is continuous at every point of *E*, then *f* is said to be continuous on *E*.
- *f* has to be defined at the point *p* in order to be continuous at *p*.
- *f* is continous at *p* if and only if $\lim_{x\to p} f(x) = f(p)$.

Suppose X, Y, Z are metric spaces, $E \subset X$, f maps E into Y, g maps the range of f, f(E), into Z, and h is the mapping of E into Z defined by

 $h(x) = g(f(x)) \quad (x \in E).$

If f is continuous at a point $p \in E$ and if g is continuous at the point f(p), then h is continuous at p. The function $h = f \circ g$ is called the composite of f and g.

4.3 Continuity and Compactness

Definition 49

A mapping **f** of a set *E* into R^k is said to be bounded if there is a real number *M* such that $|\mathbf{f}(x)| \le M$ for all $x \in E$.

Theorem 28

Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact.

Theorem 29

Suppose f is a continuous real function on a compact metric space X, and

$$M = \sup_{p \in X} f(p), \quad m = \inf_{p \in X} f(p).$$
(32)

Then there exist points $p, q \in X$ such that f(p) = M and f(q) = m.

The conclusion may also be stated as follows: There exist points p and q in X such that f(q) ≤ f(x) ≤ f(p) for all x ∈ X; that is, f attains its maximum (at p) and its minimum (at q).

Definition 50

Let *f* be a mapping of a metric space *X* into a metric space *Y*. We say that *f* is uniformly continuous on *X* if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$d_Y(f(p), f(q)) < \varepsilon \tag{33}$$

for all p and q in X for which $d_X(p,q) < \delta$.

Theorem 30

Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous on X.

4.4 Continuity and Connectedness

Theorem 31

If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then f(E) is connected.

Theorem 32

(Intermediate Vaalue Theorem) Let f be a continuous real function on the interval [a, b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then there exists a point $x \in (a, b)$ such that f(x) = c.

4.5 Discontinuities

 If x is a point in the domain of definition of the function f at which f is not continuous, we say that f is discontinuous at x.

Definition 51

Let *f* be defined on (a, b). Consider any point *x* such that $a \le x < b$. We write f(x+) = q if $f(t_n) \to q$ as $n \to \infty$, for all sequences $\{t_n\}$ in (x, b) such that $t_n \to x$. To obtain the definition of f(x-), for $a < x \le b$, we restrict ourselves to sequences $\{t_n\}$ in (a, x).

• It is clear that any point x of (a, b), $\lim_{t \to x} f(t)$ exists if and only if

$$f(x+) = f(x-) = \lim_{t \to x} f(t).$$

Definition 52

Let *f* be defined on (a, b). If *f* is discontinuous at a point *x* and if f(x+) and f(x-) exist, then *f* is said to have a discontinuity of the first kind. Otherwise, it is of the second kind.

Prof. Erivelton (UFSJ)

4.6 Monotonic Functions

Definition 53

Let *f* be real on (a, b). Then *f* is said to be monotonically increasing on (a, b) if a < x < y < b implies $f(x) \le f(y)$.

Theorem 33

Let f be monotonically increasing on (a, b). Then f(x+) and f(x-) exist at every point of x of (a, b). More precisely

$$\sup_{a < t < x} f(t) = f(x-) \le f(x) \le f(x+) = \inf_{x < t < b} f(t).$$
(34)

Furthermore, if a < x < y < b, then

$$f(x+) \le f(x-). \tag{35}$$

4.7 Infinite Limits and Limits at Infinity

 For any real number x, we have already defined a neighborhood of x to be any segment (x - δ, x + δ).

Definition 54

For any real *c*, the set of real numbers *x* such that x > c is called a neighborhood of $+\infty$ and is written $(c, +\infty)$. Similarly, the set $(-\infty, c)$ is a neighborhood of $-\infty$.

Definition 55

Let f be a real function defined on E. We say that

$$f(t) \to A \text{ as } t \to x$$

where *A* and *x* are in the extended real number system, if for every neighborhood *U* of *A* there is a neighborhood *V* of *x* such that $V \cap E$ is not empty, and such that $f(t) \in U$ for all $t \in V \cap E$, $t \neq x$.

• Three important theorems.

Theorem 34

If f is continuous on [a, b] and f(a) < 0 < f(b), then there is some x in [a, b] such that f(x) = 0.

Theorem 35

If f is continuous on [a, b], then f is bounded above on [a, b], that is, there is some number N such that $f(x) \le N$ for all x in [a, b].

Theorem 36

If f is continuous on [a, b], then there is some number y in [a, b] such that $f(y) \ge f(x)$ for all x in [a, b].

4.8 The Derivative of a Real Function

Definition 56

Let *f* be defined (and real-valued) on [a, b]. For any $x \in [a, b]$ form the quotient

$$\phi(t) = \frac{f(t) - f(x)}{t - x} \quad (a < t < b, t \neq x),$$
(36)

and define

$$f'(\mathbf{x}) = \lim_{t \to \mathbf{x}} \phi(t), \tag{37}$$

provided this limit exists. f' is called the *derivative of f*.

Theorem 37

Let f be defined on [a, b]. If f is differentiable at a point $x \in [a, b]$, then f is continuous at x.

Suppose f and g are defined on [a, b] and are differentiable at point $x \in [a, b]$. Then f + g, fg abd f/g are differentiable at x, and

(a)
$$(f+g)'(x) = f'(x) + g'(x);$$

(b) $(fg)'(x) = f'(x)g(x) + f(x)g'(x);$
(c) $\left(\frac{f}{g}\right)' = \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}$ with $g(x) \neq 0.$

Theorem 5.1

Suppose f os continuous on [a, b], f'(x) exists at some point $x \in [a, b]$, g is defined on an interval I which contains the range of f, and g is diffrentiable at the point f(x). If h(t) = g(f(t)) and $(a \le t \le b)$, then h is differentiable at x, and

$$h'(x) = g'(f(x))f'(x).$$
 (38)

Example 7

Let f be defined by

$$f(x) = \begin{cases} x \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$
(39)

Applying the theorems, we have

$$f'(x) = \sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x} \quad (x \neq 0)$$
 (40)

At x = 0 there is no f'(x).

Definition 57

Let *f* be a real function defined on a metric space *X*. We say that *f* has a *local maximum* at a point $p \in X$ if there exists $\delta > 0$ such that $f(q) \leq f(p)$ for all $q \in X$ with $d(p,q) < \delta$.

Theorem 39

Let f be defined on [a, b]; if f has a local maximum at a point $x \in (a, b)$, and if f'(x) exists, then f'(x) = 0.

Theorem 40

If f is a real continuous function on [a, b] which is differentiable in (a, b), then there is a point $x \in (a, b)$ at which f(b) - f(a) = (b - a)f(x).

Theorem 41

Suppose f is a real differentiable function on [a, b] and suppose $f'(a) < \gamma < f'(b)$. Then there is a point $x \in (a, b)$ such that $f'(x) = \gamma$.

Suppose f and g are areal and differentiable in (a, b) and $g'(x) \neq 0$ for all $x \in (a, b)$, where $\infty \le < b \le +\infty$. Suppose

$$\frac{f'(x)}{g'(x)} \to A \quad as \quad x \to a. \tag{41}$$

lf

$$f(x) \rightarrow 0 \text{ and } g(x) \rightarrow 0 \text{ as } x \rightarrow a$$
 (42)

or if

 $g(x) \to +\infty \text{ as } x \to a,$ (43)

then

$$\frac{f(x)}{g(x)} \to A \text{ as } x \to a.$$
(44)

Definition 58

If *f* has a derivative f' on a interval, and if f' is itself differentiable, we denote the derivative of f' by f'' the second derivative of f'. Continuing in this manner, we obtain functions

$$f, f', f'', f^{(3)}, \ldots, f^{(n)},$$

each of wich is the derivative of the preceding one. $f^{(n)}$ us cakked tge *n*th derivative, or the derivative of order *n*, of *f*.

Suppose *f* is a real function on [*a*, *b*], *n* is a positive integer, $f^{(n-1)}$ is continuous on [*a*, *b*], $f^{(n)}(t)$ exists for every $t \in (a, b)$. Let α , β be distinct points of [*a*, *b*], and define

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)(\alpha)}}{k!} (t - \alpha)^k.$$
 (45)

Example 8

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
 for all x (46)

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \quad \text{for all } x \qquad (47)$$