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The real and complex number systems Introduction

1. The real and complex number systems
1.1 Introduction

A discussion of the main concepts of analysis (such as
convergence, continuity, differentiation, and integration) must be
based on an accurately defined number concept.
Number: An arithmetical value expressed by a word, symbol,or
figure, representing a particular quantity and used in counting and
making calculations. (Oxford Dictionary).
Let us see if we really know what a number is.
Think about this question:1

Is 0.999 . . . = 1? (1)

1Richman, F. (1999) Is 0.999 ... = 1? Mathematics Magazine. 72(5), 386–400.
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The real and complex number systems Introduction

The set N of natural numbers is defined by the Peano Axioms:
1 There is an injective function s : N→ N. The image s(n) of each

natural number n ∈ N is called successor of n.
2 There is an unique natural number 1 ∈ N such that 1 6= s(n) for all

n ∈ N.
3 If a subset X ⊂ N is such that 1 ∈ X and s(X ) ⊂ X (that is,

n ∈ X ⇒ s(n) ∈ X ) then X = N.
The set Z = {. . . ,−2,−1,0,1,2 . . .} of integers is a bijection
f : N→ Z such that f (n) = (n− 1)/2 when n is odd and f (n)− n/2
when n is even.
The set Q = {m/n; m,n ∈ Z,n 6= 0} of rational numbers may be
written as f : Z× Z∗ → Q such that Z∗ = Z− {0} and
f (m,n) = m/n.
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The real and complex number systems Introduction

The rational numbers are inadequate for many purposes, both as
a field and as an ordered set.
For instance, there is no rational p such that p2 = 2.
An irrational number is written as infinite decimal expansion.
The sequence 1, 1.4, 1.41, 1.414, 1.4142 . . . tends to

√
2.

What is it that this sequence tends to? What is an irrational
number?
This sort of question can be answered as soon as the so-called
“real number system” is constructed.
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The real and complex number systems Introduction

Example 1
We now show that the equation

p2 = 2 (2)

is not satisfied by any rational p. If there were such a p, we could write
p = m/n where m and n are integers that are not both even. Let us
assume this is done. Then (2) implies

m2 = 2n2. (3)

This shows that m2 is even. Hence m is even (if m were odd, m2 would
be odd), and so m2 is divisible by 4. It follows that the right side of (3)
is divisible by 4, so that n2 is even, which implies that n is even.
Thus the assumption that (2) holds thus leads to the conclusion that
both m and n are even, contrary to our choice of m and n. Hence (2) is
impossible for rational p.
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The real and complex number systems Introduction

Let us examine more closely the Example 1.
Let A be the set of all positive rationals p such that p2 < 2 and let
B consist of all positive rationals p such that p2 > 2.
We shall show that A contains no largest number and B contains
no smallest.
In other words, for every p ∈ A we can find a rational q ∈ A such
that p < q, and for every p ∈ B we can find a rational q ∈ B such
that q < p.
Let each rational p > 0 be associated to the number

q = p − p2 − 2
p + 2

=
2p + 2
p + 2

. (4)

and

q2 =
(2p + 2)2

(p + 2)2 . (5)
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The real and complex number systems Introduction

Let us rewrite

q = p − p2 − 2
p + 2

(6)

Let us subtract 2 from both sides of (6)

q2 − 2 =
(2p + 2)2

(p + 2)2 −
2(p + 2)2

(p + 2)2

q2 − 2 =
(4p2 + 8p + 4)− (2p2 + 8p + 8)

(p + 2)2

q2 − 2 =
2(p2 − 2)

(p + 2)2 . (7)

If p ∈ A then p2 − 2 < 0, (6) shows that q > p, and (7) shows that
q2 < 2. Thus q ∈ A.
If p ∈ B then p2 − 2 > 0, (6) shows that 0 < q < p, and (7) shows
that q2 > 2. Thus q ∈ B.
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The real and complex number systems Introduction

In this slide we show two ways to approach
√

2.
Newton’s method

√
2 = lim

n→∞
xn+1 =

xn

2
+

1
xn

(8)

which produces the sequence for x0 = 1

Table 1: Sequence of xn of (8)

n xn (fraction) xn (decimal)
0 1 1

1
3
2

1.5

2
17
12

1.416̄

3
577
408

1.4142 . . .
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The real and complex number systems Introduction

Now let us consider the continued fraction given by

√
2 = 1 +

1

2 +
1

2 +
1

2 +
. . .

(9)

represented by [1; 2,2,2, . . .], which produces the following
sequence

Table 2: Sequence of xn of (9)

n xn (fraction) xn (decimal)
0 1 1
1 3/2 1.5
2 7/5 1.4

3 17/12 1.416̄ . . .
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The real and complex number systems Introduction

Remark 1
The rational number system has certain gaps, in spite the fact that
between any two rational there is another: if r < s then r < (r + s)/2
< s. The real number system fill these gaps.

Definition 1
If A is any set, we write x ∈ A to indicate that x is a member of A. If x
is not a member of A, we write: x /∈ A.

Definition 2
The set which contains no element will be called the empty set. If a set
has at least one element, it is called nonempty.

Definition 3
If every element of A is an element of B, we say that A is a subset of B.
and write A ⊂ B, or B ⊃ A. If, in addition, there is an element of B
which is not in A, then A is said to be a proper subset of B.

Prof. Erivelton (UFSJ) Computer Arithmetic August 16, 2018 17 / 92



The real and complex number systems Ordered Sets

1.2 Ordered Sets

Definition 4
Let S be a set. An order on S is a relation, denote by <, with the
following two properties:

1 If x ∈ S and y ∈ S then one and only one of the statements

x < y , x = y , y < x

is true.
2 If x , y , z ∈ S, if x < y and y < z, then x < z.

The notation x ≤ y indicates that x < y or x = y , without
specifying which of these two is to hold.

Definition 5
An ordered set is a set S in which an order is defined.
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The real and complex number systems Ordered Sets

Definition 6
Suppose S is an ordered set, and E ⊂ S. If there exists a β ∈ S such
that x ≤ β for every x ∈ E , we say that E is bounded above, and call β
an upper bound of E . Lower bound are defined in the same way (with
≥ in place of ≤).

Definition 7

Suppose S is an ordered set, E ⊂ S, and E is bounded above.
Suppose there exists an α ∈ S with the following properties:

1 α is an upper bound of E .
2 If γ < α then γ is not an upper bound of E .

Then α is called the least upper bound of E or the supremum of E , and
we write

α = sup E .
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The real and complex number systems Ordered Sets

Definition 8
The greatest lower bound, or infimum, of a set E which is bounded
below is defined in the same manner of Definition 7: The statement

α = inf E .

means that α is a lower bound of E and that no β with β > α is a lower
bound of E .

Example 2
If α = sup E exists, then α may or may not be a member of E . For
instance, let E1 be the set of all r ∈ Q with r < 0. Let E2 be the set of of
all r ∈ Q with r ≤ 0. Then

sup E1 = sup E2 = 0,

and 0 /∈ E1, 0 in E2.
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The real and complex number systems Ordered Sets

Definition 9
An ordered set S is said to have the least-upper-bound property if the
following is true: If E ⊂ S, E is not empty, and E is bounded above,
then sup E exists inS.

Theorem 1

Suppose S is an ordered set with the least-upper-bound property,
B ⊂ S, B is not empty, and B is bounded below. Let L be the set of all
lower bounds of B. Then

α = sup L

exists in S and α = inf B.
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The real and complex number systems Fields

1.3 Fields
Definition 10
A field is a set F with two operations, called addition and multiplication,
which satisfy the following so-called “field axioms” (A), (M) and (D):

(A) Axioms for addition
(A1) If x ∈ F and y ∈ F , then their sum x + y is in F .
(A2) Addition is commutative: x + y = y + x for all x , y ∈ F .
(A3) Addition is associative: (x + y) + z = x + (y + z) for all

x , y , z ∈ F .
(A4) F contains an element 0 such that 0 + x = x for every

x ∈ F .
(A5) To every x ∈ F corresponds an element −x ∈ F such that

x + (−x) = 0.
(M) Axioms for multiplication

(M1) If x ∈ F and y ∈ F , then their product xy is in F .
(M2) Multiplication is commutative: xy = yx for all x , y ∈ F .
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The real and complex number systems Fields

(M3) Multiplicative is associative: (xy)z = x(yz) for all
x , y , z ∈ F .

(M4) F contains an element 1 6= 0 such that 1x = x for every
x ∈ F .

(M5) If x ∈ F and x 6= 0 then there exists an element 1/x ∈ F
such that

x · (1/x) = 1.

(D) The distributive law

x(y + z) = xy + xz

holds for all x , y , z ∈ F .

Definition 11
An ordered field is a field F which is also an ordered set, such that

1 x + y < x + z if x , y , z ∈ F and y < z.
2 xy > 0 if x ∈ F , y ∈ F , x > 0, and y > 0.
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The real and complex number systems The real field

1.4 The real field

Theorem 2

There exists an ordered field R which has the least-upper-bound
property. Moreover, R contains Q as a subfield.

-2 -1 0 1 2 3 4

1/2 πe√2

Figure 1: Real Line

Theorem 3

(a) If x ∈ R, and x > 0, then there is a positive integer n such
that nx > y.

(b) If x ∈ R, and x < y, then there exists a p ∈ Q such that
x < p < y .
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The real and complex number systems The real field

Theorem 4

For every real x > 0 and every integer n > 0 there is one and only one
real y such that yn = x .

Proof of Theorem 4:

That there is at most one such y is clear, since 0 < y1 < y2,
implies yn

1 < yn
2 .

Let E be the set consisting of all positive real numbers t such that
tn < x .
If t = x/(1 + x) then 0 < t < 1. Hence tn < t < x . Thus t ∈ E , and
E is not empty. Thus 1 + x is an upper bound of E .
If t > 1 + x then tn > t > x , so that t /∈ E . Thus 1 + x is an upper
bound of E and there is y = sup E .
To prove that yn = x we will show that each of the inequalities
yn < x and yn > x leads to contradiction.
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The real and complex number systems The real field

The identity bn − an = (b − a)(bn−1 + bn−2a + · · · an−1) yields the
inequality

bn − an < (b − a)nbn−1

when 0 < a < b.
Assume yn < x . Choose h so that 0 < h < 1 and

h <
x − yn

n(y + 1)n−1 .

Put a = y , b = y + h. Then

(y + h)n − yn < hn(y + h)n−1 < hn(y + 1)n−1 < x − yn.

Thus (y + h)n < x , and y + h ∈ E . Since y + h > y , this
contradicts the fact that y is an upper bound of E .
Assume yn > x . Put

k =
yn − x
nyn−1 .

Then 0 < k < y . If t ≥ y − k , we conclude that

yn − tn ≥ yn − (y − k)n < knyn−1 = yn − x .
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The real and complex number systems The real field

Thus tn > x , and t /∈ E . It follows that y − k is an upper bound of
E . But y − k < y , which contradicts the fact that y is the least
upper bound of E .
Hence yn = x , and the proof is complete.
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The real and complex number systems The real field

Definition 12
Let x > 0 be real. Let no be the largest integer such that n0 ≤ x .
Having chosen n0,n1, . . . ,nk−1, let nk be the largest integer such that

n0 +
n1

10
+ · · ·+ nk

10k ≤ x .

Let E be the set of these numbers

n0 +
n1

10
+ · · ·+ nk

10k (k = 0,1,2, . . .). (10)

Then x = sup E . The decimal expansion of x is

n0 · n1n2n3 · · · . (11)

Prof. Erivelton (UFSJ) Computer Arithmetic August 16, 2018 28 / 92



The real and complex number systems The extended real number system

1.5 The extended real number system

Definition 13

The extended real number system consists of the real field R and two
symbols: +∞ and −∞. We preserve the original order in R, and define

−∞ < x < +∞

for every x ∈ R. A symbol for the extended real number system is R̄.

+∞ is an upper bound of every subset of the extended real
number system, and that every nonempty subset has a least
upper bound.
The same remarks apply to lower bounds.
The extended real number system does not form a field.
It is customary to make the following conventions:

(a) If x is real then
x +∞ =∞, x −∞ = −∞, x

+∞ = x
−∞ = 0.

(b) If x > 0 then x · (+∞) = +∞, x · (−∞) = −∞.
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The real and complex number systems The complex field

1.6 The complex field
(c) If x < 0 then x · (+∞) = −∞, x · (−∞) = +∞.

Definition 14
A complex number is an ordered pair (a,b) of real numbers. Let
x = (a,b), y = (c,d) be two complex numbers. We define

x + y = (a + c,b + d),

xy = (ac − bd ,ad + bc).

i = (0,1).

i2 = −1.
If a and b are real, then (a,b) = a + bi .
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The real and complex number systems Euclidean Space

1.7 Euclidean Space

Definition 15
For each positive integer k , let Rk be the set of all ordered k -tuples

x = (x1, x2, . . . , xk ),

where x1, . . . , xk are real numbers called the coordinates of x.

Addition of vectors: x + y = (x1 + y1, . . . , xk + yk ).
Multiplication of a vector by a real number (scalar):
αx = (αx1, . . . , αxk ).

Inner product: x · y =
∑k

i=1 xiyi .

Norm: |x | = (x · x)1/2 =
(∑k

1 x2
i

)1/2
.

The structure now defined (the vector space Rk with the above
product and norm) is called Euclidean k -space.
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The real and complex number systems Euclidean Space

Theorem 5

Suppose x,y, z ∈ Rk and α is real. Then
1 |x| ≥ 0;

2 |x| = 0 if and only if |x = 0|;
3 |αx| = |α||x|;
4 |x · y| ≤ |x||y|;
5 |x + y| ≤ |x|+ |y|;
6 |x− z| ≤ |x− y|+ |x− z|.

Items 1,2 and 6 of Theorem 5 will allow us to regard Rk as a
metric space.
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The real and complex number systems Euclidean Space

Exercises Chapter 1

(1) Let the sequence of numbers 1/n where n ∈ N. Does this
sequence have an infimum? If it has, what is it? Explain
your result and show if it is necessary any other condition.

(2) Comment the assumption: Every irrational number is the
limit of monotonic increasing sequence of rational
numbers (Ferrar, 1938, p.20).

(3) Prove Theorem 1.
(4) Prove the following statements

a) If x + y = x + z then y = z.
b) If x + y = x then y = 0.
c) If x + y = 0 then y = −x .
d) −(−x) = x .
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The real and complex number systems Euclidean Space

(5) Prove the following statements
a) If x > 0 then −x < 0, and vice versa.
b) If x > 0 and y < z then xy < xz.
c) If x < 0 and y < z then xy > xz.
d) If x 6= 0 then x2 > 0.
e) If 0 < x < y then 0 < 1/y < 1/x .

(6) Prove the Theorem 2. (Optional)
(7) Prove the Theorem 3.
(8) Write addition, multiplication and distribution law in the

same manner of Definition 22 for the complex field.
(9) What is the difference between R and R̄?

(10) Prove the reverse triangle inequality: ||a| − |b|| ≤ |a− b|.
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Basic Topology Finite, Countable, and Uncountable Sets

2. Basic Topology
2.1 Finite, Countable, and Uncountable Sets

Definition 16
Consider two sets A and B , whose elements may be any objects
whatsoever, and suppose that with each element x of A there is
associated, in some manner, an element of B, which we denote by
f (x). Then f is said to be a function from A to B (or a mapping of A into
B). The set A is called the domain of f (we also say f is defined on A),
and the elements of f (x) are called the values of f . The set of all
values of f is called the range of f .

Definition 17
Let A and B be two sets and let f be a mapping of A into B. If
E ⊂ A, f (E) is defined to be the set of all elements f (x), for x ∈ E . We
call f (E) the image of E under f . In this notation, f (A) is the range of f .
It is clear that f (A) ⊂ B. If f (A) = B, we say that f maps A onto B.
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Basic Topology Finite, Countable, and Uncountable Sets

Definition 18
If E ⊂ B, f−1 denotes the set of all x ∈ A such that f (x) ∈ E . We call
f−1(E) the inverse image of E under f .

f is a 1-1 mapping of A into B provided that f (x1) 6= f (x2)
whenever x1 6= x2, x1 ∈ A, x2 ∈ A.

Definition 19
If there exists a 1-1 mapping of A onto B, we say that A and B, can be
put in 1-1 correspondence, or that A and B have the same cardinal
number, or A and B are equivalent, and we write A ∼ B.

Properties of equivalence
I It is reflexive: A ∼ A.
I It is symmetric: If A ∼ B, then B ∼ A.
I It is transitive: If A ∼ B and B ∼ C, then A ∼ C.
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Basic Topology Finite, Countable, and Uncountable Sets

Definition 20
Let n ∈ N and Jn be the set whose elements are the integers
1,2, . . . ,n; let J be the set consisting of all positive integers. For any
set A, we say:

(a) A is finite if A ∼ Jn for some n.
(b) A is infinite if A is not finite.
(c) A is countable if A ∼ J.
(d) A is uncountable if A is neither finite nor countable.
(e) A is at most countable if A is finite or countable.

Remark 2
A is infinite if A is equivalent to one of its proper subsets.
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Basic Topology Finite, Countable, and Uncountable Sets

Definition 21
By a sequence, we mean a function f defined on the set J of all
positive integers. If f (n) = xn, for n ∈ J, it is customary to denote the
sequence f by the symbol {xn}, or sometimes x1, x2, x3, . . . . The
values of f are called terms of the sequence. If A is a set and if xn ∈ A
for all n ∈ J, then {xn} is said to be a sequence in A, or a sequence of
elements of A.

Every infinite subset of a countable set A is countable.
Countable sets represent the “smallest infinity.

Definition 22
Let A and Ω be sets, and suppose that with each element of α of A is
associated a subset of Ω which denote by Eα. A collection of sets is
denoted by {Eα}.
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Basic Topology Finite, Countable, and Uncountable Sets

Definition 23
The union of the sets Eα is defined to be the set S such that x ∈ S if
and only if x ∈ Eα for at least one α ∈ A. It is denoted by

S =
⋃
α∈A

Eα. (12)

If A consists of the integers 1,2, . . . ,n, one usually writes

S =
n⋃

m=1

Em = E1 ∪ E2 ∪ · · · ∪ En. (13)

If A is the set of all positive integers, the usual notations is

S =
∞⋃

m=1

Em. (14)

The symbol∞ indicates that the union of a countable collection of
sets is taken. It should not be confused with symbols +∞ and −∞
introduced in Definition 13.
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Basic Topology Finite, Countable, and Uncountable Sets

Definition 24
The intersection of the sets Eα is defined to be the set P such that
x ∈ P if and only if x ∈ Eα for every α ∈ A. It is denoted by

P =
⋂
α∈A

Eα. (15)

P is also written such as

P =
n⋂

m=1

= E1 ∩ E2 ∩ · · ·En. (16)

If A is the set of all positive integers, we have

P =
∞⋂

m=1

Em. (17)
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Basic Topology Finite, Countable, and Uncountable Sets

Theorem 6

Let {En},n = 1,2,3, . . . , be a sequence of countable sets, and put

S =
∞⋃

n=1

En. (18)

Then S is countable.

The set of all rational numbers is countable.
The set of all real numbers is uncountable.
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Basic Topology Metric Spaces

2.2 Metric Spaces

Definition 25
A set X , whose elements we shall call points, is said to be a metric
space if with any two points p and q of X there is associated a real
number d(p,q) the distance from p to q, such that

(a) d(p,q) > 0 if p 6= q; d(p,p) = 0.
(b) d(p,q) = d(q,p);

(c) d(p,q) ≤ d(p, r) + d(r ,q), for any r ∈ X .

Definition 26
By the segment (a,b) we mean the set of all real numbers x such that
a < x < b.

Definition 27
By the interval [a,b] we mean the set of all real number x such that
a ≤ x ≤ b.
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Basic Topology Metric Spaces

Definition 28
If x ∈ Rk and r > 0, the open (or closed) ball B with center at x and
radius r is defined to be the set of all y ∈ Rk such that |y− x| < r (or
|y− x| ≤ r ).

Definition 29
We call a set E ⊂ Rk convex if (λx + (1− λ)y) ∈ E whenever x ∈ E ,
y ∈ E and 0 < λ < 1.

Example 3
Balls are convex. For if |y− x| < r , |z− x| < r , and 0 < λ < 1, we have

|λy + (1− λ)z− x| = |λ(y− x) + (1− λ)(z− x)|
≤ λ|y− x|+ (1− λ)|z− x| < λr + (1− λ)r
= r .
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Basic Topology Metric Spaces

Definition 30
Let X be a metric space. All points and sets are elements and subsets
of X .

(a) A neighbourhood of a point p is a set Nr (p) consisting of
all points q such that d(p,q) < r .

(b) A point p is a limit point of the set E if every
neighbourhood of p contains a point q 6= p such that
q ∈ E .

(c) If p ∈ E and p is not a limit point of E , then p is called an
isolated point of E .

(d) E is closed is very limit point of E is a point of E .
(e) A point p is an interior point of E if there is a

neighbourhood N of p such that N ⊂ E .
(f) E is open is every point of E is an interior point of E .

(g) The complement of E (denoted by Ec) is the set of all
points p ∈ X such that p /∈ E .
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Definition 30
(h) E is perfect if E is closed and if every point of E is a limit

point of E .
(i) E is bounded if there is a real number M and a point

q ∈ X such that d(p,q) < M for all p ∈ E .
(j) E is dense in X if every point of X is a limit point of E , or a

point of E (or both).

If p is a limit point of a set E , then every neighbourhood of p
contains infinitely many points of E .
A set E is open if and only if its complement is closed.

Definition 31
If X is a metric space, if E ⊂ X , and if E ′ denotes the set of all limit
points of E in X , then the closure of E is the set Ē = E ∪ E ′.
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Theorem 7
If X is a metric space and E ⊂ X , then

(a) Ē is closed.
(b) E = Ē if and only if E is closed.
(c) E ⊂ F for every closed set F ⊂ X such that E ⊂ F .

Theorem 8
Let E be a nonempty set of real numbers which is bounded above. Let
y = sup E . Then y ∈ Ē . Hence y ∈ E if E is closed.
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2.3 Compact Sets

Definition 32
By an open cover of a set E in a metric space X we mean a collection
{Gα} of open subsets of X such that E ⊂

⋃
α Gα.

Definition 33
A subset K of a metric space X is said to be compact if every open
cover of K contains a finite subcover.

Definition 34
A set X ⊂ R is compact if X is closed and boundeda.

aLima, E. L. (2006) Análise Real v. 1.. RJ: IMPA, 2006.

Definition 35
If {Kn} is a sequence of nonempty compact sets such that
Kn ⊃ Kn+1 (n = 1,2,3 . . .),, then

⋂∞
1 Kn is not empty.
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Definition 36
If {In} is a sequence of intervals in R1, such that
In ⊃ In+1 (n = 1,2,3 . . .),, then

⋂∞
1 In is not empty.

Theorem 9
If a set E in Rk has one of the following three properties, then it has
the other two:

1 E is closed and bounded.
2 E is compact.
3 Every infinite subset of E has a limit point in E .

Theorem 10
(Weierstrass) Every bounded subset of Rk has a limit point in Rk .
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2.4 Perfect Sets

Theorem 11
Let P be a nonempty perfect set in Rk . Then P is uncountable.

Every interval [a,b](a < b) is uncountable. In particular, the set of
all real numbers in uncountable.
The Cantor ternary set is created by repeatedly deleting the open
middle thirds of a set of line segments. One starts by deleting the
open middle third (1/3,2/3) from the interval [0,1], leaving two
line segments: [0,1/3] ∪ [2/3,1] . Next, the open middle third of
each of these remaining segments is deleted, leaving four line
segments: [0,1/9] ∪ [2/9,1/3] ∪ [2/3,7/9] ∪ [8/9,1] . This
process is continued ad infinitum, where the nth set is

Cn =
Cn−1

3
∪
(

2
3

+
Cn−1

3

)
.C0 = [0,1].
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The first six steps of this process are illustrated in Figure 50.

Figure 2: Cantor Set. Source: Wikipedia.
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2.5 Connected Sets

Definition 37
Two subsets A and B of a metric space X are said to be separated if
both A ∩ B̄ and Ā ∩ B are empty, i.e., if no point of A lies in the closure
of B and no point of B lies in the closure of A.
A set E ⊂ X is said to be connected if E is not a union of two
nonempty separated sets.

Theorem 12
A subset E of the real line R1 is connected if and only if it has the
following property: If x ∈ E, y ∈ E , and x < z < y , then z ∈ E .
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Exercises Chapter 2

(1) Let A be the set of real numbers x such that 0 < x ≤ 1.
For every x ∈ A, be the set of real numbers y , such that
0 < y < x . Complete the following statements

(a) Ex ⊂ Ez if and only if 0 < x ≤ z ≤ 1.
(b)

⋃
x∈A Ex = E1.

(c)
⋂

x∈A Ex is empty.
(2) Prove Theorem 6. Hint: put the elements of En in a matrix

and count the diagonals.
(3) Prove that the set of all real numbers is uncountable.
(4) The most important examples of metric spaces are

euclidean spaces Rk . Show that a Euclidean space is a
metric space.
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(5) For x ∈ R1 and y ∈ R1, define

d1(x , y) = (x − y)2,

d2(x , y) =
√
|x − y |,

d3(x , y) = |x2 − y2|,
d4(x , y) = |x − 2y |,

d5(x , y) =
|x − y |

1 + |x − y |
.

Determine for each of these, whether it is a metric or not.
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Work 1
To find the square root of a positive number a, we start with some
approximation, x0 > 0 and then recursively define:

xn+1 =
1
2

(
xn +

a
xn

)
. (19)

Compute the square root using (19) for
(a) a = 2;

(b) a = 2× 10−300

(c) a = 2× 10−310

(d) a = 2× 10−322

(e) a = 2× 10−324

Check your results by xn × xn, after defining a suitable stop criteria for
n.
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3. Numerical Sequences and Series
3.1 Convergent Sequences

Definition 38
A sequence {pn} in a metric space X is said to converge if there is
point p ∈ X with the following property: For every ε > 0 there is an
integer N such that n ≥ N implies that d(pn,p) < ε. In this case we
also say that pn converges to p, or that p is the limit of {pn}, and we
write pn → p, or

lim
n→∞

pn = p.

If {pn} does not converge, it is said to diverge.
It might be well to point out that our definition of convergent
sequence depends not only on {pn} but also on X .
It is more precise to say convergent in X .
The set of all points pn (n = 1,2,3, . . .) is the range of {pn}.
The sequence {pn} is said to be bounded if its range is bounded.
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Example 4
Let s ∈ R. If sn = 1/n, then

lim
n→∞

sn = 0.

The range is infinite, and the sequence is bounded.

Example 5

Let s ∈ R. If sn = n2, the sequence {sn} is unbounded, is divergent,
and has infinite range.

Example 6
Let s ∈ R. If sn = 1 (n = 1,2,3, . . .), then the sequence {sn}
converges to 1, is bounded, and has finite range.
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Theorem 13
Let {pn} be a sequence in a metric space X .

(a) {pn} converges to p ∈ X if and only if every
neighbourhood of p contains all but finitely many of the
terms of {pn}.

(b) If p ∈ X , p′ ∈ X , and if {pn} converges to p and to p′ ,
then p′ = p.

(c) If {pn} converges, then {pn} is bounded.
(d) If E ⊂ X and if p is a limit point of E, then there is a

sequence {pn} in E such that p = lim
n→∞

pn.
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Theorem 14
Suppose {sn}, {tn} are complex sequences, and limn→∞sn = s and
limn→∞tn = t . Then

(a) lim
n→∞

(sn + tn) = s + t ;

(b) lim
n→∞

csn = cs, lim
n→∞

(c + sn) = c + s, for any number c;

(c) lim
n→∞

(sntn) = st ;

(d) lim
n→∞

1
sn

=
1
s

;

3.2 Subsequences

Definition 39
Given a sequence {pn}, consider a sequence {nk} of positive integers,
such that n1 < n2 < n3 < · · · . Then the sequence {pni} is called a
subsequence of {pn}. If {pni}, its limit is called a subsequential limit of
{pn}. It is clear that {pn} converges to p if and only if every
subsequence of {pn} converges to p.
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Theorem 15
(a) If {pn} is a sequence in a compact metric space X , then

some subsequence of {pn} converges to a point of X .
(b) Every bounded sequence in Rk contains a convergent

subsequence.

Theorem 16
The subsequential limits of a sequence {pn} in a metric spaceX form a
closed subset of X .
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3.3 Cauchy Sequence

Definition 40
A sequence {pn} is a metric space X is said to be a Cauchy sequence
if for every ε > 0 there is an integer N such that d(pn,pm) < ε if n ≥ N
and m ≥ N.

Figure 3: Augustin-Louis Cauchy (1789-1857), French mathematician who
was an early pioneer of analysis. Source: Wikipedia.
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Definition 41
Let E be a subset of a metric space X , and let S be the set of all real
number of the form d(p,q), with p ∈ E and q ∈ E . The sup of S is
called the diameter of E .

If {pn} is a sequence in X and if EN consists of the points
pN ,pN+1,pN+2, . . . , it is clear from the two preceding definitions
that {pn} is a Cauchy sequence if and only if

lim
N→∞

diam EN = 0.

Theorem 17
(a) If Ē is the closure of a set E in a metric space X , then

diam Ē = diam E .

(b) If Ka is a sequence of compact sets in X such that
Kn ⊃ Kn+1 (n = 1,2,3, . . .) and if

lim
n→∞

diam Kn = 0,

then ∩∞1 Ka consists of exactly one point.
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Theorem 18
(a) In any metric space X , every convergent sequence is a

Cauchy sequence.
(b) If X is a compact metric space and if {pn} is a Cauchy

sequence in X , then {pn} converges to some point X .
(c) In Rk , every Cauchy sequence converges.

A sequence converges in Rk if and only if it is a Cauchy sequence
is usually called the Cauchy criterion for convergence.

Definition 42
A sequence {sn} of real numbers is said to be

(a) monotonically increasing if sn ≤ sn+1 (n = 1,2,3, . . .);

(b) monotonically decreasing if sn ≥ sn+1 (n = 1,2,3, . . .);
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3.4 Upper and Lower Limits

Theorem 19
Suppose {sn} is monotonic. Then {sn} converges if and only if it is
bounded.

Definition 43

Let {sn} be a sequence of real numbers with the following property:
For every real M there is an integer N such that n ≥ N implies sn ≥ M.
We then write sn → +∞.

Definition 44

Let {sn} be a sequence of real numbers. Let E be the set of numbers
x ∈ R̄ such that snk → x for some subsequence {snk}. This set E
contains all subsequential limits plus possibly the numbers +∞ and
−∞. Let s∗ = sup E , and s∗ = inf E . These numbers are called upper
and lower limits of {sn}.
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We can also write Definition 44 as

lim
n→∞

sup sn = s∗, lim
n→∞

inf sn = s∗.

3.5 Some Special Sequences
If 0 ≤ xn ≤ sn for n ≥ N, where N is some fixed number, and if
sn → 0, then xn → 0. This property help us to compute the
following the limit of the following sequences:

(a) If p > 0, then lim
n→∞

1
np = 0.

(b) If p > 0, then lim
n→∞

n
√

p = 1.

(c) lim
n→∞

n
√

n = 1.

(d) If p > 0 and α is real, then lim
n→∞

nα

(1 + p)n = 0.

(e) If |x | < 1, then lim
n→∞

xn = 0.
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3.6 Series

Definition 45
Given a sequence {an}, we use the notation

q∑
n=p

an (p ≤ q)

to denote the sum ap + ap+1 + · · ·+ aq. With {an} we associate a
sequence {sn}, where sn =

∑n
k=1 ak . For {sn} we also use the

symbolic expression a1 + a2 + a3 + · · · or, more concisely,

∞∑
n=1

an. (20)

The symbol (33) we call an infinite series, or just a series.
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The numbers sn are called the partial sums of the series.
If {sn} converges to s, we say that the series converges, and we
write

∞∑
n=1

an = s. (21)

s is the limit of a sequence of sums, and is not obtained simply by
addition.
If {sn} diverges, the series is said to diverge.
Every theorem about sequences can be stated in terms of series
(putting a1 = s1, and an = sn − sn−1 for n > 1), and vice versa.
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The Cauchy criterion can be restated as the following Theorem.

Theorem 20∑
an converges if and only if for every ε > 0 there is an integer N such

that ∣∣∣∣∣
m∑

k=n

an

∣∣∣∣∣ ≤ ε (22)

if m ≥ n ≥ N.

Theorem 21
If
∑

an converges, then lim
n→∞

an = 0.

Theorem 22
A series of nonnegative terms converges if and only if its partial sums
form a bounded sequence.
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Comparison test
(a) If |an| ≤ cn for n ≥ N0, where N0 is some fixed

integer, and if
∑

cn converges, then
∑

an converges.
(b) If an ≥ dn ≥ 0 for n ≥ N0, and if

∑
dn diverges, then∑

an diverges.
Geometric series

I If 0 ≤ x < 1, then
∞∑

n=0

xn =
1

1− x
.

If x ≥ 1, the series diverges.
I Proof If x 6= 1, we have

sn =
n∑

k=0

xk = 1 + x + x2 + x3 · · ·+ xn. (23)

If we multiply (23) by x we have

xsn = x + x2 + x4 · · · xn+1. (24)

Applying (23)−(24) we have
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sn − xsn = 1− xn+1

sn(1− x) = 1− xn+1

sn =
1− xn+1

1− x
.

The result follows if we let n→∞.
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3.7 The Root and Ratio Tests

Theorem 23
(Root Test) Given

∑
an, put α = limn→∞ sup n

√
|an|. Then

(a) If α < 1,
∑

an converges;
(b) If α > 1,

∑
an diverges;

(c) If α = 1, the test gives no information.

Theorem 24
(Ratio Test) The series

∑
an

(a) converges if lim
n→∞

sup
∣∣∣∣an+1

an

∣∣∣∣ < 1,

(b) diverges if
∣∣∣an+1

an

∣∣∣ ≥ 1 for n ≥ n0, where n0 is some fixed
integer.

The ratio test is frequently easier to apply than the root test.
However, the root test has wider scope.
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Exercises Chapter 3

(1) Let s ∈ R. and sn = 1 + [(−1)n/n]. {sn} is bounded and
its range is finite? Which value {sn} converges to?

(2) Write a Definition for −∞ equivalent to Definition 43.
(3) Apply the root and ratio tests in the following series

(a) 1
2 + 1

3 + 1
22 + 1

32 + 1
23 + 1

33 + 1
24 + 1

34 + · · · ,
(b) 1

2 + 1 + 1
8 + 1

4 + 1
32 + 1

16 + 1
128 + 1

64 + · · · ,
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4. Continuity and Differentiation
4.1 Limits of Functions

Definition 46

Let X and Y be metric spaces: suppose E ⊂ X , f maps E into Y , and
p is a limit point of E . We write f (x)→ q as x → p, or

lim
x→p

f (x) = q (25)

if there is a point q ∈ Y with the following property: For every ε > 0
there exists a δ > 0 such that

dY (f (x),q) < ε (26)

for all points x ∈ E for which

0 < dX (x ,p) < δ. (27)

dX and dY refer to the distances in X and Y , respectively.
p ∈ X , but p need not be a point of E . Moreover, even if p ∈ E , we
may very well have f (p) 6= limx→p f (x).
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Alternative statement for Definition 46 based on (ε, δ) limit
definition given by Bernard Bolzano in 1817. Its modern version is
due to Karl Weierstrass 2

Definition 47
The function f approaches the limit L near c means: for every ε there is
some δ > 0 such that, for all x , if 0 < |x − c| < δ, then |f (x)− L| < ε.

f approaches L near c has the same meaning as the Equation (28)

lim
x→c

f (x) = L. (28)

2Addapted from Spivak, M. (1967) Calculus. Benjamin: New York.
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Figure 4: Whenever a point x is within δ of c, f (x) is within ε units of L.
Source: Wikipedia.
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Theorem 25
Let X ,Y ,E , f , and p be as in Definition 46. Then

lim
x→p

f (x) = q (29)

if and only if
lim

n→∞
f (pn) = q (30)

for every sequence {pn} in E such that

pn 6= p, lim
n→∞

pn = p. (31)
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Theorem 26
Suppose E ⊂ X, a metric space, p is a limit point of E , f and g are
complex functions on E , and

lim
x→p

f (x) = A, lim
x→p

g(x) = B.

Then
(a) lim

x→p
(f + g)(x) = A + B;

(b) lim
x→p

(fg)(x) = AB;

(c) lim
x→p

(
f
g

)
(x) =

A
B
, ifB 6= 0.
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4.2 Continuous Functions

Definition 48
Suppose X and Y are metric spaces, E ⊂ X ,p ∈ E , and f maps E into
Y . Then f is said to be continuous at p if for every ε > 0 there exists a
δ > 0 such that

dY (f (x), f (p)) < ε

for all points x ∈ E for which dX (x ,p) < δ.

If f is continuous at every point of E , then f is said to be
continuous on E .
f has to be defined at the point p in order to be continuous at p.
f is continous at p if and only if limx→p f (x) = f (p).
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Theorem 27

Suppose X ,Y ,Z are metric spaces, E ⊂ X , f maps E into Y , g maps
the range of f , f (E), into Z , and h is the mapping of E into Z defined by

h(x) = g(f (x)) (x ∈ E).

If f is continuous at a point p ∈ E and if g is continuous at the point
f (p), then h is continuous at p. The function h = f ◦ g is called the
composite of f and g.
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4.3 Continuity and Compactness

Definition 49
A mapping f of a set E into Rk is said to be bounded if there is a real
number M such that |f(x)| ≤ M for all x ∈ E .

Theorem 28
Suppose f is a continuous mapping of a compact metric space X into
a metric space Y . Then f (X ) is compact.

Theorem 29
Suppose f is a continuous real function on a compact metric space X,
and

M = sup
p∈X

f (p), m = inf
p∈X

f (p). (32)

Then there exist points p,q ∈ X such that f (p) = M and f (q) = m.
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The conclusion may also be stated as follows: There exist points p
and q in X such that f (q) ≤ f (x) ≤ f (p) for all x ∈ X ; that is, f
attains its maximum (at p) and its minimum (at q).

Definition 50
Let f be a mapping of a metric space X into a metric space Y . We say
that f is uniformly continuous on X if for every ε > 0 there exists δ > 0
such that

dY (f (p), f (q)) < ε (33)

for all p and q in X for which dX (p,q) < δ.

Theorem 30
Let f be a continuous mapping of a compact metric space X into a
metric space Y . Then f is uniformly continuous on X .
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4.4 Continuity and Connectedness

Theorem 31
If f is a continuous mapping of a metric space X into a metric space Y ,
and if E is a connected subset of X , then f (E) is connected.

Theorem 32
(Intermediate Vaalue Theorem) Let f be a continuous real function on
the interval [a,b]. If f (a) < f (b) and if c is a number such that
f (a) < c < f (b), then there exists a point x ∈ (a,b) such that f (x) = c.
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4.5 Discontinuities
If x is a point in the domain of definition of the function f at which f
is not continuous, we say that f is discontinuous at x .

Definition 51
Let f be defined on (a,b). Consider any point x such that a ≤ x < b.
We write f (x+) = q if f (tn)→ q as n→∞, for all sequences {tn} in
(x ,b) such that tn → x . To obtain the definition of f (x−), for a < x ≤ b,
we restrict ourselves to sequences {tn} in (a, x).

It is clear that any point x of (a,b), lim
t→x

f (t) exists if and only if

f (x+) = f (x−) = lim
t→x

f (t).

Definition 52
Let f be defined on (a,b). If f is discontinuous at a point x and if f (x+)
and f (x−) exist, then f is said to have a discontinuity of the first kind.
Otherwise, it is of the second kind.
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4.6 Monotonic Functions

Definition 53
Let f be real on (a,b). Then f is said to be monotonically increasing on
(a,b) if a < x < y < b implies f (x) ≤ f (y).

Theorem 33
Let f be monotonically increasing on (a,b). Then f (x+) and f (x−)
exist at every point of x of (a,b). More precisely

sup
a<t<x

f (t) = f (x−) ≤ f (x) ≤ f (x+) = inf
x<t<b

f (t). (34)

Furthermore, if a < x < y < b, then

f (x+) ≤ f (x−). (35)
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4.7 Infinite Limits and Limits at Infinity
For any real number x , we have already defined a neighborhood
of x to be any segment (x − δ, x + δ).

Definition 54
For any real c, the set of real numbers x such that x > c is called a
neighborhood of +∞ and is written (c,+∞). Similarly, the set (−∞, c)
is a neighborhood of −∞.

Definition 55
Let f be a real function defined on E . We say that

f (t)→ A as t → x

where A and x are in the extended real number system, if for every
neighborhood U of A there is a neighborhood V of x such that V ∩ E is
not empty, and such that f (t) ∈ U for all t ∈ V ∩ E , t 6= x .
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Continuity and Differentiation Infinite Limits and Limits at Infinity

Three important theorems.

Theorem 34
If f is continuous on [a,b] and f (a) < 0 < f (b), then there is some x in
[a,b] such that f (x) = 0.

Theorem 35
If f is continuous on [a,b], then f is bounded above on [a,b], that is,
there is some number N such that f (x) ≤ N for all x in [a,b].

Theorem 36
If f is continuous on [a,b], then there is some number y in [a,b] such
that f (y) ≥ f (x) for all x in [a,b].
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Differentiation The Derivative of a Real Function

4.8 The Derivative of a Real Function

Definition 56
Let f be defined (and real-valued) on [a,b]. For any x ∈ [a,b] form the
quotient

φ(t) =
f (t)− f (x)

t − x
(a < t < b, t 6= x), (36)

and define
f ′(x) = lim

t→x
φ(t), (37)

provided this limit exists. f ′ is called the derivative of f .

Theorem 37
Let f be defined on [a,b]. If f is differentiable at a point x ∈ [a,b], then
f is continuous at x.

Prof. Erivelton (UFSJ) Computer Arithmetic August 16, 2018 86 / 92



Differentiation The Derivative of a Real Function

Theorem 38
Suppose f and g are defined on [a,b] and are differentiable at point
x ∈ [a,b]. Then f + g, fg abd f/g are differentiable at x, and

(a) (f + g)′(x) = f ′(x) + g′(x);
(b) (fg)′(x) = f ′(x)g(x) + f (x)g′(x);

(c)
(

f
g

)′
=

g(x)f ′(x)− g′(x)f (x)

g2(x)
withg(x) 6= 0.

Theorem 5.1
Suppose f os continuous on [a,b], f ′(x) exists at some point x ∈ [a,b],
g is defined on an interval I which contains the range of f , and g is
diffrentiable at the point f (x). If h(t) = g(f (t)) and (a ≤ t ≤ b), then h
is differentiable at x, and

h′(x) = g′(f (x))f ′(x). (38)
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Differentiation The Derivative of a Real Function

Example 7
Let f be defined by

f (x) =

 x sin
1
x

(x 6= 0)

0 (x = 0)
(39)

Applying the theorems, we have

f ′(x) = sin
1
x
− 1

x
cos

1
x

(x 6= 0) (40)

At x = 0 there is no f ′(x).

Prof. Erivelton (UFSJ) Computer Arithmetic August 16, 2018 88 / 92



Differentiation Mean Value Theorems

Definition 57
Let f be a real function defined on a metric space X . We say that f has
a local maximum at a point p ∈ X if there exists δ > 0 such that
f (q) ≤ f (p) for all q ∈ X with d(p,q) < δ.

Theorem 39
Let f be defined on [a,b]; if f has a local maximum at a point x ∈ (a,b),
and if f ′(x) exists, then f ′(x) = 0.

Theorem 40
If f is a real continuous function on [a,b] which is differentiable in (a,b),
then there is a point x ∈ (a,b) at which f (b)− f (a) = (b − a)f (x).

Theorem 41
Suppose f is a real differentiable function on [a,b] and suppose
f ′(a) < γ < f ′(b). Then there is a point x ∈ (a,b) such that f ′(x) = γ.
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Differentiation L’Hospital’s Rule

Theorem 42
Suppose f and g are areal and differentiable in (a,b) and g′(x) 6= 0 for
all x ∈ (a,b), where∞ ≤ < b ≤ +∞. Suppose

f ′(x)

g′(x)
→ A as x → a. (41)

If
f (x)→ 0 and g(x)→ 0 as x → a (42)

or if
g(x)→ +∞ as x → a, (43)

then
f (x)

g(x)
→ A as x → a. (44)
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Differentiation Derivatives of Higher Order

Definition 58
If f has a derivative f ′ on a interval, and if f ′ is itself differentiable, we
denote the derivative of f ′ by f ′′ the second derivative of f ′. Continuing
in this manner, we obtain functions

f , f ′, f ′′, f (3), . . . , f (n),

each of wich is the derivative of the preceding one. f (n) us cakked tge
nth derivative, or the derivative of order n, of f .
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Differentiation Taylor’s Theorem

Theorem 43
Suppose f is a real function on [a,b], n is a positive integer, f (n−1) is
continuous on [a,b], f (n)(t) exists for every t ∈ (a,b). Let α, β be
distinct points of [a,b], and define

P(t) =
n−1∑
k=0

f (k)(α)

k !
(t − α)k . (45)

Example 8

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · for all x (46)

sin x =
∞∑

n=0

(−1)n

(2n + 1)!
x2n+1 = x − x3

3!
+

x5

5!
− · · · for all x (47)
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