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Il Addition/Subtraction

Review addition schemes and various speedup methods
o Addition is a key op (in itself, and as a building block)
e Subtraction = negation + addition
o Carry propagation speedup: lookahead, skip, select, ...
e Two-operand versus multioperand addition

Topics in This Part

Chapter 5 Basic Addition and Counting
Chapter 6 Carry-Lookahead Adders
Chapter 7 Variations in Fast Adder
Chapter 8 Multioperand Addition
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— KNOCK T OFE! Yo KNOW «
| I CERVECTLY WELL THAT'S \:
| A PLOS SIGN .. :

“You can’t add apples
and oranges, son; only the
government can do that.”
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5 Basic Addition and Counting

Chapter Goals

Study the design of ripple-carry adders,
discuss why their latency Is unacceptable,
and set the foundation for faster adders

Chapter Highlights

Full adders are versatile building blocks
Longest carry chain on average: log,k bits
Fast asynchronous adders are simple
Counting is relatively easy to speed up
Key part of a fast adder Is its carry network
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Basic Addition and Counting: Topics

Topics in This Chapter

5.1 Bit-Serial and Ripple-Carry Adders

5.2 Conditions and Exceptions

5.3 Analysis of Carry Propagation

5.4 Carry Completion Detection

5.5 Addition of a Constant

5.6 Manchester Carry Chains and Adders
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5.1 Bit-Serial and Ripple-Carry Adders
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Inputs Outputs
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1 0 0 1
1 1 1 0

Inputs Outputs
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0 1 0 1
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1 1 1 0

0 0 0 1

0 1 1 0
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Full-adder (FA): Truth table and block diagram
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Half-Adder Implementations
— X c X
C— y WCC y
&, "
S r Y S y
(a) AND/XOR half-adder. (b) NOR-gate half-adder.
CH =1
L} :10C
S |7 - —Yy

(c) NAND-gate half-adder with complemented carry.

C

Fig. 5.1 Three implementations of a half-adder.
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Full-Adder Implementations
Jy X y X
Cout T HA {
] Cout < E ( .
HA G — ﬁn
|
S

(a) Built of half-adders.

Yy X

—(_
- Y'Y @{Cw
e

ﬁ( b
0<]—'O<ﬁ (b) Built as an AND-OR circuit.

Fig. 5.2 Possible designs for a full-adder
_ . In terms of half-adders, logic gates, and
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Full-Adder Implementations

«—X ——e—X
C w [0 plme
o \
HA <—C|n out
- ®
S l _C ®
(@) FA built of two HAs
’ ' .
y
o0 Oj« | - »
Cout | 2 2 > ®
31 3 |
Cin
Cin ;
. /
(b) CMOS mux-based FA (c) Two-level AND-OR FA

Fig. 5.2 (alternate version) Possible designs for a full-adder in
terms of half-adders, logic gates, and CMOS transmission gates.
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Some Full-Adder Detalls

Logic equations for a full-adder:
S = X®y®dc, (odd parity function)
= XyCin Vv X’y’Cin Vv X’ycin’ Vv Xy'Cin’

Cout = XYV XCi, VY Ci (majority function)
P y ‘W
N s I
X0 TG

z
[ Jﬁ P
N‘ TG X1 TG
(@) CMOS transmission gate: (b) Two-input mux built of two
circuit and symbol transmission gates

CMOS transmission gate and its use in a 2-to-1 mux.
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Simple Adders Built of Full-Adders

Y Fig. 5.3 Using full-adders
X In building bit-serial and
E— :
Shift X Yi ripple-carry adders.
A v
Ci+1 Ci
Carry |l | FA |«
P Shift
+ _
Clock s | o s
(a) Bit-serial adder.
Tl }131 T )11 ]('o )10
C32 C31 Co C1 Co
«—] FA |[¢&— . . . «— FA [« FA |—
Cout l l l Cin
S32 S31 S1 So

(b) Ripple-carry adder.
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VLSI Layout of a Ripple-Carry Adder

Y3 X3 Y2 X2 Y1 X1 Yo X0

I I I I I F—1 b Yooy

7 inverters _Vss

s |1
N

Cout C3 C1 Two Gn  |1501
[ ] D L ] 4-t0-1 [ ]
Mux's  Clock v
33| | 5 1| sol
- >
760A

Fig. 5.4 The layout of a 4-bit ripple-carry adder in
CMOS implementation [Puck94].
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Two views of Xilinx Virtex-5

ripple-carry adder
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Critical Path Through a Ripple-Carry Adder

Tripple-add = TFA(X!y_)Cout) t (k _ 2)XTFA(Cin_)COUt) t TFA(Cin_)S)

' I I |
Ck Ck—1 Ck—2 Co C1 Co
-—-—-4¢— FA — FA [<¢— . . . ¢ FA < FA [¢—
E Cout . . . . Cin
‘ v v v v
Sk Sk-1 Sk-2 S1 So

Fig. 5.5 Ciritical path in a k-bit ripple-carry adder.
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Binary Adders as Versatile Building Blocks

X y
Set one input to O: Cout = AND of other inputs L l
Set one input to 1: Cout = OR of other inputs 1 FA e
out n
Set one inputto O L
and another to 1: s = NOT of third input 4
Bit 3 Bit 2 Bit 1 Bit O
0 1 w 1 Z 0 y X
C C C C C
4 3 2 1 0
W Xyz W V' XyZ XyZz Xy 0
v v v v
(Wv xyz)

Fig. 5.6  Four-bit binary adder used to realize the
logic function f = w v xyz and its complement.
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5.2 Conditions and Exceptions

Yk-1 Xk-1  Yk-2 Xk-2 Y1 X1 Yo Xo
| Ck1| | . . || .
k-2 2 1 Co
FA FA — - — FA FA =
l' Cin
Overflowa
Negative
®
Zero_OCE
1
Sk-1 Sk-2 S1 S0

Fig. 5.7 Two’s-complement adder with provisions
for detecting conditions and exceptions.

OVerﬂowZ’s-compI = Xk—l yk—l Sk—ll Vv Xk—1’ yk—1’ Sk—l

overflow,s comp = Ck @ Cy = CcCyy' VG Cy g
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Saturating Adders

Saturating (saturation) arithmetic:

When a result’'s magnitude is too large, do not wrap around;
rather, provide the most positive or the most negative value
that is representable in the number format

Example — In 8-bit 2's-complement format, we have:
120 + 26 - 18 (wraparound); 120 +_,, 26 = 127 (saturating)

Saturating arithmetic in desirable in many DSP applications

Designing saturating adders

Adder "0
Unsigned (quite easy) 1

Signed (only slightly harder) Overflow ™ """ r

Saturation value
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5.3 Analysis of Carry Propagation

[ 1 [ 1 | I
I S [ T 1 [ T T T 1
[T T ] [ T T 1 [ T T T T 1
[T T 1 [ T T T T T T T T T T ]

Bit positions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 0 1 1 O 1 1 O O 1 1 O 1 1 1 0
Cot O 1 0 1 1 0 0 1 1 1 0 O o 0 1 1
/\ / \ /\
4 6 3 2
Carry chains and their lengths
Fig. 5.8 Example addition and its carry propagation chains.

T : : . : :
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Using Probability to Analyze Carry Propagation

Given binary numbers with random bits, for each position i we have

Y4 (both 1s)
Y4 (both 0Os)
Y2 (different)

Probability of carry generation
Probability of carry annihilation
Probability of carry propagation

Probability that carry generated at position | propagates through
position | — 1 and stops at position | (j > 1)

2-0-1-) x 1/2 = 2-0-)
Expected length of the carry chain that starts at position |
2 _ 2—(k-i-1)

Average length of the longest carry chain in k-bit addition is strictly
less than log,k; it is log,(1.25k) per experimental results

Analogy: Expected number when rolling one die is 3.5; if one rolls
many dice, the expected value of the largest number shown grows
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5.4 Carry Completion Detection

Xiyi = XitY;

oy bk @C b ~__bo=ci
X Yi

Ci

Xi Yi
T
alldon 1 }From other bit positions

Fig. 5.9 The carry network of an adder with two-rail carries
and carry completion detection logic.
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5.5 Addition of a Constant: Counters

l L Data in
' Mux Ye------ Count / Initialize
Reset Clear
Clock ----4------------ » Countregister [¢-2-222200

L oad Enable
+1L(_1) }X—
\/
Counter *\ Incrementer/
overflow Cout \_(Decrementer)

Xx+1
(x-1) v Data out

Fig. 5.10 An up (down) counter built of a register,
an incrementer (decrementer), and a multiplexer.
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Implementing a Simple Up Counter

Xk-1 Xk—2 X1 X0

T
e s

A

Sk-_1 Sk_2 So S1 So

(Fm arch text) Ripple-carry incrementer for use in an up counter.

Count Output
v N \
Increment
ng Ti% Tin TiQo TI—
Q3 Qy Q1 Qo

Fig. 5.11  Four-bit asynchronous up counter built only of
negative-edge-triggered T flip-flops.
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Faster and Constant-Time Counters

Any fast adder design can be specialized and optimized to yield
a fast counter (carry-lookahead, carry-skip, etc.)

One can use redundant representation to build a constant-time
counter, but a conversion penalty must be paid during read-out

Count register divided into three stages

| | Load Increment
- e
1| Load T —+ 1| ¢
\V4 6 \V4
Incrementer Incrementer
Control Control -
2 < g 1

Fig. 5.12 Fast (constant-time) three-stage up counter.
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5.6 Manchester Carry Chains and Adders

Sum digit in radix r S = (Xty+c)modr
Special case of radix 2 SS = X @y ®c
Computing the carries c; is thus our central problem

For this, the actual operand digits are not important
What matters is whether in a given position a carry is

generated, propagated, or annihilated (absorbed)
For binary addition:
9 = XY, Pi =X @Y, a =Xy, =xvy'
It is also helpful to define a transfer signal:
t=0vp =& = XV
Using these signals, the carry recurrence is written as
Chr=GiVCP = GQiVGOVEP = givGh
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Manchester Carry Network

The worst-case delay of a Manchester carry chain has three components:

1. Latency of forming the switch control signals
2. Set-up time for switches

, . . T Voo
3. Signal propagation delay through k switches ”:
0 ! 1
P T
1L 0 1[ 0 di _”: of
a; oF
Clock o H:
LOgiC 0 LOgiC 1 < Vss
(a) Conceptual representation (b) Possible CMOS realization.

Fig. 5.13 One stage in a Manchester carry chain.

Apr.2015 | [ ¢ \ Computer Arithmetic, Addition/Subtraction Slide 26



Detalls of a 5-Bit Manchester Carry Network

Dynamic logic, with 2-phase operation
Clock low: Precharge (c; = 0)

Clock high: Pull-down (if g, = 1)

The transistors must be sized appropriately for maximum speed

Smaller transistors

Larger transistors

| =
ar
(:§o<
i—
Apr. 2015

Carry chain of a 5-bit Manchester adder.

W
|

Computer Arithmetic, Addition/Subtraction

4 1= 3 | =2 1=1 1=0
\Vbp \Vbp \Vbp \Vbp \Vbp T Wb
o L
C, C, C, C, Co
T T T T [T [ T
Pi 9 Pi 9 Pi 9 Pi 9 Pi 9L Co
I
Vss Vss Vss Vss Vss Y Vss
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Carry Network is the Essence of a Fast Adder

g; P; | Carryis: X, Y,

0 O | annihilated or killed g; = XV,
01

10

11

propagated _
generated N Pi = X; ® Yi

(impossible)

9o Py 9i11Piv1 191 [P

Carry network

| Ripple; Skip:;
i Cil | = - g Lookahead;

0 .
Ci\q ? ‘1 Parallel-prefix
o

Fig. 5.14 Generic structure of a binary adder,
highlighting its carry network.
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Ripple-Carry Adder Revisited
The carry recurrence: ¢, =0g; Vv p; C

Latency of k-bit adder is roughly 2k gate delays:

1 gate delay for production of p and g signals, plus
2(k — 1) gate delays for carry propagation, plus
1 XOR gate delay for generation of the sum bits

Ok-1  Pk-1 Ok-2  Pk-2 O1 P1 Jo Po

| | |

T T aad
k Ck-1 Ck-2 Co Ci1 0

Fig. 5.15 Alternate view of a ripple-carry network in connection
with the generic adder structure shown in Fig. 5.14.
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The Complete Design of a Ripple-Carry Adder

i | Carryis: X;

P

0 | annihilated or killed
1 | propagated
0
1

generated
(impossible)

Fig. 5.15 (ripple-carry network) superimposed on Fig. 5.14 (generic adder).
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6 Carry-Lookahead Adders

Chapter Goals

Understand the carry-lookahead method
and its many variations
used in the design of fast adders

Chapter Highlights

Single- and multilevel carry lookahead
Various designs for log-time adders
Relating the carry determination problem
to parallel prefix computation
Implementing fast adders in VLSI

Apr. 2015 | | | q: Computer Arithmetic, Addition/Subtraction Slide 31
— p_— |



Carry-Lookahead Adders: Topics

Topics in This Chapter

6.1 Unrolling the Carry Recurrence

6.2 Carry-Lookahead Adder Design

6.3 Ling Adder and Related Designs

6.4 Carry Determination as Prefix Computation

6.5 Alternative Parallel Prefix Networks

6.6 VLSI Implementation Aspects
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6.1 Unrolling the Carry Recurrence

Recall the generate, propagate, annihilate (absorb), and transfer signals:

Signal Radix r Binary
of IS1iffx, +y,>r X Vi
P, IS1iffx,+y,=r—1 X; DY,
a; Is1iffx+y;<r-1 X'Yi'= (X vy)
t; Is1iffx,+y,>r—1 Xi V'Y,

Si

(X; +y;+ C) mod r X @y, ® ¢

The carry recurrence can be unrolled to obtain each carry signal directly
from inputs, rather than through propagation

_ Note:
C. =0 C. .
L 9i-1 V Cia Ping Addition symbol
=011V (G2 V Ci2Pi) Pig vs logical OR

=01 V Gi2Piz1 VvV Cio P2 Py
=01 V Gi2Pi—1 vV 0i3Pi2Pi—1 V Ci_3Pi_3 Pi2Pi—1
= 0ira V Gi2Pica V Gi3Pi2Pict V Gia Pica Pi2Pict vV Cia Pics Pica Pi2 Pig
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Full Carry Lookahead

x
W
<
w

Xy Yo X1 Y1 Xo Yo

A AL AA A “‘

'Y VY YY VYV Y YY YY VY Y Yy Yvy Yv v

s, s, s, 5o

Theoretically, it Is possible to derive each sum digit directly
from the inputs that affect it

Carry-lookahead adder design is simply a way of reducing
the complexity of this ideal, but impractical, arrangement by
hardware sharing among the various lookahead circuits
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Full carry lookahead is quite practical
for a 4-bit adder

Four-Bit Carry-Lookahead Adder

C
Complexity 4
reduced by
deriving the
carry-out
Indirectly C,

T
n
-

network with full lookahead.

= Qo Vv CoPo
= 01V JoP1 VvV CoPgPy
= U2V g1P2 VvV YoP1P2 vV CoPpP1P2
= Q3 Vv 02P3 VvV U1P2P3 Vv 9oP1P2P3
vV CoPoP1P2P3 Fig. 6.1
Apr. 2015 | 14 '.J Computer Arithmetic, Addition/Subtraction
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Carry Lookahead Beyond 4 Bits

Consider a 32-bit adder
No circuit sharing:

“1 - Jo v €oPo Repeated computations
Co = 01 VP11V CyPoPy
C3= 02V 01P2VGoP1P2 vV CyPoP1P

32-input AND
C31= O30 V U9P30 V Q28P29P30 V J27P28P29P30 vV -+ .( vV CoPeP1P2P3-: Pog
P30

_ High fan-ins necessitate
32-input OR tree-structured circuits
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Two Solutions to the Fan-in Problem

High-radix addition (i.e., radix 2"

Increases the latency for generating g and p signals and sum digits,
but simplifies the carry network (optimal radix?)

Multilevel lookahead

Example: 16-bit addition
Radix-16 (four digits)
Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c,, cg, and c,, are determined first

Ci6 C15 C14 C13 C15 G417 G319 C9 Cg C; Cg C5 C4 C3 C, C; G

C ? ? ? C

out in
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6.2 Carry-Lookahead Adder Design

Block generate and propagate signals

9iii+31 = Gi+3 Vv Gi+2Pi+3 V Gir1 Pis2Pisz V i Piv1 Pir2Pix3
Piii+31= Pi Pit1 Pi+2Pisz

C C

C. i+ i+
|+3‘_ I 2‘ I 1<_
G+3Pi+3| Yi+2Pi2 | Gix1 Pis1| G P;

4-bit lookahead carry generator [@——

vy

Onii+a]  Prijies)

Fig. 6.2b Schematic diagram of a 4-bit lookahead carry generator.
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A Building Block for Pisa
Carry-Lookahead Addition

—
NG
Fig. 6.2a A 4-bi _g
IJ. 6.2a -DIt O7ii+3] —
lookahead
-

carry generator Pie3

Cq
\\ - Git3
- Py Block Signal Generation
Intermediate Carries

v

%

-
- S ,//
// ~ /, ~
// ] // \\
\\ 4 N
, N
. \\ e N
4 7 A
C ’ \\ C 3 7 N
4 , \
3/ — . I+3, N
’ A ’ \
’ \ ’ \

’ \\ ’ \
’ p ’ p \
’ a v [ +2
Fig. 6.1 2 / ‘

’
. . \ ,
\ I

A Z-bit . | .
i Carry 2 \‘. :' i+2 :
. network | | m= |
| % _@ : P \Ciso ( < ‘, Pt/

g]_/, ' gi"’l,"
\\\ // \\\ p ///
N /pO AN /I/
Cl _\\\' - //’/ CI+1 ;\f ////
N — % — G
el . __.C'O" el __pi’/
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Combining Block g and p Signals

Block generate and

propagate signals
can be combined in
the same way as bit
g and p signals to
form g and p signals
for wider blocks

Io 10
jl il
j2 i2
j3 i

Cj £+1 Cj §1+1 QJ otl

- <+ | |«
glp glp 1 {glp glp
\A 4 vy vy vy

4-bit lookahead carry generator

Ci

<+

"

Apr. 2015 | 14

Fig. 6.3  Combining of g and p signals of four
(contiguous or overlapping) blocks of arbitrary widths
Into the g and p signals for the overall block [iy, Js].
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A Two-Level Carry-Lookahead Adder
@

C12 Cs C4 C
Cag C32 : ciﬁ Ori215] [918111 L9471 LY03]
«' el [12,|15] P [8,1|1] P [4,7|] P [0,3]

4-bit lookahead carry generator '<J

16-bit
0148,63] 9132,47] O116,31] 4 910,15] Carry-Lookahead
P [48,63] P 32,471 Pri6,31] Pro,15] Adder
v
4-bit lookahead carry generator <

¢8[0,63] Fig. 6.4 Building a 64-bit carry-lookahead adder from 16
[0.63] 4-bit adders and 5 lookahead carry generators.

Carry-out: Cout = o1V CoProk-1 = Xuc1¥Yr1 Vv Sicr (X V Vi)
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Latency of a Multilevel Carry-Lookahead Adder

Latency through the 16-bit CLA adder consists of finding:

g and p for individual bit positions 1 gate level
g and p signals for 4-bit blocks 2 gate levels
Block carry-in signals c,, cg, and c,, 2 gate levels
Internal carries within 4-bit blocks 2 gate levels
Sum bits 2 gate levels
Total latency for the 16-bit adder 9 gate levels

(compare to 32 gate levels for a 16-bit ripple-carry adder)
Each additional lookahead level adds 4 gate levels of latency

Latency for k-bit CLA adder: Tiookahead.add = 4109,k + 1 gate levels
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6.3 Ling Adder and Related Designs

Consider the carry recurrence and its unrolling by 4 steps:
Ci =01V Ciqliy
=01 VOl VOiatiotig VOialigliolig VOt gty
Ling’s modification: Propagate h, = ¢, v ¢,_; instead of c; Propagate

hi =01 vhits, harry,
=01V 02V Qistio vV Oiatistio v i tistigti, not carry!

CLA: 5 gates max 5 inputs 19 gate inputs
Ling: 4 gates max 5 inputs 14 gate inputs
The advantage of h, over c; is even greater with wired-OR:

CLA: 4 gates max 5 inputs 14 gate inputs
Ling: 3 gates max 4 inputs 9 gate inputs

Once h; is known, however, the sum is obtained by a slightly more
complex expression compared with s, = p, @ ¢

S =P ®hit,
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6.4 Carry Determination as Prefix Computation

N kB’ Block B' > g” p"
' oC J. gr
0 o)
J i ) A 4 ,
L 1 /p
(9", p") (9,p) .
RN

< Block B > (9. p) g P

Fig. 6.5 Combining of g and p signals of two (contiguous or overlapping)
blocks B' and B" of arbitrary widths into the g and p signals for block B.
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Formulating the Prefix Computation Problem

The problem of carry determination can be formulated as:

Given (o, Po) (91, P) - - - (9o Peo) (91, Py1)
Find (910012 Poo) @poay: Py - - - Qrok-zy s Pok-zp) o1y + Prok1p)

C, C, C Cr 1 Cy

Carry-in can be viewed as an extra (—1) position: (g_;, p_;) = (¢, 0)

The desired pairs are found by evaluating all prefixes of
(9o Po) ¢ (91 P) ¢ . . . € (92 Puz) ¢ (i Prc)

—

»
»

»
»

»
»

The carry operator ¢ is associative, but not commutative
[(91: P1) € (92 P € (3. P3) = (91, P1) ¢ [(92 P2) € (T3, P3)]

Prefix sums analogy:

Given Xo X1 X5 L. Xi_1
Find Xo XotXy  Xo+X +X, C. Xo+X +...+X, 4
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Example Prefix-Based Carry Network

1 2/.5 Fig. 6.6 Four-input
f _ parallel prefix
<> (@) Ad-Input  syms network and
] prefix sums  jis corresponding
/ network carry network.

Scan " "
S hnneeE R TR e e E R PR LT e TR PP T PR LT R EEEE g Y
order
J3: P3 d,, Py d:, P4 Jo: Po
(¢ (b) A 4-bit
Carry
k/////// lookahead
network

9oar Pos Y021 Pozr Yoar oy Jpoor Pl
- (C4’ ") - (C3, ") - (Cz’ ") - (Cli ")

Apr.2015 | | [ 5% J Computer Arithmetic, Addition/Subtraction Slide 46



6.5 Alternative Parallel Prefix Networks

X1 = Xks2 Xk|/2—1 Xlo
L

Prefix Sums k/2 Prefix Sums k/2

@/%IM s
2

Sk-1 "' Sk

Fig. 6.7 Ladner-Fischer parallel prefix sums network
built of two k/2-input networks and k/2 adders.

Delay recurrence D(k) = D(k/2) + 1 = log,k
Cost recurrence C(k) = 2C(k/2) + k/2 = (k/2) log,k
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The Brent-Kung Recursive Construction

Xk-1 Xk=2 SR X3 Xo X1 Xp

& & &

Prefix Sums k/2

g |

Sk-1 Sk-2 - - - S3 52 51 39
Fig. 6.8 Parallel prefix sums network built of one
k/2-input network and k — 1 adders.

Delay recurrence D(k) =D(k/2)+2 =2 log,k—1 (-2 really)
Cost recurrence C(k) = C(k/2) + k—1 =2k -2 —log,k
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Brent-Kung Carry Network (8-Bit Adder)

[7,7] [6,6] [5,5] [4,4] [3,3] [2,2] [1,1] [O,0]

91,1 Pra,a]
/L 900,0]

vYY P[0,0]

——®
—

90,1] Plo,1]

[0,7] [0,6] [0,5] [0,4] [0,3] [0,2] [0,1] [O,0]
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Brent-Kung Carry Network (16-Bit Adder)

X15 %14 %13 K12 Xpg Xjg X9 Xg X X Xg X X5 X, X X

Level

- I LS Sl LS
Reason for 5 <1 AT L AT
latency being P
2 log,k — 2 3 " 7

|
|
|
|
|
\ I il
_ | //

| — |

4 |
|
|
|
|
|

iy RielyRie]

|
|
|
|
|
|
|
" I
|
|
|
|
|
|

L
Fig. 6.9 . /<)/ d e
Brent-Kung >
parallel prefix -1/t -t/r-=-Al"17/1-t/F -|I=/|- 171
graph for 6
16 inputs.

515 514 913 12 S13 S19Sg Sg S; S5 S5 S, S3 S, S; S
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Kogge-Stone Carry Network (16-Bit Adder)
%15 %14 %13 X2 X X0 X X X X X X X X X

Cost formula

c=k-1 JAAAAAAAAAAAA
;
s (OIS AAASTS
R Torrrrrrrr e
e 99999909000
e T
log,k levels <f f’/’¢¢¢‘f /’('f
(minimum < L
possible) > ???éf/
1 111
Fig. 6.10 /égég ??/
it | Sl
llel f
gaphfor
16 inputs. S15 514513 S12 811 S19Sq Sg S; Sg S S, S3 S, S, S,
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Speed-Cost Tradeoffs in Carry Networks

Method Delay Cost

Ladner-Fischer |log,k (k/2) log,k

Kogge-Stone log,k klog,k —k+1

Brent-Kung 2 log,k — 2 2k — 2 —log,k

Xe-1 =+ Xz Xgiz-1 -+ X
Improving the | ] | o |
Ladner/Fischer _ _ These outputs can
design Prefix Sums k/2 | |Prefix Sums k/2 | be produced one
time unit later without

S increasing the overall
latency
@ .o@ %o

This strategy saves enough to make
Sk-1 """ Ski2 the overall cost linear (best possible)
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Hybrid B-K/K-S Carry Network (16-Bit

Level
1

2

Brent-Kung: .
6 levels

26 cells

1

Fig. 6.11

A Hybrid
Brent-Kung/
Kogge-Stone
parallel prefix
graph for

16 inputs.
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L1

1

X5 Xia¥ig Ko X Xio%e g X Xg X5 Xy X5 X, X X %15 X %13 X2 Xy XipX X X Xg X5 X X3 X X X
A~
Srreivsrod
| (XXX XX P
- 55555 Kogge-Stone:
LT (A X
y// (AL LA 1 4 |evels
B A | LA
j('{ 953;{ Q}z{ (7{ 49 cells
Xis X1 %93 X2 X XoXg X X X5 X5 X X X, XX,
oifeils]fe]eifeifoifoi Rtz
Kun
I v
IoiBRE:
|
| .
ol o <ogee. 11YPND:
T 11| stone 5 |evels
| ////
( )// )/ . 32 cells
§ AN IAIAIALY
Brent-
QIPIPQIPIQP] | tem
S15 514513 512511 51989 S S; Sg S5 S, S3 S, S; S
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6.6 VLSI Implementation Aspects

Example: Radix-256 addition of 56-bit numbers
as implemented in the AMD Am29050 CMOS micro

Our description is based on the 64-bit version of the adder
In radix-256, 64-bit addition, only these carries are needed:

Cse Cus Cao Cso Coa Ci6 Csg

First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a are
used to derive g and p signals for 4-bit blocks

Next, the g and p signals for 4-bit blocks are combined to form
the desired carries, using the MCCs in Fig. 6.12b
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Four-Bit Manchester Carry Chains

PH2
0 &
PH2 —1 |
I 1 - |
1 1
L -
P3 ICy
92 PH2
N 1 &
e
P2 ICy
91T php
N 1
o I ¢
Py ICy
%™ Py
— 900,3
e 31
Po iCy
PH2
T4 Plo3]
>
(a)
Fig. 6.12
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PH2 _PH2
03 _rl &
:I_I; ‘ - - |g[0’3]
P Tl |f' Plo,3]
3 IL_* P2 1 *_b_P_HZ
92 &
1 e
+— [02]
P2 4 C) P02
PH2 _PH2
9 & &
1 e
+— 1o4]
Py 4 C) "oy
_PH2 PH2
99 S S
Y =om S
—
Po ICA
zall sz iCA
(b)
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Example 4-bit Manchester carry chain designs in
CMQOS technology [Lync92].



Carry Network for 64-Bit Adder

Level 1 Level 2 Legend: [i, j] represents the
i' """" i_ [60, 63] — [48, 63] pair of signals p il and g il
: — [56,59] | Type-b [~ [48, 59]
: — [52,55]-1 MCC [48, 55] — Level 3
| L 148, 511 - [48,55] - [-1,55]—»Cq
! — [44, 47] [32, 47] [32,47]— Type-b 1+ [-1,47]—>Cyg
: — [40,43] 1 Type-b = [32, 43] — [16,31] MCC  [-1,31]
i 16 i— [36,39] 1 MCC [32, 39] [-1, 15]
i Type-a E_ [32, 35] 7 [32, 39] — [-1, 39]—>C40
' MCC +— 158 317 — [16,31] —®T— [16,31] | Type-b I [-1,31]—>C3
 Plooks +— o4, 271 Type-b [~ 116, 27] 16,23 7| MCC [ [-1,28—>C5
| — [20,23]| MCC - [16,23] — @#— [-1,15]-
! — [16, 19]
i — [12, 15] [-1, 15] ® »C 16
| — [8,11] [-1, 11]
! — 4,7 Tyl\ﬁg'é’* -1, 7] »Cg
L — [0,3] T
[_1! _1]

Ci r »Cj
Fig. 6.13 Spanning-tree carry-lookahead network [Lync92].

Type-a and Type-b MCCs refer to the circuits of Figs. 6.12a

and 6.12b, respectively.
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7/ Variations in Fast Adders

Chapter Goals

Study alternatives to the carry-lookahead
method for designing fast adders

Chapter Highlights

Many methods besides CLA are available
(both competing and complementary)

Best design is technology-dependent
(often hybrid rather than pure)

Knowledge of timing allows optimizations
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Variations in Fast Adders: Topics

Topics in This Chapter

7.1 Simple Carry-Skip Adders

7.2 Multilevel Carry-Skip Adders

7.3 Carry-Select Adders

7.4 Conditional-Sum Adder

7.5 Hybrid Designs and Optimizations

7.6 Modular Two-Operand Adders
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7.1 Simple Carry-Skip Adders

Ci6 4-bit block |C45 4-bit block | Cg 4-bit block | C,4

<
«

A
A

A

(a) Ripple-carry adder

P12,15] Ps,11 Pra, 7 Pro,3)

4-bit block |Cy, | 4-bit block 4-bit block

(b) Simple carry-skip adder

Fig. 7.1  Converting a 16-bit ripple-carry adder into a simple
carry-skip adder with 4-bit skip blocks.
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Another View of Carry-Skip Addition

) 4-bit block [« 4-bit block |« —
] /'6 « < o
1 1 1
- <_
N

+—— One-way street «—

Freeway

Street/freeway analogy for carry-skip adder.
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Skip Carry Logic with OR Gate vs. Mux
_ O4j+3  P4j+3 O4j+2  Paj+2 O4j+1  P4j+1 04 Paj
Fig. 10.7 of
arch book _C—o ' _C _C _C—o
Caj+4 Ca4j+3 Caj+2 Caj+1 Cyj
-+
Qaj+3  Paj+3 Quj+2  Paj+2 Qgj+1 Pagj+1 Qj Pa;

- ChPrC !

Cajra S 1Je Caj+3 Caj+2 Caj+1 Caj

Ppaj, 4431,
NG

v v v

The carry-skip adder with “OR combining” works fine if we begin
with a clean slate, where all signals are 0s at the outset; otherwise,
it will run into problems, which do not exist in mux-based version
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Carry-Skip Adder with Fixed Block Size

Block width b; k/b blocks to form a k-bit adder (assume b divides k)

Tfixed-skip-add = (b _ 1) + (Wb _ 1) + (b _ 1)

in block O skips in last block
~ 2b + k/b — 3 stages
dT/db = 2—-k/b?2=0 = port = Vk/2

Topt = 242k — 3

——

q >
Example: k =32, boPt =4, ToPt= 13 stages
(contrast with 32 stages for a ripple-carry adder)
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Carry-Skip Adder with Variable-Width Blocks

b1 b2 C by bo Block widths
Carry path (1
o y path (1)
Carry path (2)
Carry path (3)
Fig. 7.2  Carry-skip adder with variable-size blocks — gﬂﬂfle

and three sample carry paths.

The total number of bits in the t blocks is k:
2b+(b+1)+ ...+ (b+t/2-1)] = t(b+t/4-1/2) = k
b = kit—t/4+1/2

Tiar-skipadd = 2(0—1) + t—1 = 2K/t +t/2-2

dT/db = —2k/t2+1/2=0 =  toet=2Vk
Toprt = 2\/k_— 2 (a factor of 2 s_maller than for fixed-block)
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7.2 Multileve

Carry-Skip Adc

ers

out

Sy

Sy

Sy Sy

Sy

Fig. 7.3 Schematic diagram of a one-level carry-skip adder.

¢ out

S

Fig. 7.4 Example of a two-level carry-skip adder.

C out

S,

Si Si

So

Fig. 7.5 Two-level carry-skip adder optimized by removing the

short-block skip circuits.

Apr. 2015 | 14

Computer Arithmetic, Addition/Subtraction

Slide 64



Designing a Single-Level Carry-Skip Adder

Example 7.1

Each of the following takes one unit of time: generation of g, and p,,
generation of level-i skip signal from level-(i—1) skip signals, ripple, skip,
and formation of sum bit once the incoming carry is known

Build the widest possible one-level carry-skip adder with total delay of 8

C;“" be—— bs ba b3 b by —Ibo —C(;”
7 6 5 4 3 42 |2
S1 S1 Sy S1 S1

Fig. 7.6  Timing constraints of a single-level = Max adder width = 18
carry-skip adder with a delay of 8 units. (1+2+3+4+4+3+1)

Generalization of Example 7.1 for total time T (even or odd)
1 2 3 ... T2 T2 ... 4 3
1 2 3 ... (T+D/2 ... 4 3 1

Thus, for any T, the total width is | (T + 1)2/4] -2
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Designing a Two-Level Carry-Skip Adder

Example 7.2

Each of the following takes one unit of time: generation of g, and p,,
generation of level-i skip signal from level-(i—1) skip signals, ripple, skip,
and formation of sum bit once the incoming carry is known

Build the widest possible two-level carry-skip adder with total delay of 8

T produce Tassimilate
Prodkee

:
e 8.3} .4 &3 B8 () itial timing
F E D C B A .
0 constraints
8 7 6 5 4 13 |3
S2 S2 S2 S2 S2 Max adder width = 30

(@) (L+3+6+8+8+4)

| FIBlock B— Block b—+— Block C——+——— Block B——+ Block A

C.
2 in
AD—LD—L}—lﬁJj;

3 3 (b) Final design

Fig. 7.7 Two-level carry-skip adder
with a delay of 8 units.
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Elaboration on Two-Level Carry-Skip Adder
Example 7.2

Given the delay pair {B, o} for a level-2 block in Fig. 7.7a, the number
of level-1 blocks that can be accommodated is y = min(f—1, o)

a
Cout o] ba_g b2 by bo Cin
—L a-1 Jla-2 3 2 | 1 0
S1 Sq Sy Sq S1 Sy S1
Single-level carry-skip adder with T qimijate =
C ci
out |‘ bB—3 b2 b]_ bO m
P ‘ p- ‘ p-2 4 3 2 I
S1 S1 S S1 Sy Sy S,
Single-level carry-skip adder with T, 4,ce = B

Width of the ith level-1 block in the level-2 block characterized by {3, o}
Is b;=min(B —y + i+ 1, a—i); the total block width is then >y, 1 b,
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Carry-Skip Adder Optimization Scheme

Block of b full-adder units

Level-h skip

Fig. 7.8 Generalized delay model for carry-skip adders.
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7.3 Carry-Select Adders

k-1 kKi2  Kk2-1 0
aiaiaiele k/2-bit adder E N
Lo k/2-bit adder H1 E k/2-bit adder [«
L - :

I
: A k/2
:
|
A 4
High k/2 bits Low k/2 bits

Fig. 7.9 Carry-select adder for k-bit numbers
built from three k/2-bit adders.

Cselect-add(k) = 3Cadd(klz) +k/i2+1
Tselect-add(k) = Tadd(klz) +1
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Multilevel Carry-Select Adders

k-1 3k/4 3k/4 -1 k/2 ki2-1 k/4 kid -1 0
[ 0 [ 0 I 0
L — C.
k/4-bit adder j&i;- 1 k/4-bitadder :Ei k/4-bit adder :Ei r k/4-bitadder
k/4+1 1~ A kl4+1 A klA  A7kl4A KlA+1 A kl4+1 A" kl4

_ e e —

Mu;

- K
Pa
i L\<
o <_I
A
:I
I
=
<
c
X
R
A
i
|
(@]
X1
N

N e g
ux Cyr2

¢, .., High k/2 bits Middle k/4 bits Low K/4 bits

Fig. 7.10 Two-level carry-select adder built of k/4-bit adders.
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7.4 Conditional-Sum Adder

Multilevel carry-select idea carried out to the extreme (to 1-bit blocks.
C(k) = 2C(k/2) + k +2 = k (log,k + 2) + k C(1)
T(k) = T(k/2) +1 = log,k + T(1)

where C(1) and T(1) are the cost and delay of the circuit of Fig. 7.11
for deriving the sum and carry bits with a carry-in of 0 and 1

Yi X
K+ 2 is an upper bound on
< ( " number of single-bit 2-to-1
—9 .
multiplexers needed for

 —e combining two k/2-bit adders
\ ’ Into a k-bit adder

‘ < TQ; Fig. 7.11  Top-level
Si

block for one bit position of
a conditional-sum adder.

112

Cirp  Si Ci+1
Forci=1 Forci=0
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Conditional-Sum
Addition Example

Table 7.2

Conditional-sum
addition of two 16-bit
numbers. The width
of the block for which
the sum and carry
bits are known
doubles with each
additional level,
leading to an
addition time that
grows as the
logarithm of the
word width k.
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X ojojr|ojojrj2(0j2j12|j2(0j2 10|11 |0
y oji1jojojz1j|joj1j12j0j210j1212 1210 1
Block  Block Block sum and block carry-out
width carry-in 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
1 0 S oj1j12|ojzja2j0j12j21012121011 11 1
C o|jojojojojo|jr1(ojojx1|0ojojp1 |00 |0
1 S 110|0(1|0|0|12|0O|O|1 OO (1[0 (O
C o101 j2 122 {21212 (2j2 112 |11
2 0 S 01|11 0j11|01j002 101111
C 0 0 0 1 1 0 1 0
1 S 1011|0012 0|01|001|11 0
C 0 0 1 1 1 1 1
4 0 S 01100001001 110111
C 0 1 1 1
1 s 011100100100
C 0 1 1
8 0 s 01110001j01 000111
C 0 1
1 S 01110010
C 0
16 0 S 0111001001000111
C 0
1 s |
C
Cc;ut
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Elaboration on Conditional-Sum Addition

Two versions
of sum bits
and carry-out
In 4-bit blocks

Two versions
of sum bits
and carry-out
In 8-bit block
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Two adjacent 4-bit blocks, forming an 8-bit block

Left 4-bit block Right 4-bit block

8j+7 ... 8+4

8j+3 ... §
04001110 0«—41111-0
0401001 100001
—_— =
8+7 ... 8+3 ... 8§

04001111110

0-40100|0000+—1
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7.5 Hybrid Designs and Optimizations

The most popular hybrid addition scheme:

Cin
Lookahead Carry Generator <4+
4 4 Block
Carry-Select g, p
| 0 | 0 10 -
—1 —T1 —T1
g | M | Ny

Cout ¥

>

v v

Fig. 7.12 A hybrid carry-lookahead/carry-select adder.

Computer Arithmetic, Addition/Subtraction Slide 74

Apr.2015 [ 14

—r

—



Detalls of a 64-Bit Hybrid CLA/Select Adder

Level 1 Level 2 Legend: [i, j] represents the
i- """" i_ [60, 63] — 48, 63] pair of signals p il and g il
! — [56,59] | Type-b [~ [48,59]
i E_ [52,55]-| MCC [48, 55] — Level 3
i — 148,517 ———— [48,55] — [-1,55]—>Cgq
| — (44, 47] — 32, 47] 32,4711 Type-b  [-1,47]—>Cyg
: — [40,43] | Type-b [~ [32,43] — [16,31]-| MCC 1= [-1,31]
: — [36,39]-| MCC [32, 39] [-1, 15]
I 16 I
| Type-a | 192307 (32, 39] 1,39 >Cyg
! MCC — |28 311 [16,31] —®T— [16,31] | Type-b T~ [-1,31]—>C3)
| Dlocks +— 24,271 Type-b [~ [16, 27] [16,23] 7| MCC [ [-1,23—*Cy
| — [20,23]| MCC - [16,23] — @#— [-1,15]-
! — [16, 19] —
: '— [12, 15] — [-1,15]—® >C16
| — [8,11] [-1, 11]
B e v
Lo T [[21 311]‘ Fig. 6.13 [Lync92].
Cin r »Co

Each of the carries cg;, produced by the tree network above is used
to select one of the two versions of the sum in positions 8jto 8) + 7
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Any Two Addition Schemes Can Be Combined

C48 C32

< <

C1i6

4.

C12

C8

C4

[012151 [9811 [9[47] ‘g[o,sl]
[12.15] p[8,1|1] p[4,7|] Prog3;

4-Bit Lookahead Carry Generator 4J

(with carry-out)

L 16-bit Carry-Lookahead Adder

Fig. 7.13 Example 48-bit adder with hybrid
ripple-carry/carry-lookahead design.

Other possibilities: hybrid carry-select/ripple-carry
hybrid ripple-carry/carry-select
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Optimizations in Fast Adders

What looks best at the block diagram or gate level may
not be best when a circuit-level design is generated
(effects of wire length, signal loading, ...)

Modern practice: Optimization at the transistor level
Variable-block carry-lookahead adder

Optimizations for average or peak power consumption

Timing-based optimizations (next slide)
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Optimizations Based on Signal Timing
So far, we have assumed that all input bits are presented at the same
time and all output bits are also needed simultaneously

Latency from inputs
in XOR-gate delays

15T
10T
5 —
Bit Position
0 + + +
0 20 40 60

Fig. 7.14 Example arrival times for operand bits
In the final fast adder of a tree multiplier [Oklo96].
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Modern Low-Power Adders Implemented in CMOS

130nm, 1.2V CMOS

700

64-Bit Adder Designs out ~

Energy [pJ]
(8]
S

)

o

o
]

400 -
300 A
200 ~ A
Cond’l-Sum Ling e Pak Bl ee-stage Lin
| CSL’\’\ TSk
L S ﬂ__—;;___:_;:_:; _________
0 I I 1 I
6 7 8 9 10 11

Zeydel, Kluter, Oklobdzija, ARITH-17, 2005 Delay [FO4]
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Taxonomy of Parallel Prefix Networks

I (Logic Levels)

Fanout =27+ 1

R Logic
Y levels
= log,k + |
Stone [*® :
From: Harris, David, 2003 Wire tracks = 2t
http://lwww.stanford.edu/class/ee371/handouts/harris03.pdf ¢
t (Wire Tracks)
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/.6 Modular Two-Operand Adders

mod-2k: Ignore carry out of position k — 1

mod-(2X — 1): Use end-around carry because 2k=(2k-1) + 1

mod-(2% + 1): Residue representation needs k + 1 bits

Number Std. binary
...000
...001
...010

0 00
1 00
2 00
2k—1 01
2K 10
Apr. 2015 | 14

Diminished-1

..111
...000

X +y>2K+ 1 iff

(x=1) + (y=1) + 1 > 2k

x+y)-1=
x-1)+({y-1)+1

Xxy—1=
(x=1)(y-1)+(x-1)+(y-1)
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General Modular Adders

X y
+

(X +y) mod m . -m
if X +y>m I l
thenx +y—m v v
else x +y Carry-Save Adder

\ 4 \ 4 vﬂ \ 4

Adder Adder
X y \ 4 \ 4 i X+ y —m

Fig. 7.15 Fast modular addition. \—‘M Sign bit

(x +y) mod m
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8 Multioperand Addition

Chapter Goals

Learn methods for speeding up the
addition of several numbers (needed
for multiplication or inner-product)

Chapter Highlights

Running total kept in redundant form
Current total + Next number — New total
Deferred carry assimilation
Wallace/Dadda trees, parallel counters
Modular multioperand addition
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Multioperand Addition: Topics

Topics in This Chapter

8.1 Using Two-Operand Adders

8.2 Carry-Save Adders

8.3 Wallace and Dadda Trees

8.4 Parallel Counters and Compressors

8.5 Adding Multiple Signed Numbers

8.6 Modular Multioperand Adders
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8.1 Using Two-Operand Adders

Some applications of multioperand addition

e o o c o e o o o (0)

X ® © o o i ® ©e © ©e o o B(l)

__________ ® ®© e o ©o o p(z)

® ©e ©o o Xoazo ® © © © © o p(3)

® © © o )(_I. 821 ® © © © o o p(4)

® © © o X2a22 ® © © © o o p(5)

®e ©o © o X3a23 ® © © ©e o o p(6)
:_:_:_:_:_:_:_:_ p ® © © © © © © o o S

Fig. 8.1 Multioperand addition problems for multiplication
or inner-product computation in dot notation.
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Serial Implementation with One Adder

|_> k+|ogznb|ts|1 n
- kbits > Adde 4 Zox
x (1) +>
Partial sum
register

Fig. 8.2 Serial implementation of multioperand
addition with a single 2-operand adder.

Tserial-multi-add = O(n Iog(k + Iog ﬂ))
= O(nlog k + n log log n)

Therefore, addition time grows superlinearly with n when k is fixed
and logarithmically with k for a given n
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Pipelined Implementation for Higher Throughput

Problem to think about: Ignoring start-up and other overheads, this
scheme achieves a speedup of 4 with 3 adders. How is this possible?

x(i6) + x(i-7)
x(-D)
Ready to

compute Delays s (F12)
i i1
Delay x + x(-1 I_I:H:I_> >
“| |‘> >
x(1) (i-8) + %(i-9) 4 y(i-10) 4 y(i-11)
x(4) + x(i-9)

Fig. 8.3  Serial multioperand addition when each
adder is a 4-stage pipeline.
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Parallel Implementation as Tree of Adders

+k ,|,k +k ’fk +k +k 4k
Adder Adder Adder
k+1 / k+1 k+1
- [log,n |
Adder Adder adder levels
adders
+2\ / K2
Adder v

Fig. 8.4 Adding 7 numbers in a binary tree of adders.

T _ = O(logk +logk+1)+...+log(k + |_|092n—| - 1))

tree-fast-multi-add

= O(log nlog k + log n log log n)

T O(k + logn) [Justified on the next slide]

tree-ripple-multi- add —
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Elaboration on Tree of Ripple-Carry Adders
k t+1\‘ t;}/ t '[/
- <4—{FA HA

+k ,|.k +k ’fk +k +k

| Adder | | Adder | | Adder |
k+1 k+1 i

A 1P <t+_1 Level i

( )
~ koo t+2
-
3 (\. . Level i+1
—y

T = O(k + logn)

tree-ripple-multi-add —

Fig. 8.5 Ripple-carry adders atlevelsiand i+ 1 in
the tree of adders used for multi-operand addition.
The absolute best latency that we can hope for is O(log k + log n)

There are kn data bits to process and using any set of computation
elements with constant fan-in, this requires O(log(kn)) time

We will see shortly that carry-save adders achieve this optimum time
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Fig. 8.6 Aripple-carry

8.2 Carry-Save Adders

: FA F—
adder turns into a r |
carry-save adder if the
carries are saved N J
(stored) rather than FA
propagated. [ |

O 6 6 0 0 O
® 6 6 06 0 O
® Cm} Carry-propagate adder
e 6 6 6 ¢ 0 O
Cout
e 6 060 0 0 Carry-save adder (CSA)
®© 060 0 00 or
® 6 06 6 0 O (3; 2)-counter
P : : : : : ¢ gtto-Z reduction circuit
Fig. 8.7 Carry-propagate adder

(CPA) and carry-save adder (CSA)
functions in dot notation.
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Cut
NN || || ||

FAF— FAF—|FAF—FAF—FA[

[ .

all feal el g feal
I _

- 1
- 1

Full-adder ‘/:/‘)<:/:/:/‘ Half-adder

Fig. 8.8 Specifying full-
and half-adder blocks,
with their inputs and
outputs, in dot notation.



Multioperand Addition Using Carry-Save Adders

TC&I’I’ -save-multi-a - O(tree helght + T )
yreavemulads oPA CSA | [CSA
= O(log n + log k) \\ /
Ccarry-save—multi—add = (n - 2)CCSA + CCPA CSA /
‘ Input \

| CSA

CSA / /

—] | Sum register CSA
— | Carry register

CPA Carry-propagate adder
Output
Fig. 8.13 Serial carry-save Fig. 8.9 Tree of carry-save adders
addition using a single CSA. reducing seven numbers to two.
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Example Reduction by a CSA Tree

o o oo e e 8 7 6 5 4 3 2 1 0
R BEEEE
& 6 6 6 6 0 2 5 5 5 5 5 3
® 00 0 00
e 060 0 00 > FA 3 4 4 4 4 4 1
S
EEEEER BSOS SRR
2 0 0 0 00
o o o oo o c
© 0606606600 --Carry-propagate adder--
6 FAs
1 1 1 1 1 1 1 1 1
o s s

coeseees ®

e s ee o

6 FAs

4 FAs + 1 HA

7-bit adder
® 6 6 6 6 6 6 0 O

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.10 Addition of seven
6-bit numbers in dot notation.

Apr.2015 [ 14

Bit position
6x2 = 12 FAs
6 FAs

6 FAs

4 FAs + 1 HA
7-bit adder

Fig. 8.11 Representing a seven-
operand addition in tabular form.

A full-adder compacts 3 dots into 2

(compression ratio of 1.5)

A half-adder rearranges 2 dots

(no compression, but still useful)
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Width of Adders in a CSA Tree

2 0,1y [0’|k 1k k|1] [0, k=1] [(i’ U ey Fig. 8.12 Adding seven k-
| | bit numbers and the
k-bit CSA k-bit CSA CSA/CPA widths required.
[1,KIN\ [0, k=1] LK |0, k-1]

Due to the gradual
k-bit CSA retirement (dropping out)
/ 1« /oy  Of some of the result bits,
CSA widths do not vary

k-bit CSA much as we go down the
tree levels
[2, k+1] [1,k] /[1, k-1]
The index pair k-bit CSA ~—f—— | el k k;l : : : ;
[i, j] means that Lkt | T
bit positions : . . 000
fromiuptoj [2. k+l] | [2 k+1] 00
are involved. k-bit CPA .)/:/. ./:/:/:X.
|;2 | [2, k+1] 1 0
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8.3 Wallace and Dadda Trees

n inputs

2 outputs

h(n) =
n(h) =

2x1.5M< n(h) < 2x 1.5

Apr. 2015

1+ h(2n/3])
[3n(h — 1)/2]

[ J(

—r

—

-

Table 8.1 The maximum number n(h)
of inputs for an h-level CSA tree

h  n(h) h n(h) h n(h)
0 2 7 28 14 474
1 3 8 42 15 711
2 4 9 63 16 1066
3 6 10 94 17 1599
4 9 11 141 18 2398
5 13 12 211 19 3597
6 19 13 316 | 20 5395

Computer Arithmetic, Addition/Subtraction

n(h): Maximum number of inputs for h levels
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Example Wallace and Dadda Reduction Trees

o ioiigiigiigg Wallace tree: bbb Ebt Rt
o000 00 Reduce the number o:iei 000 e
. o igiigigie of operands at the EEEEE
o 6 0 0 ©°
bl : 12 FA gzgl)er?fjrﬁ)i?;smle °29°°%° ¢en
S o 0 0.0 0 0
S5 LS h o | Sseeee
/’./’./’./’././. 2 4 o 6 606 0 0
(N BN BN AN BN ] 3 6 e o0 0 00
©ee0 0000 1 9 ceccoce
5 13 >
ve s e 6 10 eeeee o
cecece 480 00
6 FAs Dadda tree: ¢ v 2 EAS
voosesee ’ Postpone the g oo s s o "
_ 0.9 .99 : — s+ 1hA reduction to the © 000 4 EA + 1 HA
e s e e o | extent possible  ¢x¢-¢ oo * o ¢ |
c © 00000 00 7-bit adder without causing c 6 06 06000 0 7-bit adder
_ added delay L
Total cost = 7-bit adder + 28 FAs + 1 HA Total cost = 7-bit adder + 28 FAs + 1 HA
Fig. 8.10 Addition of seven Fig. 8.14 Adding seven 6-bit
6-bit numbers in dot notation. numbers using Dadda’s strategy.
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A Small Optimization in Reduction Trees

o oisioie e Fig. 8.15 ceooo oo

cecoocs Adding seven coce e s

X EEEREE 6-bit n_umbers o090 e
:::::: bé/taklng f ©c0o0ecee
6 FAs a Vantage (0] o 0 0 0 0 0 S

S LELE the final ¢ eie eaeie

Sovieiee adder’s carry- c0o00 00

. o & & 0 0 o

o 6 6 06 00 INn. oo o o o0
ceaases 23"

Less e Ty

oo e

6 FAs + 1 HA
7 FAs e ® ./.
L2 e e ¢« s s e
o o o oo o o0 0 00
o0 0 0 5 e o CFAST2HA
4 FAs + 1 HA
0800020 00 e s s e o
P ¢ PS °
7-bit adder 7-bit adder
o0 0000000 o0 0000000
Total cost = 7-bit adder + 28 FAs + 1 HA Total cost = 7-bit adder + 26 FAs + 3 HA

Fig. 8.14 Adding seven 6-bit
numbers using Dadda’s strategy.
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8.4 Parallel Counters and Compressors

1-bit full-adder = (3; 2)-counter : FA FA FA 0
® ®©0060 ® Mo 1Yo 1]]o
o o000 °
o o000 ®
0 ®
cece - FA| - [FA /
2] |1 1| 10
Circuit reducing 7 bits to their : —
3-bit sum = (7; 3)-counter HA
® ././. H1
o g 3-bit
: o 0 FA > ripple-carry
o ° 24 adder
: “oe ”
oo o 000 SN . 0 —
Circuit reducing n bits to their
[log,(n + 1) l-bit sum Fig. 8.16 A 10-input parallel counter
= (n: ﬂogz(n +1)7)-counter also known as a (10; 4)-counter.
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Accumulative Parallel Counters

True generalization of
sequential counters

g-bit initial Count
count X register

\ V} Y \

~ Parallel n
incrementer increment
signals v;

g-bit final county = x + Zv,

Possible application:
Compare Hamming weight
of a vector to a constant

n increment signals v;, 291 < n < 24

TRy

q'blt taIIy of upto29-1 # v Yy v vy

4

of the increment signals [ FA |FA |FA

________ -

g-bit
initial
count X

¢ Y vy

4 4

FA

A

Cq -~ «{FA |FA |FA
Ignore, or use
for decision

|

lq-bit rtinal county
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Up/Down Parallel Counters

Generalization of n negabits (U)
up/down counters
n posibits } | ‘ ‘
V) \Y Y Y Y Y

Negabit and
posibit parallel
counters

Possible application:
Compare Hamming weights
of two Iinput vectors

T T 717

g-bit final count
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8.5 Generalized Parallel Counters

Multicolumn

reduction

(5, 5; 4)-counter

Unequal
columns

(2, 3; 3)-counter

Apr. 2015

",

-
|

N

I
!
!

Rz
)
i

Fig. 8.17 Dot notation for a (5, 5; 4)-counter
and the use of such counters for reducing five
numbers to two numbers.

Gen. parallel counter = Parallel compressor
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Column Compression: A Simple Example

Adding eight 6-digit decimal numbers: 052498
7840067
4516714
905724
Question: 695105
What is the maximum number of decimal 5906230
values that can be added in this way 029136
(that is, with column compression

leading to two decimal numbers)? 827211
809315

443233
5241645
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A General Strategy for Column Compression

One circuit slice

n inputs
(n; 2)-counters
T -1 -2 -3
Toi+1 <—A, =¥
Toi+2 <:$W2 7 ,
Toi+ 3 <:$w3 7 v,
— L

Fig. 8.18 Schematic
diagram of an
(n; 2)-counter built of N—3 < y; +3y, + 7Ty + ...
identical circuit slices

Example: Design a bit-slice of an (11; 2)-counter

Solution: Let’s limit transfers to two stages. Then, 8 <y, + 3y,

Possible choices include y; =5, y,=10r y; =y, =2
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(4; 2)-Counters

e _
Multicolumn : 8 0,59 = {01} + {0,2} + {0,2}
and the transfer
- : carry
./5/O incoming
outputs
transfer

We will discuss (4; 2)-counters in greater detall in Section 11.2
(see, e.qg., Fig. 11.5 for an efficient realization)
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8.5 Adding Multiple Signed Numbers

—————————— Extended positions ---------- Sign  Magnitude positions
X1 X1 X1 X1 X1 X1 Xy—2 Xy—3 Xy
Yi-1 Yi-1 Yi-1 Yi-1 Yi-1 Yi-1 Yi-2 Yk-3 Yk-4
2y 2y 2y 2y 2y 2y Zy o Zy_3 Zy_a

(a) Using sign extension

---------- Extended positions ---------- Sign  Magnitude positions

1 1 1 1 0 X1 ) O Xi_3 Xi_g

Yi-r Y2 Yks Yk-4

Z, ., Z y4 y4

—D = — + 1 — k-1 k—2 k-3 k—4
b=(1-b)+1-2 1

(b) Using negatively weighted bits

Fig. 8.19 Adding three 2's-complement numbers.
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8.6 Modular Multioperand Adders

® 6 0 O ® 6 0O ® 6 06 O
® 6 06 O ® 6 06 O ® 6 0 O
® 6 0 O ® 6 06 O ® 6 0 O

Drop,® @ @ @ o 0o 00 o000 .
® 6 0 O ® 6 06 O ® 6 0 O
(@) m = 2K (bym=2k-1 (c)m=2k+1

Fig. 8.20 Modular carry-save addition with special moduli.
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Modular Reduction with Pseudoresidues

R

o o o @ @ | Sxinputs
. . . . rintherange
e @ 6 6 o [0, 20]

Fig. 8.21 Modulo-21
reduction of 6 numbers

Pseudoresidues
@ > in the range

taking advantage of the [0, 63]

fact that 64 = 1 mod 21

and using 6-bit

pseudoresidues. BN
liifffjmwm

e 0000 o end-around carry

Final pseudoresidue (to be reduced)
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