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About This Presentation

Edition Released Revised Revised Revised Revised
First Jan. 2000 Sep. 2001 Sep. 2003 Oct. 2005 May 2007

May 2008 May 2009

Second May 2010 Apr. 2011 May 2012 May 2015

This presentation is intended to support the use of the textbook 
Computer Arithmetic: Algorithms and Hardware Designs (Oxford 
U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated 
regularly by the author as part of his teaching of the graduate 
course ECE 252B, Computer Arithmetic, at the University of 
California, Santa Barbara. Instructors can use these slides freely 
in classroom teaching and for other educational purposes. 
Unauthorized uses are strictly prohibited. © Behrooz Parhami
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IV   Division

Topics in This Part
Chapter 13 Basic Division Schemes
Chapter 14 High-Radix Dividers
Chapter 15 Variations in Dividers
Chapter 16 Division by Convergence

Review Division schemes and various speedup methods
• Hardest basic operation (fortunately, also the rarest)
• Division speedup methods: high-radix, array, . . .
• Combined multiplication/division hardware 
• Digit-recurrence vs convergence division schemes
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Be fruitful and multiply . . .

Now, divide.
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13  Basic Division Schemes

Chapter Goals
Study shift/subtract or bit-at-a-time dividers
and set the stage for faster methods and
variations to be covered in Chapters 14-16

Chapter Highlights
Shift/subtract divide vs shift/add multiply
Hardware, firmware, software algorithms
Dividing 2’s-complement numbers
The special case of a constant divisor
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Basic Division Schemes: Topics

Topics in This Chapter

13.1 Shift/Subtract Division Algorithms

13.2 Programmed Division

13.3 Restoring Hardware Dividers

13.4 Nonrestoring and Signed Division

13.5 Division by Constants

13.6 Radix-2 SRT Division
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13.1  Shift/Subtract Division Algorithms
Notation for our discussion of division algorithms:

z Dividend z2k–1z2k–2 . . . z3z2z1z0
d Divisor dk–1dk–2 . . . d1d0
q Quotient qk–1qk–2 . . . q1q0
s Remainder, z – (d q) sk–1sk–2 . . . s1s0

Initially, we assume unsigned operands

Fig. 13.1   Division of an 8-bit number by a 4-bit number in dot notation.

Dividend 

Subtracted 
bit-matrix  

z 

s Remainder 

Quotient  q Divisor  d 

q d 2 3 
3 – 

q d 2 2 
2 – 

q d 2 1 
1 – 

q d 2 0 
0 – 
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Division versus Multiplication

Division is more complex than multiplication:
Need for quotient digit selection or estimation

Overflow possibility: the high-order k bits of z
must be strictly less than d; this overflow check
also detects the divide-by-zero condition.

Pentium III latencies
Instruction Latency    Cycles/Issue
Load / Store 3 1
Integer Multiply 4 1
Integer Divide 36 36
Double/Single FP Multiply 5 2
Double/Single FP Add 3 1
Double/Single FP Divide 38 38

z 

s 

q Divisor  d 

q 3– 
q 2– 
q 1– 
q 0– 

The ratios haven’t 
changed much in 
later Pentiums, Atom, 
or AMD products*
*Source: T. Granlund, “Instruction 
Latencies and Throughput for AMD 
and Intel x86 Processors,” Feb. 2012
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Division Recurrence

Division with left shifts

s(j) = 2s(j–1) – qk–j (2k d) with   s(0) = z and
|–shift–| s(k) = 2ks
|–––subtract–––|

(There is no corresponding right-shift algorithm)

Fig. 13.1

Dividend 

Subtracted 
bit-matrix  

z 

s Remainder 

Quotient  q Divisor  d 

q d 2 3 
3 – 

q d 2 2 
2 – 

q d 2 1 
1 – 

q d 2 0 
0 – 

Integer division is characterized by z = d  q + s

2–2kz =  (2–kd)  2–kq) + 2–2ks
zfrac =    dfrac  qfrac + 2–ksfrac

Divide fractions like integers; adjust the remainder

No-overflow 
condition for 
fractions is:

zfrac < dfrac

k bits k bits

2z

2k d

0
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Examples of Basic Division

Fig. 13.2   
Examples of 
sequential 
division with 
integer and 
fractional 
operands. 

Integer division Fractional division
====================== =====================
z 0 1 1 1  0 1 0 1 zfrac . 0 1 1 1  0 1 0 1
24d 1 0 1 0 dfrac . 1 0 1 0    
====================== =====================
s(0) 0 1 1 1  0 1 0 1 s(0) . 0 1 1 1  0 1 0 1
2s(0) 0 1 1 1 0  1 0 1 2s(0) 0 . 1 1 1 0  1 0 1
–q3 24d 1 0 1 0    {q3 = 1} –q–1d . 1 0 1 0    {q–1=1}
––––––––––––––––––––––– ––––––––––––––––––––––
s(1) 0 1 0 0  1 0 1 s(1) . 0 1 0 0  1 0 1
2s(1) 0 1 0 0 1  0 1 2s(1) 0 . 1 0 0 1  0 1
–q2 24d 0 0 0 0    {q2 = 0} –q–2d . 0 0 0 0    {q–2=0}
––––––––––––––––––––––– ––––––––––––––––––––––
s(2) 1 0 0 1  0 1 s(2) . 1 0 0 1  0 1
2s(2) 1 0 0 1 0  1 2s(2) 1 . 0 0 1 0  1
–q1 24d 1 0 1 0    {q1 = 1} –q–3d . 1 0 1 0    {q–3=1}
––––––––––––––––––––––– ––––––––––––––––––––––
s(3) 1 0 0 0  1 s(3) . 1 0 0 0  1
2s(3) 1 0 0 0 1 2s(3) 1 . 0 0 0 1
–q0 24d 1 0 1 0    {q0 = 1} –q–4d . 1 0 1 0    {q–4=1}
––––––––––––––––––––––– ––––––––––––––––––––––
s(4) 0 1 1 1 s(4) . 0 1 1 1
s 0 1 1 1 sfrac 0 . 0 0 0 0  0 1 1 1
q 1 0 1 1 qfrac . 1 0 1 1
====================== =====================

10

11
7

117

Decimal
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13.2  Programmed Division

Fig. 13.3     Register usage for programmed division.

Rs Rq

Rd
0  0   .  .  .   0  0  0  0

2   dk

Carry 
 Flag

Shifted Partial 
   Remainder

Shifted Partial 
    Quotient

Partial Remainder  
    (2k – j Bits)

Partial Quotient 
       (j Bits)

Next 
quotient 
digit 
inserted 
here 

Divisor  d
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Assembly Language Program for Division

Fig. 13.4
Programmed division 
using left shifts.

{Using left shifts, divide unsigned 2k-bit dividend,
z_high|z_low, storing the k-bit quotient and remainder.  
Registers: R0 holds 0        Rc for counter

Rd for divisor    Rs for z_high & remainder     
Rq for z_low & quotient}

{Load operands into registers Rd, Rs, and Rq}
div: load    Rd with divisor

load    Rs with z_high
load    Rq with z_low

{Check for exceptions} 
branch  d_by_0 if Rd = R0
branch  d_ovfl if Rs > Rd

{Initialize counter}
load     k  into Rc

{Begin division loop}
d_loop: shift   Rq left 1   {zero to LSB, MSB to carry}

rotate  Rs left 1   {carry to LSB, MSB to carry}
skip    if carry = 1
branch  no_sub if Rs < Rd 
sub     Rd from Rs  
incr    Rq {set quotient digit to 1}

no_sub: decr    Rc          {decrement counter by 1}
branch  d_loop if Rc  0

{Store the quotient and remainder}
store   Rq into quotient
store   Rs into remainder

d_by_0: ...
d_ovfl: ...
d_done: ...

Rs Rq

Rd
0  0   .  .  .   0  0  0  0

2   dk

Carry 
 Flag

Shifted Partial 
   Remainder

Shifted Partial 
    Quotient

Partial Remainder  
    (2k – j Bits)

Partial Quotient 
       (j Bits)

Next 
quotient 
digit 
inserted 
here 

Divisor  d

Fig. 13.3   
Register usage 
for programmed 
division.
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Time Complexity of Programmed Division

Assume k-bit words

k iterations of the main loop
6-8 instructions per iteration, depending on the quotient bit

Thus, 6k + 3 to 8k + 3 machine instructions,
ignoring operand loads and result store

k = 32 implies 220+ instructions on average

This is too slow for many modern applications!

Microprogrammed division would be somewhat better
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13.3  Restoring Hardware Dividers

Fig. 13.5    Shift/subtract sequential restoring divider.

 

Quotient q 

Mux 

Adder 
out c 

0      1 

Partial remainder s   (initial value z) 

Divisor d 

Shift 

Shift 

 Load 

1 
in c 

(j) 

Quotient 
digit 

selector 

q k–j 

MSB of 
2s (j–1) 

k 

k 

k 

Trial difference 

k bits k bits

2z

2k d

0

In 2’s-complement 
arithmetic, adding 
a negative value 
to a positive value 
produces cout = 1 if 
the result is positive
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Example of Restoring 
Unsigned Division

Fig. 13.6     Example of restoring 
unsigned division.

=======================
z 0 1 1 1   0 1 0 1
24d 0   1 0 1 0
–24d 1   0 1 1 0
=======================
s(0) 0   0 1 1 1   0 1 0 1 
2s(0) 0   1 1 1 0   1 0 1 
+(–24d) 1   0 1 1 0    
––––––––––––––––––––––––
s(1) 0   0 1 0 0   1 0 1 Positive, so set q3 = 1
2s(1) 0   1 0 0 1   0 1 
+(–24d) 1   0 1 1 0    
––––––––––––––––––––––––
s(2) 1   1 1 1 1   0 1 Negative, so set q2 = 0
s(2)=2s(1) 0   1 0 0 1   0 1 and restore
2s(2) 1   0 0 1 0   1 
+(–24d) 1   0 1 1 0    
––––––––––––––––––––––––
s(3) 0   1 0 0 0   1 Positive, so set q1 = 1
2s(3) 1   0 0 0 1 
+(–24d) 1   0 1 1 0    
––––––––––––––––––––––––
s(4) 0   0 1 1 1 Positive, so set q0 = 1
s 0 1 1 1 
q 1 0 1 1
=======================

No overflow, because
(0111)two <  (1010)two
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Indirect Signed Division

In division with signed operands, q and s are defined by

z = d  q + s sign(s) = sign(z) |s | < |d |

Examples of division with signed operands

z = 5 d = 3  q = 1 s = 2

z = 5 d = –3  q = –1 s = 2

z = –5 d = 3  q = –1 s = –2

z = –5 d = –3  q = 1 s = –2

Magnitudes of q and s are unaffected by input signs
Signs of q and s are derivable from signs of z and d

Will discuss direct signed division later

(not q = –2, s = –1)
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13.4  Nonrestoring and Signed Division
The cycle time in restoring division must accommodate: 

Shifting the registers
Allowing signals to propagate through the adder
Determining and storing the next quotient digit
Storing the trial difference, if required

 

Quotient q 

Mux 

Adder 
out c 

0      1 

Partial remainder s   (initial value z) 

Divisor d 

Shift 

Shift 

 Load 

1 
in c 

(j) 

Quotient 
digit 

selector 

q k–j 

MSB of 
2s (j–1) 

k 

k 

k 

Trial difference 

Later events depend on earlier 
ones in the same cycle, causing 
a lengthening of the clock cycle

Nonrestoring division to the rescue!

Assume qk–j = 1 and subtract
Store the result as the new PR 

(the partial remainder can 
become incorrect, hence
the name “nonrestoring”)
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Justification for Nonrestoring Division

Why it is acceptable to store an incorrect value in the
partial-remainder register?

Shifted partial remainder at start of the cycle is u

Suppose subtraction yields the negative result u – 2kd

Option 1: Restore the partial remainder to correct value u,
shift left, and subtract to get 2u – 2kd

Option 2: Keep the incorrect partial remainder u – 2kd,
shift left, and add to get 2(u – 2kd) + 2kd = 2u – 2kd
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Example of Nonrestoring 
Unsigned Division

Fig. 13.7     Example of 
nonrestoring unsigned division.

=======================
z 0 1 1 1   0 1 0 1
24d 0   1 0 1 0
–24d 1   0 1 1 0
=======================
s(0) 0   0 1 1 1   0 1 0 1 
2s(0) 0   1 1 1 0   1 0 1 Positive,
+(–24d) 1   0 1 1 0    so subtract
––––––––––––––––––––––––
s(1) 0   0 1 0 0   1 0 1 
2s(1) 0   1 0 0 1   0 1 Positive, so set q3 = 1
+(–24d) 1   0 1 1 0    and subtract
––––––––––––––––––––––––
s(2) 1   1 1 1 1   0 1 
2s(2) 1   1 1 1 0   1 Negative, so set q2 = 0
+24d 0   1 0 1 0    and add
––––––––––––––––––––––––
s(3) 0   1 0 0 0   1 
2s(3) 1   0 0 0 1 Positive, so set q1 = 1
+(–24d) 1   0 1 1 0    and subtract
––––––––––––––––––––––––
s(4) 0   0 1 1 1 Positive, so set q0 = 1
s 0 1 1 1 
q 1 0 1 1
=======================

No overflow: (0111)two <  (1010)two

10  16

11
7

117

Decimal
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Graphical Depiction of 
Nonrestoring Division

Fig. 13.8    Partial remainder 
variations for restoring and 
nonrestoring division.
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(b) Nonrestoring 

Example

(0 1 1 1   0 1 0 1)two / (1 0 1 0)two

(117)ten / (10)ten
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Convergence of the 
Partial Quotient to q

In restoring division, the 
partial quotient converges 
to q from below

Example

(0 1 1 1   0 1 0 1)two / (1 0 1 0)two 

(117)ten/(10)ten = (11)ten = (1011)two

In nonrestoring division, 
the partial quotient may 
overshoot q, but converges 
to it after some oscillations 0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111
Partial quotient

Iteration
0 1 2 3 4

q

q(1) q(2)

q(3)

q(4)

q(2)

Restoring

Nonrestoring

q(0)
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Nonrestoring Division with Signed Operands

Restoring division
qk–j = 0 means no subtraction (or subtraction of 0)
qk–j = 1 means subtraction of d

Nonrestoring division
We always subtract or add
It is as if quotient digits are selected from the set {1, 1}:

1 corresponds to subtraction 1 corresponds to addition

Our goal is to end up with a remainder that matches the sign
of the dividend

This idea of trying to match the sign of s with the sign of z, leads to
a direct signed division algorithm

if sign(s) = sign(d) then qk–j = 1 else qk–j = 1

Example:   q = . . . 0 0 0 1 . . .
. . . 1 1 1 1 . . .
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Quotient Conversion and Final Correction

Partial remainder variation 
and selected quotient 
digits during nonrestoring 
division with d > 0

d

0

d

+d

d

d

d

+d

+d

2
2

2

2
2

1         1       1        1        1       1

z

0         1       0        0         1         1

1 1       0        0         1         1         1

Quotient with digits 1 and 1 

Final correction step if sign(s)  sign(z):
Add d to, or subtract d from, s; subtract 1 from, or add 1 to, q

Check: 32 + 16 – 8 – 4 + 2 + 1 = 25 = 64 + 32 + 4 + 2 + 1

Replace 1s with 0s

Shift left, complement MSB, 
and set LSB to 1 to get the 
2’s-complement quotient

1         1       0        1         0         0         0
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Example of Nonrestoring 
Signed Division

Fig. 13.9     
Example of 
nonrestoring 
signed 
division.

========================
z 0 0 1 0   0 0 0 1
24d 1   1 0 0 1
–24d 0   0 1 1 1
========================
s(0) 0   0 0 1 0   0 0 0 1 
2s(0) 0   0 1 0 0   0 0 1 sign(s(0))  sign(d),
+24d 1   1 0 0 1    so set q3 = 1 and add
––––––––––––––––––––––––
s(1) 1   1 1 0 1   0 0 1 
2s(1) 1   1 0 1 0   0 1 sign(s(1)) = sign(d), 
+(–24d) 0   0 1 1 1    so set q2 = 1 and subtract
––––––––––––––––––––––––
s(2) 0   0 0 0 1   0 1 
2s(2) 0   0 0 1 0   1 sign(s(2))  sign(d),
+24d 1   1 0 0 1    so set q1 = 1 and add
––––––––––––––––––––––––
s(3) 1   1 0 1 1   1 
2s(3) 1   0 1 1 1 sign(s(3)) = sign(d), 
+(–24d) 0   0 1 1 1    so set q0 = 1 and subtract
––––––––––––––––––––––––
s(4) 1   1 1 1 0 sign(s(4))  sign(z),
+(–24d) 0   0 1 1 1    so perform corrective subtraction
––––––––––––––––––––––––
s(4) 0   0 1 0 1   
s 0 1 0 1 
q 1 11 1
========================

p =     0  1  0  1 Shift, compl MSB
1 1  0  1  1 Add 1 to correct

1  1  0  0     Check: 33/(7) = 4  



May 2015 Computer Arithmetic, Division Slide 25

Nonrestoring Hardware Divider

Fig. 13.10    Shift-subtract sequential nonrestoring divider. 
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13.5  Division by Constants
Software and hardware aspects:
As was the case for multiplications by constants, optimizing compilers 
may replace some divisions by shifts/adds/subs; likewise, in custom 
VLSI circuits, hardware dividers may be replaced by simpler adders

Method 1: Find the reciprocal of the constant and multiply (particularly 
efficient if several numbers must be divided by the same divisor)

Method 2: Use the property that for each odd integer d, there exists 
an odd integer m such that d  m = 2n – 1; hence, d = (2n – 1)/m and

Number of shift-adds required is proportional to log k

Multiplication by constant Shift-adds

)21)(21)(21(
2)21(212

42 nnn
nnnn

zmzmzm
d
z 

 






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Example Division by a Constant

)21)(21)(21(
2)21(212

42 nnn
nnnn

zmzmzm
d
z 

 







Example: Dividing the number z by 5, assuming 24 bits of precision. 
We have d = 5, m = 3, n = 4; 5  3 = 24 – 1

Instruction sequence for division by 5

q  z +  z shift-left  1 {3z computed}
q  q +  q shift-right  4 {3z(1+2–4) computed}
q  q +  q shift-right  8 {3z(1+2–4)(1+2–8) computed}
q  q +  q shift-right  16 {3z(1+2–4)(1+2–8)(1+2–16) computed}
q  q shift-right  4 {3z(1+2–4)(1+2–8)(1+2–16)/16 computed}

)21)(21)(21(
16
3

)21(2
3

12
3

5
1684

444


 






zzzz

5 shifts
4 adds
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Numerical Examples for Division by 5
Instruction sequence for division by 5

q  z +  z shift-left  1 {3z computed}
q  q +  q shift-right  4 {3z(1+2–4) computed}
q  q +  q shift-right  8 {3z(1+2–4)(1+2–8) computed}
q  q +  q shift-right  16 {3z(1+2–4)(1+2–8)(1+2–16) computed}
q  q shift-right  4 {3z(1+2–4)(1+2–8)(1+2–16)/16 computed}

Computing 29  5 (z = 29, d = 5)

87   29  +  29  shift-left  1 {3z computed}
92   87  +  87  shift-right  4 {3z(1+2–4) computed}
92   92  +  92  shift-right  8 {3z(1+2–4)(1+2–8) computed}
92   92  +  92  shift-right  16 {3z(1+2–4)(1+2–8)(1+2–16) computed}
5   92  shift-right  4 {3z(1+2–4)(1+2–8)(1+2–16)/16 computed}

Repeat the process for computing 30  5 and comment on the outcome
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13.6  Radix-2 SRT Division

Fig. 13.11    The new partial remainder, s(j), as a function of the shifted 
old partial remainder, 2s(j–1), in radix-2 nonrestoring division. 

SRT division takes its name from Sweeney, Robertson, and Tocher, 
who independently discovered the method

–2d 
 

2d 
 

d 
 

 –d 

q   =–1 
 

q   =1 
 

2s 
 

(j–1)
 

s 
 

(j)
 

–j 
 

–j 
 

d 
 

–d 
 

s(j) = 2s(j–1) – q–j d
with  s(0) = z
s(k) = 2ks
q–j  {1, 1}
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2d 
 

d 
 

–d 

q   =–1 
 

q   =0 
 

q   =1 
 

2s 
 

(j–1)
 

s 
 

(j)
 

–j 
 

–j 
 

–j 
 

d 
 

–d 
 

Allowing 0 as a Quotient Digit in Nonrestoring Division

Fig. 13.12    The new partial remainder, s(j), as a function of the shifted 
old partial remainder, 2s(j–1), with q–j in {1, 0, 1}. 

This method was useful in early computers, because the choice q–j = 0 
requires shifting only, which was faster than shift-and-subtract

s(j) = 2s(j–1) – q–j d
with  s(0) = z
s(k) = 2ks
q–j  {1, 0, 1}
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The Radix-2 SRT Division Algorithm

Fig. 13.13    The relationship between new and old partial remainders 
in radix-2 SRT division. 

We use the comparison constants ½ and ½ for quotient digit selection
2s  +½ means 2s = (0.1xxxxxxxx)2’s-compl
2s < ½ means 2s = (1.0xxxxxxxx)2’s-compl

s(j) = 2s(j–1) – q–j d
with  s(0) = z
s(k) = 2ks
s(j)  [½, ½)
q–j  {1, 0, 1}
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Radix-2 SRT Division with Variable Shifts
We use the comparison constants ½ and ½ for quotient digit selection

For 2s  +½ or 2s = (0.1xxxxxxxx)2’s-compl choose q–j = 1
For 2s < ½ or 2s = (1.0xxxxxxxx)2’s-compl choose q–j = 1

Choose q–j = 0 in other cases, that is, for:
0  2s < +½ or 2s = (0.0xxxxxxxx)2’s-compl
½  2s < 0 or 2s = (1.1xxxxxxxx)2’s-compl

Observation: What happens when the magnitude of 2s is fairly small?

2s = (0.00001xxxx)2’s-compl

2s = (1.1110xxxxx)2’s-compl

Choosing q–j = 0 would lead to the 
same condition in the next step; 
generate 5 quotient digits 0 0 0 0 1

Generate 4 quotient digits 0 0 0 1

Use leading 0s or leading 1s detection circuit to determine how many 
quotient digits can be spewed out at once
Statistically, the average skipping distance will be 2.67 bits
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Example Unsigned Radix-2 
SRT Division

Fig. 13.14   
Example of 
unsigned 
radix-2 SRT 
division.

========================
z . 0 1 0 0   0 1 0 1
d 0 . 1 0 1 0
–d 1 . 0 1 1 0
========================
s(0) 0 . 0 1 0 0   0 1 0 1 
2s(0) 0 . 1 0 0 0   1 0 1  ½, so set q1 = 1
+(d) 1 . 0 1 1 0    and subtract
––––––––––––––––––––––––
s(1) 1 . 1 1 1 0   1 0 1 
2s(1) 1 . 1 1 0 1   0 1 In [½, ½), so set q2 = 0
––––––––––––––––––––––––
s(2) =2s(1) 1 . 1 1 0 1   0 1 
2s(2) 1 . 1 0 1 0   1 In [½, ½), so set q3 = 0
––––––––––––––––––––––––
s(3) =2s(2) 0 . 1 0 1 0   1 
2s(3) 1 . 0 1 0 1 < ½, so set q4 = 1
+d 0 . 1 0 1 0    and add
––––––––––––––––––––––––
s(4) 1 . 1 1 1 1 Negative,
+d 0 . 1 0 1 0    so add to correct
––––––––––––––––––––––––
s(4) 0 . 1 0 0 1   
s 0 . 0 0 0 0   0 1 0 1 
q 0 . 1 0 01 Uncorrected BSD quotient
q 0 . 0 1 1 0 Convert and subtract ulp
========================

In [½, ½), so okay

0.1  Choose 1
1.0  Choose 1
0.0/1.1  Choose 0
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Preview of Fast Dividers

Like multiplication, division is multioperand addition
Thus, there are but two ways to speed it up:

a. Reducing the number of operands (divide in a higher radix)
b. Adding them faster (keep partial remainder in carry-save form)

a 
x 

p 

2 
 

x a 
 

0 
 0 

1 x a 2 
 
1 
 x a 2 

 
2 
 2 

2 
 
3 
 3 

 
x a 

 

 

(a) k  k integer multiplication 

z 

s 

q Divisor  d 

q d 2 3 
3 – 

q d 2 2 
2 – 

q d 2 1 
1 – 

q d 2 0 
0 – 

(b) 2k / k integer division 

Multiplication and 
division as 
multioperand 
addition problems.

There is one complication that makes division inherently more difficult:
The terms to be subtracted from (added to) the dividend are not
known a priori but become known as quotient digits are computed;
quotient digits in turn depend on partial remainders
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14  High-Radix Dividers
Chapter Goals

Study techniques that allow us to obtain
more than one quotient bit in each cycle
(two bits in radix 4, three in radix 8, . . .)

Chapter Highlights
Radix > 2  quotient digit selection harder
Remedy: redundant quotient representation
Carry-save addition reduces cycle time
Quotient digit selection
Implementation methods and tradeoffs
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High-Radix Dividers: Topics

Topics in This Chapter

14.1 Basics of High-Radix Division

14.2 Using Carry-Save Adders

14.3 Radix-4 SRT Division

14.4 General High-Radix Dividers

14.5 Quotient Digit Selection

14.6 Using p-d Plots in Practice
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14.1  Basics of High-Radix Division

Division with left shifts

s(j) = rs(j–1) – qk–j (r k d) with   s(0) = z and
|–shift–| s(k) = r ks
|–––subtract–––|

Radices of practical interest are 
powers of 2, and perhaps 10

Dividend z 

s Remainder 

Quotient  q Divisor  d 

(q  q  ) d 4 1 
3 – 2 two 

4 0 d (q  q  ) 1 – 0 two 

Fig. 14.1    
Radix-4 
division in 
dot notation

k digits k digits

r z

qk–j rk d

0
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Difficulty of Quotient Digit Selection
What is the first quotient digit in the following radix-10 division?

_____________
2 0 4 3 | 1 2 2 5 7 9 6 8

The problem with the pencil-and-paper division algorithm is that there 
is no room for error in choosing the next quotient digit

In the worst case, all k digits of the divisor and k + 1 digits in the partial 
remainder are needed to make a correct choice

12 / 2 = 6
122 / 20 = 6

1225 / 204 = 6
12257 / 2043 = 5

Suppose we used the redundant signed digit set [–9, 9] in radix 10

Then, we could choose 6 as the next quotient digit, knowing that we can
recover from an incorrect choice by using negative digits: 5 9 = 6 -1
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Examples of High-Radix Division
Radix-4 integer division Radix-10 fractional division
====================== =================
z 0 1 2 3 1 1 2 3 zfrac . 7 0 0 3
44d 1 2 0 3 dfrac . 9 9
====================== =================
s(0) 0 1 2 3 1 1 2 3 s(0) . 7 0 0 3
4s(0) 0 1 2 3 1 1 2 3 10s(0) 7 . 0 0 3
–q3 44d 0 1 2 0 3 {q3 = 1} –q–1d 6 . 9 3 {q–1 = 7}
––––––––––––––––––––––– ––––––––––––––––––
s(1) 0 0 2 2 1 2 3 s(1) . 0 7 3
4s(1) 0 0 2 2 1 2 3 10s(1) 0 . 7 3
–q2 44d 0 0 0 0 0 {q2 = 0} –q–2d 0 . 0 0 {q–2 = 0}
––––––––––––––––––––––– ––––––––––––––––––
s(2) 0 2 2 1 2 3 s(2) . 7 3
4s(2) 0 2 2 1 2 3 sfrac . 0 0 7 3
–q1 44d 0 1 2 0 3 {q1 = 1} qfrac . 7 0
––––––––––––––––––––––– =================
s(3) 1 0 0 3 3
4s(3) 1 0 0 3 3
–q0 44d 0 3 0 1 2 {q0 = 2}
–––––––––––––––––––––––
s(4) 1 0 2 1
s 1 0 2 1
q 1 0 1 2
======================

Fig. 14.2     Examples of 
high-radix division with integer 
and fractional operands.
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14.2  Using Carry-Save Adders

Fig. 14.3     Constant thresholds used for quotient digit selection 
in radix-2 division with qk–j in {–1, 0, 1} .

–2d 2d

d

–d

q   =–1

q   =0 q   =1

2s (j–1)

s (j)

–j

–j

–j

d–d

–1/2 0
Choose –1 Choose 0 Choose 1

–1/0 0/+1
Overlap Overlap
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Quotient Digit Selection Based on Truncated PR

Fig. 14.3

–2d 2d

d

–d

q   =–1

q   =0 q   =1

2s (j–1)

s (j)

–j

–j

–j

d–d

–1/2 0
Choose –1 Choose 0 Choose 1

–1/0 0/+1
Overlap Overlap

Sum part of 2s(j–1):     u = (u1u0 . u–1u–2 . . .)2’s-compl
Carry part of 2s(j–1):    v = (v1v0 . v–1v–2 . . .)2’s-compl

Approximation to the partial remainder:

t = u[–2,1] + v[–2,1]       {Add the 4 MSBs of u and v} 

t := u[–2,1] + v[–2,1]
if t < –½ 
then q–j = –1
else if t ≥ 0 

then q–j = 1
else q–j = 0
endif 

endif

Max error in 
approximation

< ¼ + ¼ = ½ 

Error in [0, ½)
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Divider with Partial Remainder in Carry-Save Form

Fig. 14.4    Block diagram of a 
radix-2 divider with partial 
remainder in stored-carry form.

Carry v 

Mux 

Adder 

0      1 

Divisor d 

k k 

Carry-save adder 

 

Select 
     q  –j 

4 bits Shift left 

2s 

+ulp for 
2’s compl 

Sum u 

Non0 
(enable) 

Sign 
(select) 

0, d, or d’ 

Carry Sum 
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Why We Cannot Use Carry-Save PR with SRT Division

Fig. 14.5    Overlap regions in radix-2 SRT division.
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(j)
 

–j 
 

–j 
 

–j 
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–d 
 

  1 – d 

 –1 
 

  1 
 

 –1/2 
 

  1/2 
 

 1 – d
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14.4  Choosing the Quotient Digits

Fig. 14.6    A p-d plot for radix-2 division with d  [1/2,1), 
partial remainder in [–d, d), and quotient digits in [–1, 1]. 
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Fig. 14.3
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Design of the Quotient Digit Selection Logic

4-bit adder

Combinational 
logic

Non0Sign

Shifted sum = 
(u1u0 . u1u2 . . .)2’s-compl

Shifted carry = 
(v1v0 . v1v2 . . .)2’s-compl

Approx shifted PR = (t1t0 . t1t2)2’s-compl

Non0 =  t1  t0  t–1 =  (t1 t0 t1)
Sign =   t1 (t0  t1)

t := u[–2,1] + v[–2,1]
if t < –½ 
then q–j = –1
else if t ≥ 0 

then q–j = 1
else q–j = 0
endif 

endif
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14.3  Radix-4 SRT Division

Fig. 14.7     New versus shifted old partial remainder in 
radix-4 division with q–j in [–3, 3]. 

–4d 4d

d

–d

4s(j–1)
–3 –2 –1 0 +1 +2 +3

s (j)

Radix-4 fractional division with left shifts and q–j  [–3, 3]

s(j) = 4s(j–1) – q–j d with   s(0) = z and   s(k) = 4ks
|–shift–|
|––subtract––|

Two difficulties:
How do you choose from among the 7 possible values for qj?
If the choice is +3 or 3, how do you form 3d?
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Building the p-d Plot for Radix-4 Division

Fig. 14.8    A p-d plot for radix-4 SRT division 
with quotient digit set [–3, 3]. 
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–4d 4d

d

–d

4s(j–1)
–3 –2 –1 0 +1 +2 +3

s(j)

2d/3 

8d/3
–2d/3 

–8d/3

Restricting the Quotient Digit Set in Radix 4

Fig. 14.9     New versus shifted old partial remainder in 
radix-4 division with q–j in [–2, 2].

Radix-4 fractional division with left shifts and q–j  [–2, 2]

s(j) = 4s(j–1) – q–j d with   s(0) = z and   s(k) = 4ks
|–shift–|
|––subtract––|

For this restriction to be feasible, we must have:
s  [hd, hd) for some h < 1, and 4hd – 2d  hd
This yields h  2/3 (choose h = 2/3 to minimize the restriction)



May 2015 Computer Arithmetic, Division Slide 49

 d 

p 

.100 .101 .110 .111 

10.1 

10.0 

01.1 
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Choose 2 

Choose 0 
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 4d/3 

 2d/3 

  d/3 

Building the p-d Plot with Restricted Radix-4 Digit Set

Fig. 14.10    A p-d plot for radix-4 SRT division 
with quotient digit set [–2, 2]. 
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14.4  General High-Radix Dividers

Carry v 

CSA tree 

Adder 

Divisor d 

k k 

 

Select 
     q  –j 

Shift left 

2s 
Sum u 

Multiple 
generation / 

selection 

Carry Sum 

q  –j 

. . . q  –j |     | d 
or its complement 

Fig. 14.11    Block diagram of 
radix-r divider with partial 
remainder in stored-carry form.

Process to derive the details:

Radix r

Digit set [–, ] for q–j

Number of bits of p (v and u) 
and d to be inspected

Quotient digit selection unit 
(table or logic)

Multiple generation/selection 
scheme

Conversion of redundant q to 
2’s complement
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Multiple Generation for High-Radix Division

Example: Digit set [–6, 6] for r = 8  

Option 1: precompute 3a and 5a

Option 2: generate a multiple 
|q–j|a as a set of two numbers, 
one chosen from {0, a, 2a} 
and another from {0, a, 4a}

0      1      2

0    a 2a

0      1      2

0    a 4a
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14.5  Quotient Digit Selection
Radix-r division with quotient digit set [–, ],  < r – 1
Restrict the partial remainder range, say to [–hd, hd)
From the solid rectangle in Fig. 15.1, we get rhd – d  hd or h  /(r – 1)
To minimize the range restriction, we choose h = /(r – 1)

Fig. 14.12    The relationship between new and shifted old partial 
remainders in radix-r division with quotient digits in [–, +].

Example: r = 4,  = 2  h = 2/3

r – 1+10 +–r + 1 – –1

dd

hd hd

–hd –hd
rhd–rhd

–d –d–rd rd

d

–d

. . . .  .  . .  .  . . . .

rs(j–1)

s(j)

0
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Why Using Truncated p and d Values Is Acceptable

Fig. 14.13    A part of p-d plot showing the overlap region for choosing the 
quotient digit value  or +1 in radix-r division with quotient digit set [–, ]. 

p  

d  

 Choose  + 1 

Choose  

 d  min 

Overlap 
region 

(h +  + 1)d 

 A 

(h + )d 

(–h +  + 1)d 

(–h + )d 

 B 

4 bits of p 
3 bits of d 

3 bits of p 
4 bits of d 

Note: h =  / (r – 1) 

Standard p
xx.xxxx

Carry-save p
xx.xxxxx
xx.xxxxx
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Table Entries in the Quotient Digit Selection Logic

Fig. 14.14    A part of p-d plot showing an overlap region 
and its staircase-like selection boundary.

p

d



 +1
(h +   )d

(–h +   )d

(h +   + 1)d

(–h +   + 1)d

Note: h =    /(r–1)














 











 
 

 



or

Origin
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14.6  Using p-d Plots in Practice

Fig. 14.15    Establishing upper bounds on 
the dimensions of uncertainty rectangles.
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 d  min 

Overlap 
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(h +   1)d 

(h + )d 

d  

 d  min d  + 

(h +   1)  d  min 

(h + )  d  min 

Smallest d occurs 
for the overlap region 
of  and  – 1





h
hdd 12min

)12(min  hdp
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Example: Lower Bounds on Precision

)12(min  hdp

Fig. 14.15

p  

p

d  

Choose  

Choose   1 

 d  min 

Overlap 
region 

(h +   1)d 

(h + )d 

d  

 d  min d  + 

(h +   1)  d  min 

(h + )  d  min 

For r = 4, divisor range [0.5, 1),
digit set [–2, 2], we have  = 2,
dmin = 1/2, h = /(r – 1) = 2/3

Because 1/8 = 2–3 and 2–3  1/6 < 2–2, we must inspect at least 3 bits
of d (2, given its leading 1) and 3 bits of p
These are lower bounds and may prove inadequate
In fact, 3 bits of p and 4 (3) bits of d are required
With p in carry-save form, 4 bits of each component must be inspected

8/1
23/2

13/4)2/1( 



d 6/1)13/4)(2/1( p





h
hdd 12min
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Upper Bounds for Precision

Theorem: Once lower bounds on precision are determined based on d
and p, one more bit of precision in each direction is always adequate

u 
v  

p  

p  

d  

w  

Choose a 

Choose a  1

 d  min 

Overlap 
region 

w  

(a  1 + h)d

(a  h)d 

d  A  

B  

Proof: Let w be the spacing of vertical grid lines
w  d/2  v  p/2  u  p/2
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Some Implementation Details

Fig. 14.16    The asymmetry of 
quotient digit selection process. 
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Fig. 14.17     Example of p-d plot 
allowing larger uncertainty 
rectangles, if the 4 cases marked 
with asterisks are handled as 
exceptions. 
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A Complete 
p-d Plot

5d/3 

4d/3 

d 
1.000 1.001 1.010 1.011 1.100 0.100 0.101 0.110 0.111 1.000 

01.10 

01.01 

01.00 
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00.10 

00.00 

00.01 
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2d/3 

d/3 

–d/3 

–4d/3 

–5d/3 

–2d/3 

2 1 
2 1 

2 1,2 1 
1,2 1 

2 1,2 1 
2 1,2 

Radix r = 4
q–j in [–2, 2]
d in [1/2, 1)
p in [–8/3, 8/3]

Explanation 
of the Pentium 
division bug
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15   Variations in Dividers

Chapter Goals
Discuss some variations in implementing
division schemes and cover combinational,
modular, and merged hardware dividers

Chapter Highlights
Prescaling simplifies q digit selection
Overlapped q digit selection
Parallel hardware (array) dividers
Shared hardware in multipliers/dividers
Square-rooting not special case of division
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Variations in Dividers: Topics

Topics in This Chapter

15.1 Division with Prescaling

15.2 Overlapped Quotient Digit Selection

15.3 Combinational and Array Dividers

15.4 Modular Dividers and Reducers

15.5 The Special Case of Reciprocation

15.6 Combined Multiply/Divide Units
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15.1  Division with Prescaling

Restricting the divisor to the shaded 
area simplifies quotient digit selection.

p

 d  

Choose  + 1 

Choose   

 d  min  d  max 

Choose  + 1

Choose   

Overlap regions of a p-d plot 
are wider toward the high end 
of the divisor range 

If we can restrict the magnitude 
of the divisor to an interval close 
to dmax (say 1 –  < d < 1 + , 
when dmax = 1), quotient digit 
selection may become simpler 

Thus, we perform the division 
(zm)/(dm) for a suitably chosen 
scale factor m (m > 1)

Prescaling (multiplying z and d
by m) should be done without 
real multiplications 
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Examples of Prescaling

Example 1: Unsigned divisor d in [1/2, 1)
When d  [1/2, 3/4), multiply by 1½ [d begins 0.10…]

The prescaled divisor will be in [1 – 1/4, 1 + 1/8)

Example 2: Unsigned divisor d in [1/2, 1)
Case d 

[1/2, 9/16), it begins with 0.1000…, multiply by 2 
[9/16, 5/8), it begins with 0.1001…, multiply by 1 + 1/2 
[5/8, 3/4), it begins with 0.101…, multiply by 1 + 1/2 
[3/4, 1), it begins with 0.11…, multiply by 1 + 1/8

[1/2, 9/16)  2 = [1, 1 + 1/8)
[9/16, 5/8)  (1 + 1/2) = [1 – 5/32, 1 – 1/16)
[5/8, 3/4)  (1 + 1/2) = [1 – 1/16, 1 + 1/8) 
[3/4, 1)  (1 + 1/8) = [1 – 5/32, 1 + 1/8)

The prescaled divisor will be in [1 – 5/32, 1 + 1/8)
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15.2  Overlapped Quotient Digit Selection

Fig. 15.1  Overlapped radix-2 quotient 
digit selection for radix-4 division. A 
dashed line represents a signal pair that 
denotes a quotient digit value in [–1, 1].

Alternative to high-radix 
design when q digit 
selection is too complex 

Compute the next partial 
remainder and resulting q 
digit for all possible choices 
of the current q digit

–d 0  d

Sum

Carry

CSA

CSA CSA

–d d

–d 0  d 

CSA

qk–j

qk–j+1

qk–j

Quotient 
digit 

selector
Mux

Signal bundle

A few bits

This is the same idea as 
carry-select addition

Speculative computation 
(throw transistors at the 
delay problem) is common 
in modern systems
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15.3  Combinational and Array Dividers
Can take the notion of overlapped q digit selection to the extreme of 
selecting all q digits at once      Exponential complexity

By contrast, a fully combinational tree multiplier 
has O(log k) latency and O(k2) cost

O(k log k) conjectured

Can we do as well as multipliers, or at least better than exponential cost, 
for logarithmic-time dividers?

Complexity theory results: It is possible to design dividers
with O(log k) latency and O(k4) cost
with O(log k log log k) latency and O(k2) cost

These theoretical constructions have not led to practical designs
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Restoring Array Divider

Fig. 15.7   Restoring array 
divider composed of 
controlled subtractor cells.

z

z

–5

–6

  s        s        s –4       –5       –6

q

q

q

–1

–2

–3

FS

Cell

z        z        z        z–1       –2       –3       –4

1   0

         d        d        d         –1       –2       –3

0

0

0

 –1 –2 –3 –4 –5 –6 
 –1 –2 –3 
 –1 –2 –3 
          –4 –5 –6

Dividend  z = .z  z  z  z  z  z 
Divisor   d = .d  d  d 
Quotient  q = .q  q  q 
Remainder s = .0  0  0  s  s  s
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Nonrestoring Array Divider

Fig. 15.8    Nonrestoring 
array divider built of controlled 
add/subtract cells.

Dividend  z = z .z  z  z  z  z  z 
Divisor   d = d .d  d  d 
Quotient  q = q .q  q  q 
Remainder s = 0 .0  0  s  s  s  s

0  –1 –2 –3 –4 –5 –6 
0  –1 –2 –3 
0  –1 –2 –3 
        –3 –4 –5 –6

z

z

z

–4

–5

–6

s        s        s        s–3       –4       –5       –6

q

q

q

0

–1

–2

q –3

d        d        d        d0        –1       –2       –3
z        z        z        z0        –1       –2       –3

FA

XOR

Cell

1

Similarity to 
array multiplier 
is deceiving

Critical 
path
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Speedup Methods for Array Dividers

Critical 
path

Dividend  z = z .z  z  z  z  z  z 
Divisor   d = d .d  d  d 
Quotient  q = q .q  q  q 
Remainder s = 0 .0  0  s  s  s  s

0  –1 –2 –3 –4 –5 –6 
0  –1 –2 –3 
0  –1 –2 –3 
        –3 –4 –5 –6

z

z

z

–4

–5

–6

s        s        s        s–3       –4       –5       –6

q

q

q

0

–1

–2

q –3

d        d        d        d0        –1       –2       –3
z        z        z        z0        –1       –2       –3

FA

XOR

Cell

1

However, we still need to know the carry/borrow-out from each row
Solution: Insert a carry-lookahead circuit between successive rows
Not very cost-effective; thus not used in practice

Idea: Pass the partial 
remainder downward 
in carry-save form to 
speed up the 
operation of each row

Fig. 15.8
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15.4  Modular Dividers and Reducers

Given dividend z and divisor d, with d  0, a modular divider computes

q =  z / d and s = z mod d = zd

The quotient q is, by definition, an integer but the inputs z and d do not 
have to be integers; the modular remainder is always positive

Example:

–3.76 / 1.23 = –4 and –3.761.23 =  1.16

The quotient and remainder of ordinary division are 3 and 0.07

A modular reducer computes only the modular remainder and is in many 
cases simpler than a full-blown divider



May 2015 Computer Arithmetic, Division Slide 70

Montgomery Modular Reduction
Very efficient for reducing large numbers (100s of bits wide)
The radix-2 version below is suitable for low-cost hardware realization
Software versions are based on radix 232 or 264 (1 word = 1 digit)

Assume a, x, q, and other values are k-bit pseudoresidues (can be > m)

Pick R such that R = 1 mod m
Montgomery multiplication computes axR–1 mod m, instead of ax mod m
Represent any number y as yR mod m (known as the M-code for y)
R = 1 mod m ensures that numbers in [0, m – 1] have distinct M-codes

Multiplication: t = (aR)(xR)R–1 mod m = (ax)R mod m = M-code for ax
Initial conversion: Find yR by applying Montgomery’s method to y and R2

Final reconversion: Find y from t = yR by M-multiplying 1 and t

Problem: Compute q = ax mod m, where m < 2k

Straightforward solution: Compute ax as usual; then reduce mod m

Incremental reduction after adding each partial product is more efficient
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Example Montgomery Modular Multiplication
======================= ===============
a 1 0 1 0 a 1 0 1 0
24x 1 0 1 1 x 1 0 1 1======================= ===============
p(0) 0 0 0 0 p(0) 0 0 0 0
+x0a 1 0 1 0 +x0a 1 0 1 0
–––––––––––––––––––––––– –––––––––––––––
2p(1) 0 1 0 1 0 2p(1) 0 1 0 1 0 Even
p(1) 0 1 0 1 0 p(1) 0 1 0 1
+x1a 1 0 1 0 +x1a 1 0 1 0
–––––––––––––––––––––––– –––––––––––––––
2p(2) 0 1 1 1 1 0 2p(2) 0 1 1 1 1 Odd
p(2) 0 1 1 1 1 0 +13 1 1 0 1
+x2a 0 0 0 0 –––––––––––––––
–––––––––––––––––––––––– 2p(2) 1 1 1 0 0
2p(3) 0 0 1 1 1 1 0 p(2) 1 1 1 0
p(3) 0 0 1 1 1 1 0 +x2a 0 0 0 0
+x3a 1 0 1 0 –––––––––––––––
–––––––––––––––––––––––– 2p(3) 0 1 1 1 0 Even
2p(4) 0 1 1 0 1 1 1 0 p(3) 0 1 1 1
p(4) 0 1 1 0 1 1 1 0 +x3a 1 0 1 0
======================= –––––––––––––––

2p(4) 1 0 0 0 1 Odd
+13 1 1 0 1–––––––––––––––
2p(4) 1 1 1 1 0
p(4) 1 1 1 1=============== 

Example:  r = 2;  m = 13;  
R = 16 = r 4;  R –1 = 9 mod 13 
(because 16  9 = 1 mod 13)

Fig. 15.4

(a) Ordinary

(b) Mod 13
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Advantages of Montgomery’s Method

Standard reduction is based on subtracting a multiple of m from the 
result depending on the most significant bit(s)

However, MSBs are not readily known if we use carry-save numbers

In Montgomery reduction, the decision is based on LSB(s), thus allowing 
the use of carry-save arithmetic as well as parallel processing
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15.5  The Special Case of Reciprocation

(a) Squaring (b) Square-rooting?

Multiplier

p = ax

a x

y

y2

Divider

q = z / d

z d

y

 y

(c) Reciprocation

Divider

q = z / d

z d

1 / y

y1

Fig. 15.5   Square-rooting is not a special case of division, 
but reciprocation is.

Key question: Is reciprocation any faster than division?
Answer: Not if a conventional digit recurrence algorithm is used
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Doubling the Speed of Reciprocation
Q  1/d with error  2–k/2

t = Q(2 – Qd)  1/d; error  2–k

Fig. 15.6   Hybrid evaluation of the reciprocal 1/d by an approximate 
reciprocation stage and a refinement stage that operate concurrently.

A: Digit-recurrence 
reciprocation to obtain 

Q  1/d

Time saved

d B: Digit-recurrence 
refinement to obtain 

q = Q(2 – Qd)

q
q–j

Iterations for box A

Iterations for box B

Iterations for simple digit-recurrence reciprocation

s(j)

s(j+1) = 2s(j) – q–j d,             with 2s(0) = 1
t(j+1) = 4t(j) + q–j (4s(j) – q–j d), with t(0) = 0
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15.6  Combined Multiply/Divide Units

Quotient

k

Partial   Remainder

Divisor

add/sub

k-bit adder

k

cout cin

Complement

qk–j
 
2s (j–1)
MSB of

Divisor Sign

    Complement of  
Partial Remainder Sign

Fig. 9.4 Fig. 13.10

Multiplier x 

Mux 

Adder 

0 

out c 

0       1 

Doublewidth partial product p 

Multiplicand a 

Shift 

Shift 

(j) 

j x 

x a j 

k 

k 

k 

Similarity of blocks in multipliers and dividers (only shift direction is different)
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Single Unit for Sequential Multiplication and Division

The control unit 
proceeds through 
necessary steps 
for multiplication 
or division 
(including using 
the appropriate 
shift direction)

Fig. 15.9   Sequential radix-2 multiply/divide unit.

Multiplier x 
or quotient q 

Mux 

Adder 
out c 

0      1 

Partial product p or 
partial remainder  s 

Multiplicand a 
or divisor d 

 Shift control 

Shift 

Enable 

in c 

q k–j 

MSB of 2s (j–1) 

k 

k 

k 

j x 

MSB of p (j+1) 

 Divisor sign 

Multiply/ 
divide 
control  

Select 

 Mul  Div 

The slight speed 
penalty owing to 
a more complex 
control unit is 
insignificant
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Similarities of Array Multipliers and Array Dividers

Dividend  z = z .z  z  z  z  z  z 
Divisor   d = d .d  d  d 
Quotient  q = q .q  q  q 
Remainder s = 0 .0  0  s  s  s  s

0  –1 –2 –3 –4 –5 –6 
0  –1 –2 –3 
0  –1 –2 –3 
        –3 –4 –5 –6

z

z

z
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–5

–6

s        s        s        s–3       –4       –5       –6

q

q

q

0

–1

–2

q–3

d        d        d        d0        –1       –2       –3
z        z        z        z0        –1       –2       –3

FA

XOR

Cell

1

Fig. 11.4 Fig. 15.8
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Single Unit for Array Multiplication and Division

Each cell within the 
array can act as a 
modified adder or 
modified subtractor 
based on control 
input values

Fig. 15.10   I/O specification of a universal circuit 
that can act as an array multiplier or array divider.

In some designs, 
squaring and 
square-rooting 
functions are also 
included within the 
same array

Multiplicand 
 or divisor

Multiplier

Product or remainder

Quotient

Mul/Div

Additive input 
 or dividend 
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16   Division by Convergence

Chapter Goals
Show how by using multiplication as the
basic operation in each division step,
the number of iterations can be reduced

Chapter Highlights
Digit-recurrence as convergence method
Convergence by Newton-Raphson iteration
Computing the reciprocal of a number
Hardware implementation and fine tuning
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Division by Convergence: Topics

Topics in This Chapter

16.1 General Convergence Methods

16.2 Division by Repeated Multiplications

16.3 Division by Reciprocation

16.4 Speedup of Convergence Division

16.5 Hardware Implementation

16.6 Analysis of Lookup Table Size
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16.1  General Convergence Methods
Sequential digit-at-a-time (binary or high-radix) division 
can be viewed as a convergence scheme

As each new digit of q = z / d is determined, the quotient value 
is refined, until it reaches the final correct value

Digit

0.101101

q

0

1Meanwhile, 
the remainder
s = z – q  d
approaches 0; 
the scaled 
remainder is kept 
in a certain range, 
such as [–d, d)

Convergence is from below in restoring division and oscillating 
in nonrestoring division
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Elaboration on Scaled Remainder in Division

Quotient digit selection 
keeps the scaled 
remainder bounded 
(say, in the range 
–d to d) to ensure the 
convergence of the 
true remainder to 0

The partial remainder s(j) in division recurrence isn’t the true remainder 
but a version scaled by 2j

Division with left shifts

s(j) = 2s(j–1) – qk–j (2k d) with   s(0) = z and
|–shift–| s(k) = 2ks
|–––subtract–––|

Digit

0.101101

q

0

1
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Recurrence Formulas for Convergence Methods

u (i+1) = f(u (i), v (i), w (i))
v (i+1) = g(u (i), v (i), w (i))
w (i+1) = h(u (i), v (i), w (i))

u (i+1) = f(u (i), v (i))
v (i+1) = g(u (i), v (i))

The complexity of this method depends on two factors:

a.  Ease of evaluating f and g (and h)
b.  Rate of convergence (number of iterations needed)

Constant

Desired
function

Guide the iteration such that one of the values converges 
to a constant (usually 0 or 1)

The other value then converges to the desired function
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16.2  Division by Repeated Multiplications

Remainder often not needed, but can be obtained 
by another multiplication if desired: s = z – qd

Motivation: Suppose add takes 1 clock and multiply 3 clocks;
64-bit divide takes 64 clocks in radix 2, 32 in radix 4

 Divide via multiplications faster if 10 or fewer needed 

)1()1()0(

)1()1()0(




 m

m

xxdx
xxzx

d
zq




Idea:

Force to 1
Converges to q

To turn the identity into a division algorithm, we face three questions:

1.  How to select the multipliers x(i) ?
2.  How many iterations (pairs of multiplications)? 
3.  How to implement in hardware?
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Formulation as a Convergence Computation

)1()1()0(

)1()1()0(




 m

m

xxdx
xxzx

d
zq




Idea:

Force to 1
Converges to q

d (i+1) =  d (i) x (i) Set d (0) = d; make d (m) converge to 1
z (i+1) =  z (i) x (i) Set z (0) = z; obtain z/d = q  z (m)

Question 1:  How to select the multipliers x (i) ?          x (i) =  2 – d (i)

This choice transforms the recurrence equations into:

d (i+1) =  d (i) (2  d (i)) Set d (0) = d; iterate until d (m)  1
z (i+1) =  z (i) (2  d (i)) Set z (0) = z; obtain z/d = q  z (m)

u (i+1) = f(u (i), v (i))
v (i+1) = g(u (i), v (i)) Fits the general form



May 2015 Computer Arithmetic, Division Slide 86

Determining the Rate of Convergence

d (i+1) =  d (i) (2  d (i)) Set d (0) = d; make d (m) converge to 1
z (i+1) =  z (i) (2  d (i)) Set z (0) = z; obtain z/d = q  z (m)

Question 2:  How quickly does d (i) converge to 1?          

We can relate the error in step i + 1 to the error in step i:

d (i+1) =  d (i) (2  d (i))  = 1 – (1 – d (i))2

1 – d (i+1) =  (1 – d (i))2

For 1 – d (i)  , we get 1 – d (i+1)  2: Quadratic convergence

In general, for k-bit operands, we need

2m – 1 multiplications and m 2’s complementations

where m = log2 k
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Quadratic Convergence
Table 16.1    Quadratic convergence in computing z/d
by repeated multiplications, where 1/2  d = 1 – y < 1

–––––––––––––––––––––––––––––––––––––––––––––––––––––––
i d (i) = d (i–1) x (i–1), with d (0) = d x (i) = 2 – d (i)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––
0 1 – y = (.1xxx xxxx xxxx xxxx)two  1/2 1 + y
1 1 – y 2 = (.11xx xxxx xxxx xxxx)two  3/4 1 + y 2

2 1 – y 4 = (.1111 xxxx xxxx xxxx)two  15/16 1 + y 4

3 1 – y 8 = (.1111 1111 xxxx xxxx)two  255/256 1 + y 8

4 1 – y 16 = (.1111 1111 1111 1111)two = 1 – ulp
–––––––––––––––––––––––––––––––––––––––––––––––––––––––
Each iteration doubles the number of guaranteed leading 1s 
(convergence to 1 is from below)

Beginning with a single 1 (d  ½), after log2k iterations we get 
as close to 1 as is possible in a fractional representation
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Graphical Depiction of Convergence to q

Fig. 16.1    Graphical representation of convergence 
in division by repeated multiplications.

1 1 – ulp

d

z

q – 

Iteration i 

d

z

0 1 2 3 4 5 6

(i)

(i)

q 

Question 3 (implementation in 
hardware) to be discussed later
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16.3  Division by Reciprocation

Fig. 16.2   Convergence to a root of 
f(x) = 0 in the Newton-Raphson method.

The Newton-Raphson 
method can be used for 
finding a root of f (x) = 0

f(x)

xx(i+1)x

f(x   )

Tangent at x(i)

Root  x
(i)(i+2)

(i)

(i)

Start with an initial estimate 
x(0) for the root

Iteratively refine the 
estimate via the recurrence

x(i+1) = x(i) – f (x(i)) / f (x(i))

Justification:

tan(i) = f (x(i))
= f (x(i)) / (x(i) – x(i+1))

f (x(i))
tan (i) = f (x(i)) = –––––––

x(i) – x(i+1)
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Computing 1/d by Convergence
1/d is the root of f (x) = 1/x – d

f (x) = –1/x2

Substitute in the Newton-Raphson 
recurrence x(i+1) = x(i) – f (x(i)) / f (x(i)) to get:

x (i+1) =  x (i) (2  x (i)d)

One iteration = Two multiplications + One 2’s complementation 

Error analysis: Let  (i) = 1/d – x(i) be the error at the ith iteration  

 (i+1) = 1/d – x (i+1) = 1/d – x (i) (2 – x (i) d) = d (1/d – x (i))2 = d ( (i))2

Because d < 1, we have  (i+1) < ( (i))2

d

1/d x

f(x)
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Choosing the Initial Approximation to 1/d

With x(0) in the range 0 < x(0) < 2/d, convergence is guaranteed

Justification: |(0) | = |x(0) – 1/d | < 1/d

(1) = |x(1) – 1/d | = d ((0))2 = (d(0))(0) < (0)

1

x

1/x

2

1
0

0

For d in [1/2, 1):

Simple choice x(0) = 1.5

Max error = 0.5 < 1/d

Better approx. x(0) = 4(3 – 1) – 2d
= 2.9282 – 2d

Max error  0.1
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16.4  Speedup of Convergence Division

Division can be performed via 2 log2k – 1 multiplications

This is not yet very impressive
64-bit numbers, 3-ns multiplier   33-ns division 

Three types of speedup are possible:

Fewer multiplications (reduce m) 
Narrower multiplications (reduce the width of some x(i)s)
Faster multiplications

)1()1()0(

)1()1()0(




 m

m

xxdx
xxzx

d
zq



 Compute y = 1/d  
Do the multiplication yz
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Initial Approximation via Table Lookup
Convergence is slow in the beginning: it takes 6 multiplications to get 
8 bits of convergence and another 5 to go from 8 bits to 64 bits

d x(0) x(1) x(2) =  (0.1111 1111 . . . )two

Approx to 1/d

Better approx

Read this value, x(0+), directly from a table, 
thereby reducing 6 multiplications to 2

A 2w  w lookup table is necessary and sufficient for w bits of 
convergence after 2 multiplications 

Example with 4-bit lookup: d = 0.1011 xxxx . . .    (11/16  d < 12/16)
Inverses of the two extremes are 16/11  1.0111 and 16/12  1.0101 
So, 1.0110 is a good estimate for 1/d
1.0110  0.1011 = (11/8)  (11/16) = 121/128 = 0.1111001 
1.0110  0.1100 = (11/8)  (3/4) = 33/32 = 1.000010
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Visualizing the Convergence with Table Lookup

Fig. 16.3    Convergence in division by repeated multiplications 
with initial table lookup.

1 1 – ulp

d

z

q – 

Iterations

After table lookup and 1st 
pair of multiplications, 
replacing several iterations

After the 2nd pair 
of multiplications


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Convergence Does Not Have to Be from Below

Fig. 16.4    Convergence in division by repeated multiplications with 
initial table lookup and the use of truncated multiplicative factors.

1 1 ± ulp

d

z

q ±

Iterations


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Using Truncated Multiplicative Factors

Fig. 16.4    One step 
in convergence 
division with truncated 
multiplicative factors.

1 

Approximate 
iteration 

Precise 
iteration 

B 

A 

i + 1 i  

Iteration 

 (x (i+1) 

d x (0) x (1) x (i) ... 
x (i+1) 

)   T 

d x (0) x (1) x (i) ... 

d x (0) x (1) x (i) ... 

< 2   a 

Example (64-bit multiplication)
Initial step: Table of size 256  8 = 2K bits
Middle steps: Multiplication pairs, with 9-, 17-, and 33-bit multipliers
Final step: Full 64  64 multiplication

Problem 16.9a
A truncated denominator d (i), with a
identical leading bits and b extra bits 
(b  a), leads to a new denominator 
d (i+1) with a + b identical leading bits
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16.5  Hardware Implementation
Repeated multiplications: Each pair of ops involves the same multiplier

d (i+1) =  d (i) (2  d (i)) Set d (0) = d; iterate until d (m)  1
z (i+1) =  z (i) (2  d (i)) Set z (0) = z; obtain z/d = q  z (m)

Fig. 16.6    Two multiplications fully overlapped 
in a 2-stage pipelined multiplier.

z  x(i)(i)

d  x(i)(i)

x(i)z(i)
d(i+1)

d(i+1)

x(i+1)

z  x(i)(i)

d   x(i+1)(i+1)

z(i+1)

2's Compl
z(i+1) x(i+1)

z   x(i+1)(i+1)

d(i+2)

d   x(i+1)(i+1)



May 2015 Computer Arithmetic, Division Slide 98

Implementing Division with Reciprocation
Reciprocation: Multiplication pairs are data-dependent, so they cannot 
be pipelined or performed in parallel

x (i+1) =  x (i) (2  x (i)d)

Options for speedup via a better initial approximation

Consult a larger table
Resort to a bipartite or multipartite table (see Chapter 24)
Use table lookup, followed with interpolation
Compute the approximation via multioperand addition

Unless several multiplications by the same multiplier are needed, 
division by repeated multiplications is more efficient 

However, given a fast method for reciprocation (see Section 24.6), 
using a reciprocation unit with a standard multiplier is often preferred
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16.6  Analysis of Lookup Table Size
Table 16.2    Sample entries in the lookup table replacing the 
first four multiplications in division by repeated multiplications 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––
Address d = 0.1 xxxx xxxx x (0+) = 1. xxxx xxxx
–––––––––––––––––––––––––––––––––––––––––––––––––––––––

55 0011 0111 1010 0101
64 0100 0000 1001 1001

–––––––––––––––––––––––––––––––––––––––––––––––––––––––
Example: Table entry at address 55    (311/512  d <  312/512)

For 8 bits of convergence, the table entry f must satisfy

(311/512)(1 + . f)  1 – 2–8 (312/512)(1 + . f)  1 + 2–8

199/311       .f  101/156          

163.81   ≤   f =  256  . f ≤  165.74

Two choices:   164 = (1010 0100)two or 165 = (1010 0101)two
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A General Result for Table Size

Proof strategy for sufficiency: Represent the table entry 1.f as the 
integer v = 2w  .f and derive upper / lower bound expressions for it. 
Then, show that at least one integer exists between vlb and vub

Theorem 16.1: To get w  5 bits of convergence after the first 
iteration of division by repeated multiplications, w bits of d (beyond 
the mandatory 1) must be inspected. The factor x(0+) read out from 
table is of the form (1.xxx . . . xxx)two, with w bits after the radix point

Proof strategy for necessity: Show that derived conditions cannot 
be met if the table is of size 2k–1 (no matter how wide) or if it is of 
width k – 1 (no matter how large) 

Excluded cases, w < 5: Practically uninteresting (allow smaller table) 

General radix r : Same analysis method, and results, apply


