
May 2015 Computer Arithmetic, Division Slide 1

Part IV
Division

 Number Representation
 Numbers and Arithmetic
 Representing Signed Numbers
 Redundant Number Systems
 Residue Number Systems

 Addition / Subtraction
 Basic Addition and Counting
 Carry-Lookahead Adders
 Variations in Fast Adders
 Multioperand Addition

 Multiplication
 Basic Multiplication Schemes
 High-Radix Multipliers
 Tree and Array Multipliers
 Variations in Multipliers

 Division
 Basic Division Schemes
 High-Radix Dividers
 Variations in Dividers
 Division by Convergence

 Real Arithmetic
 Floating-Point Reperesentations
 Floating-Point Operations
 Errors and Error Control
 Precise and Certifiable Arithmetic

 Function Evaluation
 Square-Rooting Methods
 The CORDIC Algorithms
 Variations in Function Evaluation
 Arithmetic by Table Lookup

 Implementation Topics
 High-Throughput Arithmetic
 Low-Power Arithmetic
 Fault-Tolerant Arithmetic
 Past, Present, and Future

 Parts Chapters

I.

II.

III.

IV.

V.

VI.

VII.

 1.
 2.
 3.
 4.

5.
6.
7.
8.

9.
10.
11.
12.

25.
26.
27.
28.

21.
22.
23.
24.

17.
18.
19.
20.

13.
14.
15.
16.

E
le

m
en

ta
ry

 O
pe

ra
tio

ns

28. Reconfigurable Arithmetic

Appendix: Past, Present, and Future

May 2015 Computer Arithmetic, Division Slide 2

About This Presentation

Edition Released Revised Revised Revised Revised
First Jan. 2000 Sep. 2001 Sep. 2003 Oct. 2005 May 2007

May 2008 May 2009

Second May 2010 Apr. 2011 May 2012 May 2015

This presentation is intended to support the use of the textbook
Computer Arithmetic: Algorithms and Hardware Designs (Oxford
U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated
regularly by the author as part of his teaching of the graduate
course ECE 252B, Computer Arithmetic, at the University of
California, Santa Barbara. Instructors can use these slides freely
in classroom teaching and for other educational purposes.
Unauthorized uses are strictly prohibited. © Behrooz Parhami

May 2015 Computer Arithmetic, Division Slide 3

IV Division

Topics in This Part
Chapter 13 Basic Division Schemes
Chapter 14 High-Radix Dividers
Chapter 15 Variations in Dividers
Chapter 16 Division by Convergence

Review Division schemes and various speedup methods
• Hardest basic operation (fortunately, also the rarest)
• Division speedup methods: high-radix, array, . . .
• Combined multiplication/division hardware
• Digit-recurrence vs convergence division schemes

May 2015 Computer Arithmetic, Division Slide 4

Be fruitful and multiply . . .

Now, divide.

May 2015 Computer Arithmetic, Division Slide 5

13 Basic Division Schemes

Chapter Goals
Study shift/subtract or bit-at-a-time dividers
and set the stage for faster methods and
variations to be covered in Chapters 14-16

Chapter Highlights
Shift/subtract divide vs shift/add multiply
Hardware, firmware, software algorithms
Dividing 2’s-complement numbers
The special case of a constant divisor

May 2015 Computer Arithmetic, Division Slide 6

Basic Division Schemes: Topics

Topics in This Chapter

13.1 Shift/Subtract Division Algorithms

13.2 Programmed Division

13.3 Restoring Hardware Dividers

13.4 Nonrestoring and Signed Division

13.5 Division by Constants

13.6 Radix-2 SRT Division

May 2015 Computer Arithmetic, Division Slide 7

13.1 Shift/Subtract Division Algorithms
Notation for our discussion of division algorithms:

z Dividend z2k–1z2k–2 . . . z3z2z1z0
d Divisor dk–1dk–2 . . . d1d0
q Quotient qk–1qk–2 . . . q1q0
s Remainder, z – (d q) sk–1sk–2 . . . s1s0

Initially, we assume unsigned operands

Fig. 13.1 Division of an 8-bit number by a 4-bit number in dot notation.

Dividend

Subtracted
bit-matrix

z

s Remainder

Quotient q Divisor d

q d 2 3
3 –

q d 2 2
2 –

q d 2 1
1 –

q d 2 0
0 –

May 2015 Computer Arithmetic, Division Slide 8

Division versus Multiplication

Division is more complex than multiplication:
Need for quotient digit selection or estimation

Overflow possibility: the high-order k bits of z
must be strictly less than d; this overflow check
also detects the divide-by-zero condition.

Pentium III latencies
Instruction Latency Cycles/Issue
Load / Store 3 1
Integer Multiply 4 1
Integer Divide 36 36
Double/Single FP Multiply 5 2
Double/Single FP Add 3 1
Double/Single FP Divide 38 38

z

s

q Divisor d

q 3–
q 2–
q 1–
q 0–

The ratios haven’t
changed much in
later Pentiums, Atom,
or AMD products*
*Source: T. Granlund, “Instruction
Latencies and Throughput for AMD
and Intel x86 Processors,” Feb. 2012

May 2015 Computer Arithmetic, Division Slide 9

Division Recurrence

Division with left shifts

s(j) = 2s(j–1) – qk–j (2k d) with s(0) = z and
|–shift–| s(k) = 2ks
|–––subtract–––|

(There is no corresponding right-shift algorithm)

Fig. 13.1

Dividend

Subtracted
bit-matrix

z

s Remainder

Quotient q Divisor d

q d 2 3
3 –

q d 2 2
2 –

q d 2 1
1 –

q d 2 0
0 –

Integer division is characterized by z = d  q + s

2–2kz = (2–kd)  2–kq) + 2–2ks
zfrac = dfrac  qfrac + 2–ksfrac

Divide fractions like integers; adjust the remainder

No-overflow
condition for
fractions is:

zfrac < dfrac

k bits k bits

2z

2k d

0

May 2015 Computer Arithmetic, Division Slide 10

Examples of Basic Division

Fig. 13.2
Examples of
sequential
division with
integer and
fractional
operands.

Integer division Fractional division
====================== =====================
z 0 1 1 1 0 1 0 1 zfrac . 0 1 1 1 0 1 0 1
24d 1 0 1 0 dfrac . 1 0 1 0
====================== =====================
s(0) 0 1 1 1 0 1 0 1 s(0) . 0 1 1 1 0 1 0 1
2s(0) 0 1 1 1 0 1 0 1 2s(0) 0 . 1 1 1 0 1 0 1
–q3 24d 1 0 1 0 {q3 = 1} –q–1d . 1 0 1 0 {q–1=1}
––––––––––––––––––––––– ––––––––––––––––––––––
s(1) 0 1 0 0 1 0 1 s(1) . 0 1 0 0 1 0 1
2s(1) 0 1 0 0 1 0 1 2s(1) 0 . 1 0 0 1 0 1
–q2 24d 0 0 0 0 {q2 = 0} –q–2d . 0 0 0 0 {q–2=0}
––––––––––––––––––––––– ––––––––––––––––––––––
s(2) 1 0 0 1 0 1 s(2) . 1 0 0 1 0 1
2s(2) 1 0 0 1 0 1 2s(2) 1 . 0 0 1 0 1
–q1 24d 1 0 1 0 {q1 = 1} –q–3d . 1 0 1 0 {q–3=1}
––––––––––––––––––––––– ––––––––––––––––––––––
s(3) 1 0 0 0 1 s(3) . 1 0 0 0 1
2s(3) 1 0 0 0 1 2s(3) 1 . 0 0 0 1
–q0 24d 1 0 1 0 {q0 = 1} –q–4d . 1 0 1 0 {q–4=1}
––––––––––––––––––––––– ––––––––––––––––––––––
s(4) 0 1 1 1 s(4) . 0 1 1 1
s 0 1 1 1 sfrac 0 . 0 0 0 0 0 1 1 1
q 1 0 1 1 qfrac . 1 0 1 1
====================== =====================

10

11
7

117

Decimal

May 2015 Computer Arithmetic, Division Slide 11

13.2 Programmed Division

Fig. 13.3 Register usage for programmed division.

Rs Rq

Rd
0 0 . . . 0 0 0 0

2 dk

Carry
 Flag

Shifted Partial
 Remainder

Shifted Partial
 Quotient

Partial Remainder
 (2k – j Bits)

Partial Quotient
 (j Bits)

Next
quotient
digit
inserted
here

Divisor d

May 2015 Computer Arithmetic, Division Slide 12

Assembly Language Program for Division

Fig. 13.4
Programmed division
using left shifts.

{Using left shifts, divide unsigned 2k-bit dividend,
z_high|z_low, storing the k-bit quotient and remainder.
Registers: R0 holds 0 Rc for counter

Rd for divisor Rs for z_high & remainder
Rq for z_low & quotient}

{Load operands into registers Rd, Rs, and Rq}
div: load Rd with divisor

load Rs with z_high
load Rq with z_low

{Check for exceptions}
branch d_by_0 if Rd = R0
branch d_ovfl if Rs > Rd

{Initialize counter}
load k into Rc

{Begin division loop}
d_loop: shift Rq left 1 {zero to LSB, MSB to carry}

rotate Rs left 1 {carry to LSB, MSB to carry}
skip if carry = 1
branch no_sub if Rs < Rd
sub Rd from Rs
incr Rq {set quotient digit to 1}

no_sub: decr Rc {decrement counter by 1}
branch d_loop if Rc  0

{Store the quotient and remainder}
store Rq into quotient
store Rs into remainder

d_by_0: ...
d_ovfl: ...
d_done: ...

Rs Rq

Rd
0 0 . . . 0 0 0 0

2 dk

Carry
 Flag

Shifted Partial
 Remainder

Shifted Partial
 Quotient

Partial Remainder
 (2k – j Bits)

Partial Quotient
 (j Bits)

Next
quotient
digit
inserted
here

Divisor d

Fig. 13.3
Register usage
for programmed
division.

May 2015 Computer Arithmetic, Division Slide 13

Time Complexity of Programmed Division

Assume k-bit words

k iterations of the main loop
6-8 instructions per iteration, depending on the quotient bit

Thus, 6k + 3 to 8k + 3 machine instructions,
ignoring operand loads and result store

k = 32 implies 220+ instructions on average

This is too slow for many modern applications!

Microprogrammed division would be somewhat better

May 2015 Computer Arithmetic, Division Slide 14

13.3 Restoring Hardware Dividers

Fig. 13.5 Shift/subtract sequential restoring divider.

Quotient q

Mux

Adder
out c

0 1

Partial remainder s (initial value z)

Divisor d

Shift

Shift

 Load

1
in c

(j)

Quotient
digit

selector

q k–j

MSB of
2s (j–1)

k

k

k

Trial difference

k bits k bits

2z

2k d

0

In 2’s-complement
arithmetic, adding
a negative value
to a positive value
produces cout = 1 if
the result is positive

May 2015 Computer Arithmetic, Division Slide 15

Example of Restoring
Unsigned Division

Fig. 13.6 Example of restoring
unsigned division.

=======================
z 0 1 1 1 0 1 0 1
24d 0 1 0 1 0
–24d 1 0 1 1 0
=======================
s(0) 0 0 1 1 1 0 1 0 1
2s(0) 0 1 1 1 0 1 0 1
+(–24d) 1 0 1 1 0
––––––––––––––––––––––––
s(1) 0 0 1 0 0 1 0 1 Positive, so set q3 = 1
2s(1) 0 1 0 0 1 0 1
+(–24d) 1 0 1 1 0
––––––––––––––––––––––––
s(2) 1 1 1 1 1 0 1 Negative, so set q2 = 0
s(2)=2s(1) 0 1 0 0 1 0 1 and restore
2s(2) 1 0 0 1 0 1
+(–24d) 1 0 1 1 0
––––––––––––––––––––––––
s(3) 0 1 0 0 0 1 Positive, so set q1 = 1
2s(3) 1 0 0 0 1
+(–24d) 1 0 1 1 0
––––––––––––––––––––––––
s(4) 0 0 1 1 1 Positive, so set q0 = 1
s 0 1 1 1
q 1 0 1 1
=======================

No overflow, because
(0111)two < (1010)two

May 2015 Computer Arithmetic, Division Slide 16

Indirect Signed Division

In division with signed operands, q and s are defined by

z = d  q + s sign(s) = sign(z) |s | < |d |

Examples of division with signed operands

z = 5 d = 3  q = 1 s = 2

z = 5 d = –3  q = –1 s = 2

z = –5 d = 3  q = –1 s = –2

z = –5 d = –3  q = 1 s = –2

Magnitudes of q and s are unaffected by input signs
Signs of q and s are derivable from signs of z and d

Will discuss direct signed division later

(not q = –2, s = –1)

May 2015 Computer Arithmetic, Division Slide 17

13.4 Nonrestoring and Signed Division
The cycle time in restoring division must accommodate:

Shifting the registers
Allowing signals to propagate through the adder
Determining and storing the next quotient digit
Storing the trial difference, if required

Quotient q

Mux

Adder
out c

0 1

Partial remainder s (initial value z)

Divisor d

Shift

Shift

 Load

1
in c

(j)

Quotient
digit

selector

q k–j

MSB of
2s (j–1)

k

k

k

Trial difference

Later events depend on earlier
ones in the same cycle, causing
a lengthening of the clock cycle

Nonrestoring division to the rescue!

Assume qk–j = 1 and subtract
Store the result as the new PR

(the partial remainder can
become incorrect, hence
the name “nonrestoring”)

May 2015 Computer Arithmetic, Division Slide 18

Justification for Nonrestoring Division

Why it is acceptable to store an incorrect value in the
partial-remainder register?

Shifted partial remainder at start of the cycle is u

Suppose subtraction yields the negative result u – 2kd

Option 1: Restore the partial remainder to correct value u,
shift left, and subtract to get 2u – 2kd

Option 2: Keep the incorrect partial remainder u – 2kd,
shift left, and add to get 2(u – 2kd) + 2kd = 2u – 2kd

May 2015 Computer Arithmetic, Division Slide 19

Example of Nonrestoring
Unsigned Division

Fig. 13.7 Example of
nonrestoring unsigned division.

=======================
z 0 1 1 1 0 1 0 1
24d 0 1 0 1 0
–24d 1 0 1 1 0
=======================
s(0) 0 0 1 1 1 0 1 0 1
2s(0) 0 1 1 1 0 1 0 1 Positive,
+(–24d) 1 0 1 1 0 so subtract
––––––––––––––––––––––––
s(1) 0 0 1 0 0 1 0 1
2s(1) 0 1 0 0 1 0 1 Positive, so set q3 = 1
+(–24d) 1 0 1 1 0 and subtract
––––––––––––––––––––––––
s(2) 1 1 1 1 1 0 1
2s(2) 1 1 1 1 0 1 Negative, so set q2 = 0
+24d 0 1 0 1 0 and add
––––––––––––––––––––––––
s(3) 0 1 0 0 0 1
2s(3) 1 0 0 0 1 Positive, so set q1 = 1
+(–24d) 1 0 1 1 0 and subtract
––––––––––––––––––––––––
s(4) 0 0 1 1 1 Positive, so set q0 = 1
s 0 1 1 1
q 1 0 1 1
=======================

No overflow: (0111)two < (1010)two

10  16

11
7

117

Decimal

May 2015 Computer Arithmetic, Division Slide 20

Graphical Depiction of
Nonrestoring Division

Fig. 13.8 Partial remainder
variations for restoring and
nonrestoring division.

300

200

100

0

–100

117

234

74

148

–12

 296

136

272

112

s

(0)

s

(1)

s

(2)

s

(3)
 s =16s

(4)

–160

2




2




2







2

–160

 –160
 –160

P
ar

tia
l r

em
ai

nd
er

(a) Restoring

 148

300

200

100

0

–100

117

234

74

148

–12
 –24

136

272

112

s

(0)

s

(1)

s

(2)

s

(3)
 s =16s

(4)

–160

2




2




2







2

–160
 +160

–160

P
ar

tia
l r

em
ai

nd
er

(b) Nonrestoring

Example

(0 1 1 1 0 1 0 1)two / (1 0 1 0)two

(117)ten / (10)ten

May 2015 Computer Arithmetic, Division Slide 21

Convergence of the
Partial Quotient to q

In restoring division, the
partial quotient converges
to q from below

Example

(0 1 1 1 0 1 0 1)two / (1 0 1 0)two

(117)ten/(10)ten = (11)ten = (1011)two

In nonrestoring division,
the partial quotient may
overshoot q, but converges
to it after some oscillations 0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111
Partial quotient

Iteration
0 1 2 3 4

q

q(1) q(2)

q(3)

q(4)

q(2)

Restoring

Nonrestoring

q(0)

May 2015 Computer Arithmetic, Division Slide 22

Nonrestoring Division with Signed Operands

Restoring division
qk–j = 0 means no subtraction (or subtraction of 0)
qk–j = 1 means subtraction of d

Nonrestoring division
We always subtract or add
It is as if quotient digits are selected from the set {1, 1}:

1 corresponds to subtraction 1 corresponds to addition

Our goal is to end up with a remainder that matches the sign
of the dividend

This idea of trying to match the sign of s with the sign of z, leads to
a direct signed division algorithm

if sign(s) = sign(d) then qk–j = 1 else qk–j = 1

Example: q = . . . 0 0 0 1 . . .
. . . 1 1 1 1 . . .

May 2015 Computer Arithmetic, Division Slide 23

Quotient Conversion and Final Correction

Partial remainder variation
and selected quotient
digits during nonrestoring
division with d > 0

d

0

d

+d

d

d

d

+d

+d

2
2

2

2
2

1 1 1 1 1 1

z

0 1 0 0 1 1

1 1 0 0 1 1 1

Quotient with digits 1 and 1

Final correction step if sign(s)  sign(z):
Add d to, or subtract d from, s; subtract 1 from, or add 1 to, q

Check: 32 + 16 – 8 – 4 + 2 + 1 = 25 = 64 + 32 + 4 + 2 + 1

Replace 1s with 0s

Shift left, complement MSB,
and set LSB to 1 to get the
2’s-complement quotient

1 1 0 1 0 0 0

May 2015 Computer Arithmetic, Division Slide 24

Example of Nonrestoring
Signed Division

Fig. 13.9
Example of
nonrestoring
signed
division.

========================
z 0 0 1 0 0 0 0 1
24d 1 1 0 0 1
–24d 0 0 1 1 1
========================
s(0) 0 0 0 1 0 0 0 0 1
2s(0) 0 0 1 0 0 0 0 1 sign(s(0))  sign(d),
+24d 1 1 0 0 1 so set q3 = 1 and add
––––––––––––––––––––––––
s(1) 1 1 1 0 1 0 0 1
2s(1) 1 1 0 1 0 0 1 sign(s(1)) = sign(d),
+(–24d) 0 0 1 1 1 so set q2 = 1 and subtract
––––––––––––––––––––––––
s(2) 0 0 0 0 1 0 1
2s(2) 0 0 0 1 0 1 sign(s(2))  sign(d),
+24d 1 1 0 0 1 so set q1 = 1 and add
––––––––––––––––––––––––
s(3) 1 1 0 1 1 1
2s(3) 1 0 1 1 1 sign(s(3)) = sign(d),
+(–24d) 0 0 1 1 1 so set q0 = 1 and subtract
––––––––––––––––––––––––
s(4) 1 1 1 1 0 sign(s(4))  sign(z),
+(–24d) 0 0 1 1 1 so perform corrective subtraction
––––––––––––––––––––––––
s(4) 0 0 1 0 1
s 0 1 0 1
q 1 11 1
========================

p = 0 1 0 1 Shift, compl MSB
1 1 0 1 1 Add 1 to correct

1 1 0 0 Check: 33/(7) = 4

May 2015 Computer Arithmetic, Division Slide 25

Nonrestoring Hardware Divider

Fig. 13.10 Shift-subtract sequential nonrestoring divider.

Quotient

k

Partial Remainder

Divisor

add/sub

k-bit adder

k

cout cin

Complement

qk–j

2s (j–1)
MSB of

Divisor Sign

 Complement of
Partial Remainder Sign

May 2015 Computer Arithmetic, Division Slide 26

13.5 Division by Constants
Software and hardware aspects:
As was the case for multiplications by constants, optimizing compilers
may replace some divisions by shifts/adds/subs; likewise, in custom
VLSI circuits, hardware dividers may be replaced by simpler adders

Method 1: Find the reciprocal of the constant and multiply (particularly
efficient if several numbers must be divided by the same divisor)

Method 2: Use the property that for each odd integer d, there exists
an odd integer m such that d  m = 2n – 1; hence, d = (2n – 1)/m and

Number of shift-adds required is proportional to log k

Multiplication by constant Shift-adds

)21)(21)(21(
2)21(212

42 nnn
nnnn

zmzmzm
d
z 

 







May 2015 Computer Arithmetic, Division Slide 27

Example Division by a Constant

)21)(21)(21(
2)21(212

42 nnn
nnnn

zmzmzm
d
z 

 







Example: Dividing the number z by 5, assuming 24 bits of precision.
We have d = 5, m = 3, n = 4; 5  3 = 24 – 1

Instruction sequence for division by 5

q  z + z shift-left 1 {3z computed}
q  q + q shift-right 4 {3z(1+2–4) computed}
q  q + q shift-right 8 {3z(1+2–4)(1+2–8) computed}
q  q + q shift-right 16 {3z(1+2–4)(1+2–8)(1+2–16) computed}
q  q shift-right 4 {3z(1+2–4)(1+2–8)(1+2–16)/16 computed}

)21)(21)(21(
16
3

)21(2
3

12
3

5
1684

444


 






zzzz

5 shifts
4 adds

May 2015 Computer Arithmetic, Division Slide 28

Numerical Examples for Division by 5
Instruction sequence for division by 5

q  z + z shift-left 1 {3z computed}
q  q + q shift-right 4 {3z(1+2–4) computed}
q  q + q shift-right 8 {3z(1+2–4)(1+2–8) computed}
q  q + q shift-right 16 {3z(1+2–4)(1+2–8)(1+2–16) computed}
q  q shift-right 4 {3z(1+2–4)(1+2–8)(1+2–16)/16 computed}

Computing 29  5 (z = 29, d = 5)

87  29 + 29 shift-left 1 {3z computed}
92  87 + 87 shift-right 4 {3z(1+2–4) computed}
92  92 + 92 shift-right 8 {3z(1+2–4)(1+2–8) computed}
92  92 + 92 shift-right 16 {3z(1+2–4)(1+2–8)(1+2–16) computed}
5  92 shift-right 4 {3z(1+2–4)(1+2–8)(1+2–16)/16 computed}

Repeat the process for computing 30  5 and comment on the outcome

May 2015 Computer Arithmetic, Division Slide 29

13.6 Radix-2 SRT Division

Fig. 13.11 The new partial remainder, s(j), as a function of the shifted
old partial remainder, 2s(j–1), in radix-2 nonrestoring division.

SRT division takes its name from Sweeney, Robertson, and Tocher,
who independently discovered the method

–2d

2d

d

 –d

q =–1

q =1

2s

(j–1)

s

(j)

–j

–j

d

–d

s(j) = 2s(j–1) – q–j d
with s(0) = z
s(k) = 2ks
q–j  {1, 1}

May 2015 Computer Arithmetic, Division Slide 30

–2d

2d

d

–d

q =–1

q =0

q =1

2s

(j–1)

s

(j)

–j

–j

–j

d

–d

Allowing 0 as a Quotient Digit in Nonrestoring Division

Fig. 13.12 The new partial remainder, s(j), as a function of the shifted
old partial remainder, 2s(j–1), with q–j in {1, 0, 1}.

This method was useful in early computers, because the choice q–j = 0
requires shifting only, which was faster than shift-and-subtract

s(j) = 2s(j–1) – q–j d
with s(0) = z
s(k) = 2ks
q–j  {1, 0, 1}

May 2015 Computer Arithmetic, Division Slide 31

–2d

2d

d

 –d

q =–1

q =0

q =1

2s

(j–1)

s

(j)

–j

–j

–j

d

–d

–1/2 1/2

 –1

 1

 –1/2

 1/2

The Radix-2 SRT Division Algorithm

Fig. 13.13 The relationship between new and old partial remainders
in radix-2 SRT division.

We use the comparison constants ½ and ½ for quotient digit selection
2s  +½ means 2s = (0.1xxxxxxxx)2’s-compl
2s < ½ means 2s = (1.0xxxxxxxx)2’s-compl

s(j) = 2s(j–1) – q–j d
with s(0) = z
s(k) = 2ks
s(j)  [½, ½)
q–j  {1, 0, 1}

May 2015 Computer Arithmetic, Division Slide 32

Radix-2 SRT Division with Variable Shifts
We use the comparison constants ½ and ½ for quotient digit selection

For 2s  +½ or 2s = (0.1xxxxxxxx)2’s-compl choose q–j = 1
For 2s < ½ or 2s = (1.0xxxxxxxx)2’s-compl choose q–j = 1

Choose q–j = 0 in other cases, that is, for:
0  2s < +½ or 2s = (0.0xxxxxxxx)2’s-compl
½  2s < 0 or 2s = (1.1xxxxxxxx)2’s-compl

Observation: What happens when the magnitude of 2s is fairly small?

2s = (0.00001xxxx)2’s-compl

2s = (1.1110xxxxx)2’s-compl

Choosing q–j = 0 would lead to the
same condition in the next step;
generate 5 quotient digits 0 0 0 0 1

Generate 4 quotient digits 0 0 0 1

Use leading 0s or leading 1s detection circuit to determine how many
quotient digits can be spewed out at once
Statistically, the average skipping distance will be 2.67 bits

May 2015 Computer Arithmetic, Division Slide 33

Example Unsigned Radix-2
SRT Division

Fig. 13.14
Example of
unsigned
radix-2 SRT
division.

========================
z . 0 1 0 0 0 1 0 1
d 0 . 1 0 1 0
–d 1 . 0 1 1 0
========================
s(0) 0 . 0 1 0 0 0 1 0 1
2s(0) 0 . 1 0 0 0 1 0 1  ½, so set q1 = 1
+(d) 1 . 0 1 1 0 and subtract
––––––––––––––––––––––––
s(1) 1 . 1 1 1 0 1 0 1
2s(1) 1 . 1 1 0 1 0 1 In [½, ½), so set q2 = 0
––––––––––––––––––––––––
s(2) =2s(1) 1 . 1 1 0 1 0 1
2s(2) 1 . 1 0 1 0 1 In [½, ½), so set q3 = 0
––––––––––––––––––––––––
s(3) =2s(2) 0 . 1 0 1 0 1
2s(3) 1 . 0 1 0 1 < ½, so set q4 = 1
+d 0 . 1 0 1 0 and add
––––––––––––––––––––––––
s(4) 1 . 1 1 1 1 Negative,
+d 0 . 1 0 1 0 so add to correct
––––––––––––––––––––––––
s(4) 0 . 1 0 0 1
s 0 . 0 0 0 0 0 1 0 1
q 0 . 1 0 01 Uncorrected BSD quotient
q 0 . 0 1 1 0 Convert and subtract ulp
========================

In [½, ½), so okay

0.1 Choose 1
1.0 Choose 1
0.0/1.1 Choose 0

May 2015 Computer Arithmetic, Division Slide 34

Preview of Fast Dividers

Like multiplication, division is multioperand addition
Thus, there are but two ways to speed it up:

a. Reducing the number of operands (divide in a higher radix)
b. Adding them faster (keep partial remainder in carry-save form)

a
x

p

2

x a

0
 0

1 x a 2

1
 x a 2

2
 2

2

3
 3

x a



(a) k  k integer multiplication

z

s

q Divisor d

q d 2 3
3 –

q d 2 2
2 –

q d 2 1
1 –

q d 2 0
0 –

(b) 2k / k integer division

Multiplication and
division as
multioperand
addition problems.

There is one complication that makes division inherently more difficult:
The terms to be subtracted from (added to) the dividend are not
known a priori but become known as quotient digits are computed;
quotient digits in turn depend on partial remainders

May 2015 Computer Arithmetic, Division Slide 35

14 High-Radix Dividers
Chapter Goals

Study techniques that allow us to obtain
more than one quotient bit in each cycle
(two bits in radix 4, three in radix 8, . . .)

Chapter Highlights
Radix > 2  quotient digit selection harder
Remedy: redundant quotient representation
Carry-save addition reduces cycle time
Quotient digit selection
Implementation methods and tradeoffs

May 2015 Computer Arithmetic, Division Slide 36

High-Radix Dividers: Topics

Topics in This Chapter

14.1 Basics of High-Radix Division

14.2 Using Carry-Save Adders

14.3 Radix-4 SRT Division

14.4 General High-Radix Dividers

14.5 Quotient Digit Selection

14.6 Using p-d Plots in Practice

May 2015 Computer Arithmetic, Division Slide 37

14.1 Basics of High-Radix Division

Division with left shifts

s(j) = rs(j–1) – qk–j (r k d) with s(0) = z and
|–shift–| s(k) = r ks
|–––subtract–––|

Radices of practical interest are
powers of 2, and perhaps 10

Dividend z

s Remainder

Quotient q Divisor d

(q q) d 4 1
3 – 2 two

4 0 d (q q) 1 – 0 two

Fig. 14.1
Radix-4
division in
dot notation

k digits k digits

r z

qk–j rk d

0

May 2015 Computer Arithmetic, Division Slide 38

Difficulty of Quotient Digit Selection
What is the first quotient digit in the following radix-10 division?

2 0 4 3 | 1 2 2 5 7 9 6 8

The problem with the pencil-and-paper division algorithm is that there
is no room for error in choosing the next quotient digit

In the worst case, all k digits of the divisor and k + 1 digits in the partial
remainder are needed to make a correct choice

12 / 2 = 6
122 / 20 = 6

1225 / 204 = 6
12257 / 2043 = 5

Suppose we used the redundant signed digit set [–9, 9] in radix 10

Then, we could choose 6 as the next quotient digit, knowing that we can
recover from an incorrect choice by using negative digits: 5 9 = 6 -1

May 2015 Computer Arithmetic, Division Slide 39

Examples of High-Radix Division
Radix-4 integer division Radix-10 fractional division
====================== =================
z 0 1 2 3 1 1 2 3 zfrac . 7 0 0 3
44d 1 2 0 3 dfrac . 9 9
====================== =================
s(0) 0 1 2 3 1 1 2 3 s(0) . 7 0 0 3
4s(0) 0 1 2 3 1 1 2 3 10s(0) 7 . 0 0 3
–q3 44d 0 1 2 0 3 {q3 = 1} –q–1d 6 . 9 3 {q–1 = 7}
––––––––––––––––––––––– ––––––––––––––––––
s(1) 0 0 2 2 1 2 3 s(1) . 0 7 3
4s(1) 0 0 2 2 1 2 3 10s(1) 0 . 7 3
–q2 44d 0 0 0 0 0 {q2 = 0} –q–2d 0 . 0 0 {q–2 = 0}
––––––––––––––––––––––– ––––––––––––––––––
s(2) 0 2 2 1 2 3 s(2) . 7 3
4s(2) 0 2 2 1 2 3 sfrac . 0 0 7 3
–q1 44d 0 1 2 0 3 {q1 = 1} qfrac . 7 0
––––––––––––––––––––––– =================
s(3) 1 0 0 3 3
4s(3) 1 0 0 3 3
–q0 44d 0 3 0 1 2 {q0 = 2}
–––––––––––––––––––––––
s(4) 1 0 2 1
s 1 0 2 1
q 1 0 1 2
======================

Fig. 14.2 Examples of
high-radix division with integer
and fractional operands.

May 2015 Computer Arithmetic, Division Slide 40

14.2 Using Carry-Save Adders

Fig. 14.3 Constant thresholds used for quotient digit selection
in radix-2 division with qk–j in {–1, 0, 1} .

–2d 2d

d

–d

q =–1

q =0 q =1

2s (j–1)

s (j)

–j

–j

–j

d–d

–1/2 0
Choose –1 Choose 0 Choose 1

–1/0 0/+1
Overlap Overlap

May 2015 Computer Arithmetic, Division Slide 41

Quotient Digit Selection Based on Truncated PR

Fig. 14.3

–2d 2d

d

–d

q =–1

q =0 q =1

2s (j–1)

s (j)

–j

–j

–j

d–d

–1/2 0
Choose –1 Choose 0 Choose 1

–1/0 0/+1
Overlap Overlap

Sum part of 2s(j–1): u = (u1u0 . u–1u–2 . . .)2’s-compl
Carry part of 2s(j–1): v = (v1v0 . v–1v–2 . . .)2’s-compl

Approximation to the partial remainder:

t = u[–2,1] + v[–2,1] {Add the 4 MSBs of u and v}

t := u[–2,1] + v[–2,1]
if t < –½
then q–j = –1
else if t ≥ 0

then q–j = 1
else q–j = 0
endif

endif

Max error in
approximation

< ¼ + ¼ = ½

Error in [0, ½)

May 2015 Computer Arithmetic, Division Slide 42

Divider with Partial Remainder in Carry-Save Form

Fig. 14.4 Block diagram of a
radix-2 divider with partial
remainder in stored-carry form.

Carry v

Mux

Adder

0 1

Divisor d

k k

Carry-save adder

Select
 q –j

4 bits Shift left

2s

+ulp for
2’s compl

Sum u

Non0
(enable)

Sign
(select)

0, d, or d’

Carry Sum

May 2015 Computer Arithmetic, Division Slide 43

Why We Cannot Use Carry-Save PR with SRT Division

Fig. 14.5 Overlap regions in radix-2 SRT division.

–2d

2d

d

 –d

q =–1

q =0

q =1

2s

(j–1)

s

(j)

–j

–j

–j

d

–d

 1 – d

 –1

 1

 –1/2

 1/2

 1 – d

May 2015 Computer Arithmetic, Division Slide 44

14.4 Choosing the Quotient Digits

Fig. 14.6 A p-d plot for radix-2 division with d  [1/2,1),
partial remainder in [–d, d), and quotient digits in [–1, 1].

 d

p

Infeasible region
(p cannot be  2d)

Infeasible region
(p cannot be < 2d)

.100 .101 .110 .111 1.

00.1

00.0

11.1

10.0

10.1

11.0

01.1

01.0

00.1

01.0

01.1

10.0

 d

 2d

 2d

 d

Worst-case error
margin in comparison

Choose 1

Choose 1

Choose 0

1

1

1 max

1 min

1 min

1 max

0 max

0 min

O
ve

rla
p

O
ve

rla
p

0
Fig. 14.3

–2d 2d

d

–d

q =–1

q =0 q =1

2s (j–1)

s (j)

–j

–j

–j

d–d

–1/2 0
Choose –1 Choose 0 Choose 1

–1/0 0/+1
Overlap Overlap

May 2015 Computer Arithmetic, Division Slide 45

Design of the Quotient Digit Selection Logic

4-bit adder

Combinational
logic

Non0Sign

Shifted sum =
(u1u0 . u1u2 . . .)2’s-compl

Shifted carry =
(v1v0 . v1v2 . . .)2’s-compl

Approx shifted PR = (t1t0 . t1t2)2’s-compl

Non0 = t1  t0  t–1 = (t1 t0 t1)
Sign = t1 (t0  t1)

t := u[–2,1] + v[–2,1]
if t < –½
then q–j = –1
else if t ≥ 0

then q–j = 1
else q–j = 0
endif

endif

May 2015 Computer Arithmetic, Division Slide 46

14.3 Radix-4 SRT Division

Fig. 14.7 New versus shifted old partial remainder in
radix-4 division with q–j in [–3, 3].

–4d 4d

d

–d

4s(j–1)
–3 –2 –1 0 +1 +2 +3

s (j)

Radix-4 fractional division with left shifts and q–j  [–3, 3]

s(j) = 4s(j–1) – q–j d with s(0) = z and s(k) = 4ks
|–shift–|
|––subtract––|

Two difficulties:
How do you choose from among the 7 possible values for qj?
If the choice is +3 or 3, how do you form 3d?

May 2015 Computer Arithmetic, Division Slide 47

Building the p-d Plot for Radix-4 Division

Fig. 14.8 A p-d plot for radix-4 SRT division
with quotient digit set [–3, 3].

 d

p

Infeasible region
(p cannot be  4d)

.100 .101 .110 .111

10.1

10.0

01.1

00.0

00.1

01.0

11.1

11.0

 d

 2d

Choose 2

Choose 0

Choose 1

 3

 1

 2 max

 2 min

1 min

1 max

0 max

O
ve

rla
p

0

 3d

 4d

Choose 3

3 min

 2

O
ve

rla
p

O
ve

rla
p

Uncertainty
region

Uncertainty
region

May 2015 Computer Arithmetic, Division Slide 48

–4d 4d

d

–d

4s(j–1)
–3 –2 –1 0 +1 +2 +3

s(j)

2d/3

8d/3
–2d/3

–8d/3

Restricting the Quotient Digit Set in Radix 4

Fig. 14.9 New versus shifted old partial remainder in
radix-4 division with q–j in [–2, 2].

Radix-4 fractional division with left shifts and q–j  [–2, 2]

s(j) = 4s(j–1) – q–j d with s(0) = z and s(k) = 4ks
|–shift–|
|––subtract––|

For this restriction to be feasible, we must have:
s  [hd, hd) for some h < 1, and 4hd – 2d  hd
This yields h  2/3 (choose h = 2/3 to minimize the restriction)

May 2015 Computer Arithmetic, Division Slide 49

 d

p

.100 .101 .110 .111

10.1

10.0

01.1

00.0

00.1

01.0

11.1

11.0

Choose 2

Choose 0

Choose 1 1

 2 min

1 min

 2 max

1 max

0 max

0

 2

O
ve

rla
p

O
ve

rla
p

Infeasible region
(p cannot be  8d/3)

 8d/3

 5d/3

 4d/3

 2d/3

 d/3

Building the p-d Plot with Restricted Radix-4 Digit Set

Fig. 14.10 A p-d plot for radix-4 SRT division
with quotient digit set [–2, 2].

May 2015 Computer Arithmetic, Division Slide 50

14.4 General High-Radix Dividers

Carry v

CSA tree

Adder

Divisor d

k k

Select
 q –j

Shift left

2s
Sum u

Multiple
generation /

selection

Carry Sum

q –j

. . . q –j | | d
or its complement

Fig. 14.11 Block diagram of
radix-r divider with partial
remainder in stored-carry form.

Process to derive the details:

Radix r

Digit set [–, ] for q–j

Number of bits of p (v and u)
and d to be inspected

Quotient digit selection unit
(table or logic)

Multiple generation/selection
scheme

Conversion of redundant q to
2’s complement

May 2015 Computer Arithmetic, Division Slide 51

Multiple Generation for High-Radix Division

Example: Digit set [–6, 6] for r = 8

Option 1: precompute 3a and 5a

Option 2: generate a multiple
|q–j|a as a set of two numbers,
one chosen from {0, a, 2a}
and another from {0, a, 4a}

0 1 2

0 a 2a

0 1 2

0 a 4a

May 2015 Computer Arithmetic, Division Slide 52

14.5 Quotient Digit Selection
Radix-r division with quotient digit set [–, ],  < r – 1
Restrict the partial remainder range, say to [–hd, hd)
From the solid rectangle in Fig. 15.1, we get rhd – d  hd or h  /(r – 1)
To minimize the range restriction, we choose h = /(r – 1)

Fig. 14.12 The relationship between new and shifted old partial
remainders in radix-r division with quotient digits in [–, +].

Example: r = 4,  = 2  h = 2/3

r – 1+10 +–r + 1 – –1

dd

hd hd

–hd –hd
rhd–rhd

–d –d–rd rd

d

–d

.

rs(j–1)

s(j)

0

May 2015 Computer Arithmetic, Division Slide 53

Why Using Truncated p and d Values Is Acceptable

Fig. 14.13 A part of p-d plot showing the overlap region for choosing the
quotient digit value  or +1 in radix-r division with quotient digit set [–, ].

p

d

 Choose  + 1

Choose 

 d min

Overlap
region

(h +  + 1)d

 A

(h + )d

(–h +  + 1)d

(–h + )d

 B

4 bits of p
3 bits of d

3 bits of p
4 bits of d

Note: h =  / (r – 1)

Standard p
xx.xxxx

Carry-save p
xx.xxxxx
xx.xxxxx

May 2015 Computer Arithmetic, Division Slide 54

Table Entries in the Quotient Digit Selection Logic

Fig. 14.14 A part of p-d plot showing an overlap region
and its staircase-like selection boundary.

p

d



 +1
(h +)d

(–h +)d

(h + + 1)d

(–h + + 1)d

Note: h = /(r–1)














 











 
 

 



or

Origin

May 2015 Computer Arithmetic, Division Slide 55

14.6 Using p-d Plots in Practice

Fig. 14.15 Establishing upper bounds on
the dimensions of uncertainty rectangles.

p

p

d

Choose 

Choose   1

 d min

Overlap
region

(h +   1)d

(h + )d

d

 d min d +

(h +   1) d min

(h + ) d min

Smallest d occurs
for the overlap region
of  and  – 1





h
hdd 12min

)12(min  hdp

May 2015 Computer Arithmetic, Division Slide 56

Example: Lower Bounds on Precision

)12(min  hdp

Fig. 14.15

p

p

d

Choose 

Choose   1

 d min

Overlap
region

(h +   1)d

(h + )d

d

 d min d +

(h +   1) d min

(h + ) d min

For r = 4, divisor range [0.5, 1),
digit set [–2, 2], we have  = 2,
dmin = 1/2, h = /(r – 1) = 2/3

Because 1/8 = 2–3 and 2–3  1/6 < 2–2, we must inspect at least 3 bits
of d (2, given its leading 1) and 3 bits of p
These are lower bounds and may prove inadequate
In fact, 3 bits of p and 4 (3) bits of d are required
With p in carry-save form, 4 bits of each component must be inspected

8/1
23/2

13/4)2/1(



d 6/1)13/4)(2/1(p





h
hdd 12min

May 2015 Computer Arithmetic, Division Slide 57

Upper Bounds for Precision

Theorem: Once lower bounds on precision are determined based on d
and p, one more bit of precision in each direction is always adequate

u
v

p

p

d

w

Choose a

Choose a  1

 d min

Overlap
region

w

(a  1 + h)d

(a  h)d

d A

B

Proof: Let w be the spacing of vertical grid lines
w  d/2  v  p/2  u  p/2

May 2015 Computer Arithmetic, Division Slide 58

Some Implementation Details

Fig. 14.16 The asymmetry of
quotient digit selection process.

p

 d

Choose  + 1

Choose 

 d min

A

B

 d max



 + 1

Choose  + 1

Choose 

p

d



 +1








 




 












 or





*

*
 *

*

Fig. 14.17 Example of p-d plot
allowing larger uncertainty
rectangles, if the 4 cases marked
with asterisks are handled as
exceptions.

May 2015 Computer Arithmetic, Division Slide 59

A Complete
p-d Plot

5d/3

4d/3

d
1.000 1.001 1.010 1.011 1.100 0.100 0.101 0.110 0.111 1.000

01.10

01.01

01.00

00.11

00.10

00.00

00.01

11.11

11.10

11.01

11.00

10.11

10.10

2d/3

d/3

–d/3

–4d/3

–5d/3

–2d/3

2 1
2 1

2 1,2 1
1,2 1

2 1,2 1
2 1,2

Radix r = 4
q–j in [–2, 2]
d in [1/2, 1)
p in [–8/3, 8/3]

Explanation
of the Pentium
division bug

May 2015 Computer Arithmetic, Division Slide 60

15 Variations in Dividers

Chapter Goals
Discuss some variations in implementing
division schemes and cover combinational,
modular, and merged hardware dividers

Chapter Highlights
Prescaling simplifies q digit selection
Overlapped q digit selection
Parallel hardware (array) dividers
Shared hardware in multipliers/dividers
Square-rooting not special case of division

May 2015 Computer Arithmetic, Division Slide 61

Variations in Dividers: Topics

Topics in This Chapter

15.1 Division with Prescaling

15.2 Overlapped Quotient Digit Selection

15.3 Combinational and Array Dividers

15.4 Modular Dividers and Reducers

15.5 The Special Case of Reciprocation

15.6 Combined Multiply/Divide Units

May 2015 Computer Arithmetic, Division Slide 62

15.1 Division with Prescaling

Restricting the divisor to the shaded
area simplifies quotient digit selection.

p

 d

Choose  + 1

Choose 

 d min d max

Choose  + 1

Choose 

Overlap regions of a p-d plot
are wider toward the high end
of the divisor range

If we can restrict the magnitude
of the divisor to an interval close
to dmax (say 1 –  < d < 1 + ,
when dmax = 1), quotient digit
selection may become simpler

Thus, we perform the division
(zm)/(dm) for a suitably chosen
scale factor m (m > 1)

Prescaling (multiplying z and d
by m) should be done without
real multiplications

May 2015 Computer Arithmetic, Division Slide 63

Examples of Prescaling

Example 1: Unsigned divisor d in [1/2, 1)
When d  [1/2, 3/4), multiply by 1½ [d begins 0.10…]

The prescaled divisor will be in [1 – 1/4, 1 + 1/8)

Example 2: Unsigned divisor d in [1/2, 1)
Case d 

[1/2, 9/16), it begins with 0.1000…, multiply by 2
[9/16, 5/8), it begins with 0.1001…, multiply by 1 + 1/2
[5/8, 3/4), it begins with 0.101…, multiply by 1 + 1/2
[3/4, 1), it begins with 0.11…, multiply by 1 + 1/8

[1/2, 9/16)  2 = [1, 1 + 1/8)
[9/16, 5/8)  (1 + 1/2) = [1 – 5/32, 1 – 1/16)
[5/8, 3/4)  (1 + 1/2) = [1 – 1/16, 1 + 1/8)
[3/4, 1)  (1 + 1/8) = [1 – 5/32, 1 + 1/8)

The prescaled divisor will be in [1 – 5/32, 1 + 1/8)

May 2015 Computer Arithmetic, Division Slide 64

15.2 Overlapped Quotient Digit Selection

Fig. 15.1 Overlapped radix-2 quotient
digit selection for radix-4 division. A
dashed line represents a signal pair that
denotes a quotient digit value in [–1, 1].

Alternative to high-radix
design when q digit
selection is too complex

Compute the next partial
remainder and resulting q
digit for all possible choices
of the current q digit

–d 0 d

Sum

Carry

CSA

CSA CSA

–d d

–d 0 d

CSA

qk–j

qk–j+1

qk–j

Quotient
digit

selector
Mux

Signal bundle

A few bits

This is the same idea as
carry-select addition

Speculative computation
(throw transistors at the
delay problem) is common
in modern systems

May 2015 Computer Arithmetic, Division Slide 65

15.3 Combinational and Array Dividers
Can take the notion of overlapped q digit selection to the extreme of
selecting all q digits at once  Exponential complexity

By contrast, a fully combinational tree multiplier
has O(log k) latency and O(k2) cost

O(k log k) conjectured

Can we do as well as multipliers, or at least better than exponential cost,
for logarithmic-time dividers?

Complexity theory results: It is possible to design dividers
with O(log k) latency and O(k4) cost
with O(log k log log k) latency and O(k2) cost

These theoretical constructions have not led to practical designs

May 2015 Computer Arithmetic, Division Slide 66

Restoring Array Divider

Fig. 15.7 Restoring array
divider composed of
controlled subtractor cells.

z

z

–5

–6

 s s s –4 –5 –6

q

q

q

–1

–2

–3

FS

Cell

z z z z–1 –2 –3 –4

1 0

 d d d –1 –2 –3

0

0

0

 –1 –2 –3 –4 –5 –6
 –1 –2 –3
 –1 –2 –3
 –4 –5 –6

Dividend z = .z z z z z z
Divisor d = .d d d
Quotient q = .q q q
Remainder s = .0 0 0 s s s

May 2015 Computer Arithmetic, Division Slide 67

Nonrestoring Array Divider

Fig. 15.8 Nonrestoring
array divider built of controlled
add/subtract cells.

Dividend z = z .z z z z z z
Divisor d = d .d d d
Quotient q = q .q q q
Remainder s = 0 .0 0 s s s s

0 –1 –2 –3 –4 –5 –6
0 –1 –2 –3
0 –1 –2 –3
 –3 –4 –5 –6

z

z

z

–4

–5

–6

s s s s–3 –4 –5 –6

q

q

q

0

–1

–2

q –3

d d d d0 –1 –2 –3
z z z z0 –1 –2 –3

FA

XOR

Cell

1

Similarity to
array multiplier
is deceiving

Critical
path

May 2015 Computer Arithmetic, Division Slide 68

Speedup Methods for Array Dividers

Critical
path

Dividend z = z .z z z z z z
Divisor d = d .d d d
Quotient q = q .q q q
Remainder s = 0 .0 0 s s s s

0 –1 –2 –3 –4 –5 –6
0 –1 –2 –3
0 –1 –2 –3
 –3 –4 –5 –6

z

z

z

–4

–5

–6

s s s s–3 –4 –5 –6

q

q

q

0

–1

–2

q –3

d d d d0 –1 –2 –3
z z z z0 –1 –2 –3

FA

XOR

Cell

1

However, we still need to know the carry/borrow-out from each row
Solution: Insert a carry-lookahead circuit between successive rows
Not very cost-effective; thus not used in practice

Idea: Pass the partial
remainder downward
in carry-save form to
speed up the
operation of each row

Fig. 15.8

May 2015 Computer Arithmetic, Division Slide 69

15.4 Modular Dividers and Reducers

Given dividend z and divisor d, with d  0, a modular divider computes

q = z / d and s = z mod d = zd

The quotient q is, by definition, an integer but the inputs z and d do not
have to be integers; the modular remainder is always positive

Example:

–3.76 / 1.23 = –4 and –3.761.23 = 1.16

The quotient and remainder of ordinary division are 3 and 0.07

A modular reducer computes only the modular remainder and is in many
cases simpler than a full-blown divider

May 2015 Computer Arithmetic, Division Slide 70

Montgomery Modular Reduction
Very efficient for reducing large numbers (100s of bits wide)
The radix-2 version below is suitable for low-cost hardware realization
Software versions are based on radix 232 or 264 (1 word = 1 digit)

Assume a, x, q, and other values are k-bit pseudoresidues (can be > m)

Pick R such that R = 1 mod m
Montgomery multiplication computes axR–1 mod m, instead of ax mod m
Represent any number y as yR mod m (known as the M-code for y)
R = 1 mod m ensures that numbers in [0, m – 1] have distinct M-codes

Multiplication: t = (aR)(xR)R–1 mod m = (ax)R mod m = M-code for ax
Initial conversion: Find yR by applying Montgomery’s method to y and R2

Final reconversion: Find y from t = yR by M-multiplying 1 and t

Problem: Compute q = ax mod m, where m < 2k

Straightforward solution: Compute ax as usual; then reduce mod m

Incremental reduction after adding each partial product is more efficient

May 2015 Computer Arithmetic, Division Slide 71

Example Montgomery Modular Multiplication
======================= ===============
a 1 0 1 0 a 1 0 1 0
24x 1 0 1 1 x 1 0 1 1======================= ===============
p(0) 0 0 0 0 p(0) 0 0 0 0
+x0a 1 0 1 0 +x0a 1 0 1 0
–––––––––––––––––––––––– –––––––––––––––
2p(1) 0 1 0 1 0 2p(1) 0 1 0 1 0 Even
p(1) 0 1 0 1 0 p(1) 0 1 0 1
+x1a 1 0 1 0 +x1a 1 0 1 0
–––––––––––––––––––––––– –––––––––––––––
2p(2) 0 1 1 1 1 0 2p(2) 0 1 1 1 1 Odd
p(2) 0 1 1 1 1 0 +13 1 1 0 1
+x2a 0 0 0 0 –––––––––––––––
–––––––––––––––––––––––– 2p(2) 1 1 1 0 0
2p(3) 0 0 1 1 1 1 0 p(2) 1 1 1 0
p(3) 0 0 1 1 1 1 0 +x2a 0 0 0 0
+x3a 1 0 1 0 –––––––––––––––
–––––––––––––––––––––––– 2p(3) 0 1 1 1 0 Even
2p(4) 0 1 1 0 1 1 1 0 p(3) 0 1 1 1
p(4) 0 1 1 0 1 1 1 0 +x3a 1 0 1 0
======================= –––––––––––––––

2p(4) 1 0 0 0 1 Odd
+13 1 1 0 1–––––––––––––––
2p(4) 1 1 1 1 0
p(4) 1 1 1 1===============

Example: r = 2; m = 13;
R = 16 = r 4; R –1 = 9 mod 13
(because 16  9 = 1 mod 13)

Fig. 15.4

(a) Ordinary

(b) Mod 13

May 2015 Computer Arithmetic, Division Slide 72

Advantages of Montgomery’s Method

Standard reduction is based on subtracting a multiple of m from the
result depending on the most significant bit(s)

However, MSBs are not readily known if we use carry-save numbers

In Montgomery reduction, the decision is based on LSB(s), thus allowing
the use of carry-save arithmetic as well as parallel processing

May 2015 Computer Arithmetic, Division Slide 73

15.5 The Special Case of Reciprocation

(a) Squaring (b) Square-rooting?

Multiplier

p = ax

a x

y

y2

Divider

q = z / d

z d

y

 y

(c) Reciprocation

Divider

q = z / d

z d

1 / y

y1

Fig. 15.5 Square-rooting is not a special case of division,
but reciprocation is.

Key question: Is reciprocation any faster than division?
Answer: Not if a conventional digit recurrence algorithm is used

May 2015 Computer Arithmetic, Division Slide 74

Doubling the Speed of Reciprocation
Q  1/d with error  2–k/2

t = Q(2 – Qd)  1/d; error  2–k

Fig. 15.6 Hybrid evaluation of the reciprocal 1/d by an approximate
reciprocation stage and a refinement stage that operate concurrently.

A: Digit-recurrence
reciprocation to obtain

Q  1/d

Time saved

d B: Digit-recurrence
refinement to obtain

q = Q(2 – Qd)

q
q–j

Iterations for box A

Iterations for box B

Iterations for simple digit-recurrence reciprocation

s(j)

s(j+1) = 2s(j) – q–j d, with 2s(0) = 1
t(j+1) = 4t(j) + q–j (4s(j) – q–j d), with t(0) = 0

May 2015 Computer Arithmetic, Division Slide 75

15.6 Combined Multiply/Divide Units

Quotient

k

Partial Remainder

Divisor

add/sub

k-bit adder

k

cout cin

Complement

qk–j

2s (j–1)
MSB of

Divisor Sign

 Complement of
Partial Remainder Sign

Fig. 9.4 Fig. 13.10

Multiplier x

Mux

Adder

0

out c

0 1

Doublewidth partial product p

Multiplicand a

Shift

Shift

(j)

j x

x a j

k

k

k

Similarity of blocks in multipliers and dividers (only shift direction is different)

May 2015 Computer Arithmetic, Division Slide 76

Single Unit for Sequential Multiplication and Division

The control unit
proceeds through
necessary steps
for multiplication
or division
(including using
the appropriate
shift direction)

Fig. 15.9 Sequential radix-2 multiply/divide unit.

Multiplier x
or quotient q

Mux

Adder
out c

0 1

Partial product p or
partial remainder s

Multiplicand a
or divisor d

 Shift control

Shift

Enable

in c

q k–j

MSB of 2s (j–1)

k

k

k

j x

MSB of p (j+1)

 Divisor sign

Multiply/
divide
control

Select

 Mul Div

The slight speed
penalty owing to
a more complex
control unit is
insignificant

May 2015 Computer Arithmetic, Division Slide 77

Similarities of Array Multipliers and Array Dividers

Dividend z = z .z z z z z z
Divisor d = d .d d d
Quotient q = q .q q q
Remainder s = 0 .0 0 s s s s

0 –1 –2 –3 –4 –5 –6
0 –1 –2 –3
0 –1 –2 –3
 –3 –4 –5 –6

z

z

z

–4

–5

–6

s s s s–3 –4 –5 –6

q

q

q

0

–1

–2

q–3

d d d d0 –1 –2 –3
z z z z0 –1 –2 –3

FA

XOR

Cell

1

Fig. 11.4 Fig. 15.8

p p p p p

4 3 2 1 0 a a a a a

4

3

2

1

0

x

x

x

x

x

4

3

2

1

0

p

p

p

p

p

9 8 7 6
5

May 2015 Computer Arithmetic, Division Slide 78

Single Unit for Array Multiplication and Division

Each cell within the
array can act as a
modified adder or
modified subtractor
based on control
input values

Fig. 15.10 I/O specification of a universal circuit
that can act as an array multiplier or array divider.

In some designs,
squaring and
square-rooting
functions are also
included within the
same array

Multiplicand
 or divisor

Multiplier

Product or remainder

Quotient

Mul/Div

Additive input
 or dividend

May 2015 Computer Arithmetic, Division Slide 79

16 Division by Convergence

Chapter Goals
Show how by using multiplication as the
basic operation in each division step,
the number of iterations can be reduced

Chapter Highlights
Digit-recurrence as convergence method
Convergence by Newton-Raphson iteration
Computing the reciprocal of a number
Hardware implementation and fine tuning

May 2015 Computer Arithmetic, Division Slide 80

Division by Convergence: Topics

Topics in This Chapter

16.1 General Convergence Methods

16.2 Division by Repeated Multiplications

16.3 Division by Reciprocation

16.4 Speedup of Convergence Division

16.5 Hardware Implementation

16.6 Analysis of Lookup Table Size

May 2015 Computer Arithmetic, Division Slide 81

16.1 General Convergence Methods
Sequential digit-at-a-time (binary or high-radix) division
can be viewed as a convergence scheme

As each new digit of q = z / d is determined, the quotient value
is refined, until it reaches the final correct value

Digit

0.101101

q

0

1Meanwhile,
the remainder
s = z – q  d
approaches 0;
the scaled
remainder is kept
in a certain range,
such as [–d, d)

Convergence is from below in restoring division and oscillating
in nonrestoring division

May 2015 Computer Arithmetic, Division Slide 82

Elaboration on Scaled Remainder in Division

Quotient digit selection
keeps the scaled
remainder bounded
(say, in the range
–d to d) to ensure the
convergence of the
true remainder to 0

The partial remainder s(j) in division recurrence isn’t the true remainder
but a version scaled by 2j

Division with left shifts

s(j) = 2s(j–1) – qk–j (2k d) with s(0) = z and
|–shift–| s(k) = 2ks
|–––subtract–––|

Digit

0.101101

q

0

1

May 2015 Computer Arithmetic, Division Slide 83

Recurrence Formulas for Convergence Methods

u (i+1) = f(u (i), v (i), w (i))
v (i+1) = g(u (i), v (i), w (i))
w (i+1) = h(u (i), v (i), w (i))

u (i+1) = f(u (i), v (i))
v (i+1) = g(u (i), v (i))

The complexity of this method depends on two factors:

a. Ease of evaluating f and g (and h)
b. Rate of convergence (number of iterations needed)

Constant

Desired
function

Guide the iteration such that one of the values converges
to a constant (usually 0 or 1)

The other value then converges to the desired function

May 2015 Computer Arithmetic, Division Slide 84

16.2 Division by Repeated Multiplications

Remainder often not needed, but can be obtained
by another multiplication if desired: s = z – qd

Motivation: Suppose add takes 1 clock and multiply 3 clocks;
64-bit divide takes 64 clocks in radix 2, 32 in radix 4

 Divide via multiplications faster if 10 or fewer needed

)1()1()0(

)1()1()0(




 m

m

xxdx
xxzx

d
zq




Idea:

Force to 1
Converges to q

To turn the identity into a division algorithm, we face three questions:

1. How to select the multipliers x(i) ?
2. How many iterations (pairs of multiplications)?
3. How to implement in hardware?

May 2015 Computer Arithmetic, Division Slide 85

Formulation as a Convergence Computation

)1()1()0(

)1()1()0(




 m

m

xxdx
xxzx

d
zq




Idea:

Force to 1
Converges to q

d (i+1) = d (i) x (i) Set d (0) = d; make d (m) converge to 1
z (i+1) = z (i) x (i) Set z (0) = z; obtain z/d = q  z (m)

Question 1: How to select the multipliers x (i) ? x (i) = 2 – d (i)

This choice transforms the recurrence equations into:

d (i+1) = d (i) (2  d (i)) Set d (0) = d; iterate until d (m)  1
z (i+1) = z (i) (2  d (i)) Set z (0) = z; obtain z/d = q  z (m)

u (i+1) = f(u (i), v (i))
v (i+1) = g(u (i), v (i)) Fits the general form

May 2015 Computer Arithmetic, Division Slide 86

Determining the Rate of Convergence

d (i+1) = d (i) (2  d (i)) Set d (0) = d; make d (m) converge to 1
z (i+1) = z (i) (2  d (i)) Set z (0) = z; obtain z/d = q  z (m)

Question 2: How quickly does d (i) converge to 1?

We can relate the error in step i + 1 to the error in step i:

d (i+1) = d (i) (2  d (i)) = 1 – (1 – d (i))2

1 – d (i+1) = (1 – d (i))2

For 1 – d (i)  , we get 1 – d (i+1)  2: Quadratic convergence

In general, for k-bit operands, we need

2m – 1 multiplications and m 2’s complementations

where m = log2 k

May 2015 Computer Arithmetic, Division Slide 87

Quadratic Convergence
Table 16.1 Quadratic convergence in computing z/d
by repeated multiplications, where 1/2  d = 1 – y < 1

–––
i d (i) = d (i–1) x (i–1), with d (0) = d x (i) = 2 – d (i)

–––
0 1 – y = (.1xxx xxxx xxxx xxxx)two  1/2 1 + y
1 1 – y 2 = (.11xx xxxx xxxx xxxx)two  3/4 1 + y 2

2 1 – y 4 = (.1111 xxxx xxxx xxxx)two  15/16 1 + y 4

3 1 – y 8 = (.1111 1111 xxxx xxxx)two  255/256 1 + y 8

4 1 – y 16 = (.1111 1111 1111 1111)two = 1 – ulp
–––
Each iteration doubles the number of guaranteed leading 1s
(convergence to 1 is from below)

Beginning with a single 1 (d  ½), after log2k iterations we get
as close to 1 as is possible in a fractional representation

May 2015 Computer Arithmetic, Division Slide 88

Graphical Depiction of Convergence to q

Fig. 16.1 Graphical representation of convergence
in division by repeated multiplications.

1 1 – ulp

d

z

q –

Iteration i

d

z

0 1 2 3 4 5 6

(i)

(i)

q 

Question 3 (implementation in
hardware) to be discussed later

May 2015 Computer Arithmetic, Division Slide 89

16.3 Division by Reciprocation

Fig. 16.2 Convergence to a root of
f(x) = 0 in the Newton-Raphson method.

The Newton-Raphson
method can be used for
finding a root of f (x) = 0

f(x)

xx(i+1)x

f(x)

Tangent at x(i)

Root  x
(i)(i+2)

(i)

(i)

Start with an initial estimate
x(0) for the root

Iteratively refine the
estimate via the recurrence

x(i+1) = x(i) – f (x(i)) / f (x(i))

Justification:

tan(i) = f (x(i))
= f (x(i)) / (x(i) – x(i+1))

f (x(i))
tan (i) = f (x(i)) = –––––––

x(i) – x(i+1)

May 2015 Computer Arithmetic, Division Slide 90

Computing 1/d by Convergence
1/d is the root of f (x) = 1/x – d

f (x) = –1/x2

Substitute in the Newton-Raphson
recurrence x(i+1) = x(i) – f (x(i)) / f (x(i)) to get:

x (i+1) = x (i) (2  x (i)d)

One iteration = Two multiplications + One 2’s complementation

Error analysis: Let  (i) = 1/d – x(i) be the error at the ith iteration

 (i+1) = 1/d – x (i+1) = 1/d – x (i) (2 – x (i) d) = d (1/d – x (i))2 = d ( (i))2

Because d < 1, we have  (i+1) < ( (i))2

d

1/d x

f(x)

May 2015 Computer Arithmetic, Division Slide 91

Choosing the Initial Approximation to 1/d

With x(0) in the range 0 < x(0) < 2/d, convergence is guaranteed

Justification: |(0) | = |x(0) – 1/d | < 1/d

(1) = |x(1) – 1/d | = d ((0))2 = (d(0))(0) < (0)

1

x

1/x

2

1
0

0

For d in [1/2, 1):

Simple choice x(0) = 1.5

Max error = 0.5 < 1/d

Better approx. x(0) = 4(3 – 1) – 2d
= 2.9282 – 2d

Max error  0.1

May 2015 Computer Arithmetic, Division Slide 92

16.4 Speedup of Convergence Division

Division can be performed via 2 log2k – 1 multiplications

This is not yet very impressive
64-bit numbers, 3-ns multiplier  33-ns division

Three types of speedup are possible:

Fewer multiplications (reduce m)
Narrower multiplications (reduce the width of some x(i)s)
Faster multiplications

)1()1()0(

)1()1()0(




 m

m

xxdx
xxzx

d
zq



 Compute y = 1/d
Do the multiplication yz

May 2015 Computer Arithmetic, Division Slide 93

Initial Approximation via Table Lookup
Convergence is slow in the beginning: it takes 6 multiplications to get
8 bits of convergence and another 5 to go from 8 bits to 64 bits

d x(0) x(1) x(2) = (0.1111 1111 . . .)two

Approx to 1/d

Better approx

Read this value, x(0+), directly from a table,
thereby reducing 6 multiplications to 2

A 2w  w lookup table is necessary and sufficient for w bits of
convergence after 2 multiplications

Example with 4-bit lookup: d = 0.1011 xxxx . . . (11/16  d < 12/16)
Inverses of the two extremes are 16/11  1.0111 and 16/12  1.0101
So, 1.0110 is a good estimate for 1/d
1.0110  0.1011 = (11/8)  (11/16) = 121/128 = 0.1111001
1.0110  0.1100 = (11/8)  (3/4) = 33/32 = 1.000010

May 2015 Computer Arithmetic, Division Slide 94

Visualizing the Convergence with Table Lookup

Fig. 16.3 Convergence in division by repeated multiplications
with initial table lookup.

1 1 – ulp

d

z

q –

Iterations

After table lookup and 1st
pair of multiplications,
replacing several iterations

After the 2nd pair
of multiplications



May 2015 Computer Arithmetic, Division Slide 95

Convergence Does Not Have to Be from Below

Fig. 16.4 Convergence in division by repeated multiplications with
initial table lookup and the use of truncated multiplicative factors.

1 1 ± ulp

d

z

q ±

Iterations



May 2015 Computer Arithmetic, Division Slide 96

Using Truncated Multiplicative Factors

Fig. 16.4 One step
in convergence
division with truncated
multiplicative factors.

1

Approximate
iteration

Precise
iteration

B

A

i + 1 i

Iteration

 (x (i+1)

d x (0) x (1) x (i) ...
x (i+1)

) T

d x (0) x (1) x (i) ...

d x (0) x (1) x (i) ...

< 2 a

Example (64-bit multiplication)
Initial step: Table of size 256  8 = 2K bits
Middle steps: Multiplication pairs, with 9-, 17-, and 33-bit multipliers
Final step: Full 64  64 multiplication

Problem 16.9a
A truncated denominator d (i), with a
identical leading bits and b extra bits
(b  a), leads to a new denominator
d (i+1) with a + b identical leading bits

May 2015 Computer Arithmetic, Division Slide 97

16.5 Hardware Implementation
Repeated multiplications: Each pair of ops involves the same multiplier

d (i+1) = d (i) (2  d (i)) Set d (0) = d; iterate until d (m)  1
z (i+1) = z (i) (2  d (i)) Set z (0) = z; obtain z/d = q  z (m)

Fig. 16.6 Two multiplications fully overlapped
in a 2-stage pipelined multiplier.

z x(i)(i)

d x(i)(i)

x(i)z(i)
d(i+1)

d(i+1)

x(i+1)

z x(i)(i)

d x(i+1)(i+1)

z(i+1)

2's Compl
z(i+1) x(i+1)

z x(i+1)(i+1)

d(i+2)

d x(i+1)(i+1)

May 2015 Computer Arithmetic, Division Slide 98

Implementing Division with Reciprocation
Reciprocation: Multiplication pairs are data-dependent, so they cannot
be pipelined or performed in parallel

x (i+1) = x (i) (2  x (i)d)

Options for speedup via a better initial approximation

Consult a larger table
Resort to a bipartite or multipartite table (see Chapter 24)
Use table lookup, followed with interpolation
Compute the approximation via multioperand addition

Unless several multiplications by the same multiplier are needed,
division by repeated multiplications is more efficient

However, given a fast method for reciprocation (see Section 24.6),
using a reciprocation unit with a standard multiplier is often preferred

May 2015 Computer Arithmetic, Division Slide 99

16.6 Analysis of Lookup Table Size
Table 16.2 Sample entries in the lookup table replacing the
first four multiplications in division by repeated multiplications

–––
Address d = 0.1 xxxx xxxx x (0+) = 1. xxxx xxxx
–––

55 0011 0111 1010 0101
64 0100 0000 1001 1001

–––
Example: Table entry at address 55 (311/512  d < 312/512)

For 8 bits of convergence, the table entry f must satisfy

(311/512)(1 + . f)  1 – 2–8 (312/512)(1 + . f)  1 + 2–8

199/311  .f  101/156

163.81 ≤ f = 256  . f ≤ 165.74

Two choices: 164 = (1010 0100)two or 165 = (1010 0101)two

May 2015 Computer Arithmetic, Division Slide 100

A General Result for Table Size

Proof strategy for sufficiency: Represent the table entry 1.f as the
integer v = 2w  .f and derive upper / lower bound expressions for it.
Then, show that at least one integer exists between vlb and vub

Theorem 16.1: To get w  5 bits of convergence after the first
iteration of division by repeated multiplications, w bits of d (beyond
the mandatory 1) must be inspected. The factor x(0+) read out from
table is of the form (1.xxx . . . xxx)two, with w bits after the radix point

Proof strategy for necessity: Show that derived conditions cannot
be met if the table is of size 2k–1 (no matter how wide) or if it is of
width k – 1 (no matter how large)

Excluded cases, w < 5: Practically uninteresting (allow smaller table)

General radix r : Same analysis method, and results, apply

