
Floating-Point Arithmetic in Matlab

Since real numbers can not be coded with finite number of bits, Matlab and most other
technical computing environments use floating-point arithmetic, which involves a finite set
of numbers with finite precision. This leads to the phenomena of roundoff, underflow, and
overflow. Most of the time, it is possible to use Matlab effectively without worrying about
these details, but, every once in a while, it pays to know something about the properties and
limitations of floating-point numbers.

Before 1985, the situation was far more complicated than it is today. Each computer had
its own floating-point number system. Some were binary; some were decimal. There was even
a Russian computer that used trinary arithmetic. Among the binary computers, some used 2
as the base; others used 8 or 16. And everybody had a different precision. In 1985, the IEEE
Standards Board and the American National Standards Institute adopted the ANSI/IEEE
Standard 754–1985 for Binary Floating-Point Arithmetic. This was the culmination of almost
a decade of work by a 92-person working group of mathematicians, computer scientists, and
engineers from universities, computer manufacturers, and microprocessor companies.

All computers designed since 1985 use IEEE floating-point arithmetic. This doesn’t
mean that they all get exactly the same results, because there is some flexibility within
the standard. But it does mean that we now have a machine-independent model of how
floating-point arithmetic behaves.

Matlab has traditionally used the IEEE double-precision format. There is a single-
precision format that saves space, but that isn’t much faster on modern machines. Below
we will deal exclusively with double precision. There is also an extended-precision format,
which is optional and therefore is one of the reasons for lack of uniformity among different
machines.

Most nonzero floating-point numbers are normalized. This means they can be expressed
as

x = ±(1 + f) · 2e.

The quantity f is the fraction or mantissa and e is the exponent. The fraction satisfies

0 ≤ f < 1

and must be representable in binary using at most 52 bits. In other words, 252f is an integer
in the interval

0 ≤ 252f < 252.

1

The exponent e is an integer in the interval

−1022 ≤ e ≤ 1023.

The finiteness of f is a limitation on precision. The finiteness of e is a limitation on range.
Any numbers that don’t meet these limitations must be approximated by ones that do.

Double-precision floating-point numbers are stored in a 64-bit word, with 52 bits for f ,
11 bits for e, and 1 bit for the sign of the number. The sign of e is accommodated by storing
e+1023, which is between 1 and 211− 2. The 2 extreme values for the exponent field, 0 and
211 − 1, are reserved for exceptional floating-point numbers that we will describe later.

The entire fractional part of a floating-point number is not f , but 1 + f , which has 53
bits. However, the leading 1 doesn’t need to be stored. In effect, the IEEE format packs 65
bits of information into a 64-bit word.

The program floatgui shows the distribution of the positive numbers in a model floating-
point system with variable parameters. The parameter t specifies the number of bits used to
store f . In other words, 2tf is an integer. The parameters emin and emax specify the range
of the exponent, so emin ≤ e ≤ emax. Initially, floatgui sets t = 3, emin = −4, and emax = 2
and produces the distribution shown in Figure 1.7.

1/16 1/2 1 2 4 8−1/2

||||||||||||||||||||||||| |

Figure 1: floatgui.

Within each binary interval 2e ≤ x ≤ 2e+1, the numbers are equally spaced with an
increment of 2e−t. If e = 0 and t = 3, for example, the spacing of the numbers between 1
and 2 is 1/8. As e increases, the spacing increases.

It is also instructive to display the floating-point numbers with a logarithmic scale. Figure
1.8 shows floatgui with logscale checked and t = 5, emin = −4, and emax = 3. With
this logarithmic scale, it is more apparent that the distribution in each binary interval is the
same.

A very important quantity associated with floating-point arithmetic is highlighted in red
by floatgui. Matlab calls this quantity eps, which is short for machine epsilon.

eps is the distance from 1 to the next larger floating-point number.

For the floatgui model floating-point system, eps = 2^(-t).
Before the IEEE standard, different machines had different values of eps. Now, for IEEE

double-precision,

2

1/16 1/4 1/2 1 2 4 16−1/4

||

Figure 2: floatgui(logscale).

eps = 2^(-52).

The approximate decimal value of eps is 2.2204 · 10−16. Either eps/2 or eps can be called
the roundoff level. The maximum relative error incurred when the result of an arithmetic
operation is rounded to the nearest floating-point number is eps/2. The maximum relative
spacing between numbers is eps. In either case, you can say that the roundoff level is about
16 decimal digits.

A frequent instance of roundoff occurs with the simple Matlab statement

t = 0.1

The mathematical value t stored in t is not exactly 0.1 because expressing the decimal
fraction 1/10 in binary requires an infinite series. In fact,

1

10
=

1

24
+

1

25
+

0

26
+

0

27
+

1

28
+

1

29
+

0

210
+

0

211
+

1

212
+

After the first term, the sequence of coefficients 1, 0, 0, 1 is repeated infinitely often. Group-
ing the resulting terms together four at a time expresses 1/10 in a base 16, or hexadecimal,
series.

1

10
= 2−4 ·

(
1 +

9

16
+

9

162
+

9

162
+

9

163
+

9

164
+ · · ·

)

Floating-point numbers on either side of 1/10 are obtained by terminating the fractional
part of this series after 52 binary terms, or 13 hexadecimal terms, and rounding the last
term up or down. Thus

t1 < 1/10 < t2,

where

t1 = 2−4 ·
(

1 +
9

16
+

9

162
+

9

163
+ · · ·+ 9

1612
+

9

1613

)
,

t1 = 2−4 ·
(

1 +
9

16
+

9

162
+

9

163
+ · · ·+ 9

1612
+

10

1613

)
.

It turns out that 1/10 is closer to t2 than to t1, so t is equal to t2. In other words,

t = (1 + f) · 2e,

3

where

f =
9

16
+

9

162
+

9

163
+ · · ·+ 9

1612
+

10

1613
,

e = −4.

The Matlab command

format hex

causes t to be displayed as

3fb999999999999a

The characters a through f represent the hexadecimal “digits” 10 through 15. The first three
characters, 3fb, give the hexadecimal representation of decimal 1019, which is the value of
the biased exponent e + 1023 if e is −4. The other 13 characters are the hexadecimal
representation of the fraction f .

In summary, the value stored in t is very close to, but not exactly equal to, 0.1. The
distinction is occasionally important. For example, the quantity

0.3/0.1

is not exactly equal to 3 because the actual numerator is a little less than 0.3 and the actual
denominator is a little greater than 0.1.

Ten steps of length t are not precisely the same as one step of length 1. Matlab is careful
to arrange that the last element of the vector

0:0.1:1

is exactly equal to 1, but if you form this vector yourself by repeated additions of 0.1, you
will miss hitting the final 1 exactly.

What does the floating-point approximation to the golden ratio look like?

format hex

phi = (1 + sqrt(5))/2

produces

phi =

3ff9e3779b97f4a8

The first hex digit, 3, is 0011 in binary. The first bit is the sign of the floating- point number;
0 is positive, 1 is negative. So phi is positive. The remaining bits of the first three hex digits
contain e + 1023. In this example, 3ff in base 16 is 3 · 162 + 15 · 16 + 15 = 1023 in decimal.
So

e = 0.

4

In fact, any floating-point number between 1.0 and 2.0 has e = 0, so its hex output begins
with 3ff. The other 13 hex digits contain f . In this example,

f =
9

16
+

14

162
+

3

163
+ · · ·+ 10

1612
+

8

1613
.

With these values of f and e,
(1 + f)2e ≈ φ.

Another example is provided by the following code segment.

format long

a = 4/3

b = a - 1

c = 3*b

e = 1 - c

With exact computation, e would be 0. But with floating-point, the output produced is

a =

1.33333333333333

b =

0.33333333333333

c =

1.00000000000000

e =

2.220446049250313e-016

It turns out that the only roundoff occurs in the division in the first statement. The quotient
cannot be exactly 4/3, except on that Russian trinary computer. Consequently the value
stored in a is close to, but not exactly equal to, 4/3. The subtraction b = a - 1 produces
a b whose last bit is 0. This means that the multiplication 3*b can be done without any
roundoff. The value stored in c is not exactly equal to 1, and so the value stored in e is not
0. Before the IEEE standard, this code was used as a quick way to estimate the roundoff
level on various computers.

The roundoff level eps is sometimes called “floating-point zero,” but that’s a misnomer.
There are many floating-point numbers much smaller than eps. The smallest positive nor-
malized floating-point number has f = 0 and e = −1022. The largest floating-point number
has f a little less than 1 and e = 1023. Matlab calls these numbers realmin and realmax.
Together with eps, they characterize the standard system.

Binary Decimal

eps 2^(-52) 2.2204e-16

realmin 2^(-1022) 2.2251e-308

realmax (2-eps)*2^1023 1.7977e+308

5

If any computation tries to produce a value larger than realmax, it is said to overflow.
The result is an exceptional floating-point value called infinity or Inf. It is represented by
taking e = 1024 and f = 0 and satisfies relations like 1/Inf = 0 and Inf+Inf = Inf.

If any computation tries to produce a value that is undefined even in the real number
system, the result is an exceptional value known as Not-a-Number, or NaN. Examples include
0/0 and Inf-Inf. NaN is represented by taking e = 1024 and f nonzero.

If any computation tries to produce a value smaller than realmin, it is said to underflow.
This involves one of the optional, and controversial, aspects of the IEEE standard. Many,
but not all, machines allow exceptional denormal or subnormal floating-point numbers in
the interval between realmin and eps*realmin. The smallest positive subnormal number
is about 0.494e-323. Any results smaller than this are set to 0. On machines without
subnormals, any results less than realmin are set to 0. The subnormal numbers fill in
the gap you can see in the floatgui model system between 0 and the smallest positive
number. They do provide an elegant way to handle underflow, but their practical importance
for Matlab-style computation is very rare. Denormal numbers are represented by taking
e = −1023, so the biased exponent e + 1023 is 0.

Matlab uses the floating-point system to handle integers. Mathematically, the numbers
3 and 3.0 are the same, but many programming languages would use different representations
for the two. Matlab does not distinguish between them. We sometimes use the term flint
to describe a floating-point number whose value is an integer. Floating-point operations on
flints do not introduce any roundoff error, as long as the results are not too large. Addition,
subtraction, and multiplication of flints produce the exact int result if it is not larger than
253. Division and square root involving flints also produce a flint if the result is an integer.
For example, sqrt(363/3) produces 11, with no roundoff.

Two Matlab functions that take apart and put together floating-point numbers are
log2 and pow2.

help log2

help pow2

produces

[F,E] = LOG2(X) for a real array X, returns an array F

of real numbers, usually in the range 0.5 <= abs(F) < 1,

and an array E of integers, so that X = F .* 2.^E.

Any zeros in X produce F = 0 and E = 0.

X = POW2(F,E) for a real array F and an integer array E

computes X = F .* (2 .^ E). The result is computed quickly

by simply adding E to the floating-point exponent of F.

The quantities F and E used by log2 and pow2 predate the IEEE floating-point standard
and so are slightly different from the f and e we are using in this section. In fact, f = 2*F-1
and e = E-1.

6

[F,E] = log2(phi)

produces

F =

0.80901699437495

E =

1

Then

phi = pow2(F,E)

gives back

phi =

1.61803398874989

As an example of how roundoff error affects matrix computations, consider the 2-by-2 set of
linear equations

17x1 + 5x2 = 22,

1.7x1 + 0.5x2 = 2.2.

The obvious solution is x1 = 1, x2 = 1. But the Matlab statements

A = [17 5; 1.7 0.5]

b = [22; 2.2]

x = A\b

produce

x =

-1.0588

8.0000

Where did this come from? Well, the equations are singular, but consistent. The second
equation is just 0.1 times the first. The computed x is one of infinitely many possible
solutions. But the floating-point representation of the matrix A is not exactly singular
because A(2,1) is not exactly 17/10.

The solution process subtracts a multiple of the first equation from the second. The
multiplier is mu = 1.7/17, which turns out to be the floating-point number obtained by
truncating, rather than rounding, the binary expansion of 1/10. The matrix A and the
right-hand side b are modified by

A(2,:) = A(2,:) - mu*A(1,:)

b(2) = b(2) - mu*b(1)

7

With exact computation, both A(2,2) and b(2) would become zero, but with floating-point
arithmetic, they both become nonzero multiples of eps.

A(2,2) = (1/4)*eps

= 5.5511e-17

b(2) = 2*eps

= 4.4408e-16

Matlab notices the tiny value of the new A(2,2) and displays a message warning that
the matrix is close to singular. It then computes the solution of the modified second equation
by dividing one roundoff error by another.

x(2) = b(2)/A(2,2)

= 8

This value is substituted back into the first equation to give

x(1) = (22 - 5*x(2))/17

= -1.0588

The details of the roundoff error lead Matlab to pick out one particular solution from
among the infinitely many possible solutions to the singular system.

Our final example plots a seventh-degree polynomial.

x = 0.988:.0001:1.012;

y = x.^7-7*x.^6+21*x.^5-35*x.^4+35*x.^3-21*x.^2+7*x-1;

plot(x,y)

The resulting plot in Figure 1.9 doesn’t look anything like a polynomial. It isn’t smooth.
You are seeing roundoff error in action. The y-axis scale factor is tiny, 10−14. The tiny values
of y are being computed by taking sums and differences of numbers as large as 35 · 1.0124.
There is severe subtractive cancellation. The example was contrived by using the Symbolic
Toolbox to expand (x− 1)7 and carefully choosing the range for the x-axis to be near x = 1.
If the values of y are computed instead by

y = (x-1).^7;

then a smooth (but very flat) plot results.

References

[1] Cleve Moler, Numerical Computing with MATLAB, SIAM, Philadelphia, 2004.

8

0.985 0.99 0.995 1 1.005 1.01 1.015
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−14

Figure 3: Figure 1.9. Is this a polynomial?

9

