
Copyright © 2003 Altera Corporation

Introduction to VHDL
Based on Altera’s Tutorial

Computer Architecture

Prof. Erivelton G. Nepomuceno
nepomuceno@ufsj.edu.br

Copyright © 2003 Altera Corporation

Course Outline
n VHDL Basics
n Design Units
n Architecture Modeling Fundamentals
n Understanding VHDL and Logic Synthesis
n Hierarchical Designing

Copyright © 2003 Altera Corporation

VHDL Basics

n IEEE industry standard hardware description
language

n High-level description language for both Simulation &
Synthesis

n 1980 - U.S. Department of Defense (DOD) funded a
project to create a standard hardware description
language under the Very High Speed Integrated
Circuit (VHSIC) program.

n 1987 - the Institute of Electrical and Electronics
Engineers (IEEE) ratified as IEEE Standard 1076.

n 1993 - the VHDL language was revised and updated
to IEEE 1076 ‘93.

Copyright © 2003 Altera Corporation

Terminology

n HDL - Hardware Description Language is a software
programming language that is used to model a piece
of hardware

n Behavior Modeling - A component is described by its
input/output response

n Structural Modeling - A component is described by
interconnecting lower-level components/primitives

Copyright © 2003 Altera Corporation

Terminology

n Register Transfer Level (RTL) - A type of behavioral
modeling, for the purpose of synthesis.
– Hardware is implied or inferred
– Synthesizable

n Synthesis - Translating HDL to a circuit and then
optimizing the represented circuit

n Process – Basic unit of execution in VHDL

Copyright © 2003 Altera Corporation

Behavior Modeling

input1, .., inputn
output1, .., outputn

 IF input1 THEN
FOR j IN high DOWNTO low LOOP
 shft(j) := shft(j);
END LOOP;
 output1 <= shft AFTER 5ns;

n Only the functionality of the circuit, no structure
n No specific hardware intent
n For the purpose of synthesis, as well as simulation

Copyright © 2003 Altera Corporation

Structural Modeling

input1

inputn

output1

outputn

Higher-level Component

 Lower-level
Component1

 Lower-level
Component1

n Functionality and structure of the circuit
n Call out the specific hardware
n For the purpose of synthesis

Copyright © 2003 Altera Corporation

Process (a, b, c, d, sel)
 begin
 case (sel) is
 when “00” => mux_out <= a;

when “01” => mux_out <= b;
when “10” => mux_out <= c;
when “11” => mux_out <= d;

 end case;

a

d

a

d

Translation

Optimization

a

d
sel

2

binferred mux_out
c

RTL Synthesis

Copyright © 2003 Altera Corporation

n VHDL
– “Give me a circuit whose output only changes when

there is a low-to-high transition on a particular input.
When the transition happens, make the output equal to
the input until the next transition.”

– Result: VHDL Synthesis provides a positive edge-
triggered flipflop

n ABEL, PALASM, AHDL
– “Give me a D-type flipflop.”
– Result: ABEL, PALASM, AHDL synthesis provides a D-

type flipflop. The sense of the clock depends on the
synthesis tool.

VHDL Synthesis vs. Other HDL Standards

Copyright © 2003 Altera Corporation

More VHDL Basics

n Two sets of constructs:
– Synthesis
– Simulation

n The VHDL Language is made up of reserved
keywords.

n The language is, for the most part, NOT case
sensitive.

n VHDL statements are terminated with a ;
n VHDL is white space insensitive. Used for readability.
n Comments in VHDL begin with “--” to eol

Copyright © 2003 Altera Corporation

Synthesis
Compiler

Simulation
Waveform

VHDL
Library

Netlist

Text Output
 Test

Vectors

Timing Analysis Place/Route

Technology
 Library

 VHDL
 Model

Typical Synthesis Design Flow

Copyright © 2003 Altera Corporation

Simulation
Compiler

VHDL
Simulation

Waveform

VHDL
 Library

 VHDL
TestBench

 Simulation
 Model

Text Output

 Test
Vectors

Optional

VHDL
 Model

Typical Simulation Design Flow

Copyright © 2003 Altera Corporation

VHDL
Design Units

Copyright © 2003 Altera Corporation

Design Units

n VHDL Design Units
– Entity

• Used to define external view of a model. i.e. symbol
– Architecture

• Used to define the function of the model. i.e. schematic
– Configuration

• Used to associate an Architecture with an Entity
– Package

• Collection of information that can be referenced by VHDL
models. I.e. Library

• Consist of two parts Package Declaration and Package
Body.

Copyright © 2003 Altera Corporation

Entity Declaration
ENTITY <entity_name> IS

Generic Declarations
Port Declarations

END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

n Analogy : Symbol
n <entity_name> can be any alpha/numerical name

– Note: MAX+PLUS II requires that the <entity_name> and <file_name> be
the same

n Generic Declarations
– Used to pass information into a model
– MAX+PLUS II places some restriction on the use of Generics

n Port Declarations
– Used to describe the inputs and outputs i.e. pins

Copyright © 2003 Altera Corporation

Entity : Generic Declaration

n New values can be passed during compilation
n During simulation/synthesis a Generic is read only

Copyright © 2003 Altera Corporation

Entity : Port Declarations

n Structure : <class> object_name : <mode> <type> ;
• <class> : what can be done to an object
• Object_name : identifier
• <mode> : directional

» in (input) out (output)
» inout (bidirectional) buffer (output w/ internal feedback)

• <type> : What can be contained in the object

ENTITY <entity_name> IS
Generic Declarations
Port (signal clk : in bit;
 --Note: signal is assumed and is not required
 q : out bit

);
END <entity_name>; (1076-1987 version)
END ENTITY <entity_name> ; (1076-1993 version)

Copyright © 2003 Altera Corporation

Architecture

n Key aspects of the Architecture
– Analogy : schematic
– Describes the Functionality and Timing of a model
– Must be associated with an ENTITY
– ENTITY can have multiple architectures
– Architecture statements execute concurrently
– Architecture Styles

• Behavioral : How designs operate
– RTL : Designs are described in terms of Registers
– Functional : No timing

• Structural : Netlist
– Gate/Component Level

• Hybrid : Mixture of the above

Copyright © 2003 Altera Corporation

Configuration

n Used to make associations within models
– Associate a Entity and Architecture
– Associate a component to an Entity-Architecture

n Widely used in Simulation environments
– Provides a flexible and fast path to design alternatives

n Limited or no support in Synthesis environments

CONFIGURATION <identifier> OF <entity_name> IS
FOR <architecture_name>
END FOR;

END; (1076-1987 version)
END CONFIGURATION; (1076-1993 version)

Copyright © 2003 Altera Corporation

Testbench

n Testbench is not defined by the VHDL Language
Reference Manual and has no formal definition

n In general, it consists of three parts
1. The component we want to test, i.e. the Design Under Test

(DUT).
2. A mechanism for supplying inputs to the DUT.
3. A mechanism for checking the outputs of the DUT against

expected outputs.

Copyright © 2003 Altera Corporation

Testbench

Testbench architecture, Source: Kashani-Akhavan. Available at
https://goo.gl/dCsMNK

Copyright © 2003 Altera Corporation

Putting It All Together

ARCHITECTURE

a

b
sel

x

a

b
sel

y

a

b
sel

z

a

b

sel

x

y

z

ENTITYENTITY cmpl_sig IS
PORT (a, b, sel : IN bit;

x, y, z : OUT bit;
END cmpl_sig;
ARCHITECTURE logic OF cmpl_sig IS
BEGIN

 -- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);
 -- conditional signal assignment
y <= a WHEN sel='0' ELSE
 b;
 -- selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
 b WHEN '1',
 '0' WHEN OTHERS;

END logic;
CONFIGURATION cmpl_sig_conf OF cmpl_sig IS

FOR logic
END FOR;

END cmpl_sig_conf;

Copyright © 2003 Altera Corporation

Example 1
-- Exemplo 1 - Porta AND - 2 entradas
-- Arquitetura de Computadores
-- Prof. Erivelton

library ieee;
use ieee.std_logic_1164.all;

entity PortaAND2to1 is
port
(

a : in std_logic;
b : in std_logic;
saída : out std_logic

);
end entity;

architecture rtl of PortaAND2to1 is
begin
saida <= a and b;
end rtl;

Copyright © 2003 Altera Corporation

Example 1

n Compilation using Quartus II

Copyright © 2003 Altera Corporation

Example 1

n Compilation using Quartus II

Copyright © 2003 Altera Corporation

Example 1

Copyright © 2003 Altera Corporation

Example 1

Copyright © 2003 Altera Corporation

Example 1

Copyright © 2003 Altera Corporation

Example 1

Copyright © 2003 Altera Corporation

Example 1

Copyright © 2003 Altera Corporation

Example 1

Copyright © 2003 Altera Corporation

Example 1

Copyright © 2003 Altera Corporation

Example 1

Copyright © 2003 Altera Corporation

Example 1

Copyright © 2003 Altera Corporation

Example 1 - Testbench
-- Exemplo 1 - Porta AND - 2 entradas – Testbench
-- Arquitetura de Computadores
-- Prof. Erivelton

library ieee;
use ieee.std_logic_1164.all;

entity tb_PortaAND2to1 is
end tb_PortaAND2to1;

architecture behavior of tb_PortaAND2to1 is
 -- Declaração de componente de: Unit Uder Test (UUT)

 component PortaAND2to1
 port
 (
 a : in std_logic;
 b : in std_logic;
 a saída : out std_logic
);

Copyright © 2003 Altera Corporation

Example 1 – Testbench - Continued

 -- Sinais
signal a : std_logic;
signal b : std_logic;
signal saida : std_logic;

begin
-- Definição the Unit Under Test (UUT)
uut: PortaAND2to1 port map
(

a => a,
b => b,
saida => saida

);

Copyright © 2003 Altera Corporation

Example 1 – Testbench - Continued

-- Stimulus process
stim_proc: process
begin

-- insert stimulus here
wait for 5 ns;
a <= '0’;
b <= ‘0’;
wait for 5 ns;
a <= '1’;
b <= '0’;
wait for 5 ns;
a <= '0’;
b <= '1’;
wait for 5 ns;
a <= '1’;
b <= '1’;
wait;

end process;
end architecture;

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Simulation Time

Simulation

Full View

Copyright © 2003 Altera Corporation

Example 1 - Modelsim

Copyright © 2003 Altera Corporation

Example 1 – Modelsim - Script

Copyright © 2003 Altera Corporation

Example 1 – Modelsim - Script

Copyright © 2003 Altera Corporation

Example 1 – Modelsim - Script

Copyright © 2003 Altera Corporation

Example 1 – Modelsim - Script

Copyright © 2003 Altera Corporation

Example 1 – Modelsim - Script

Copyright © 2003 Altera Corporation

Example 1 – Modelsim - Script

Copyright © 2003 Altera Corporation

Packages

n Packages are a convenient way of storing and using
information throughout an entire model

n Packages consist of:
– Package Declaration (Required)

• Type declarations
• Subprograms declarations

– Package Body (Optional)
• Subprogram definitions

n VHDL has two built-in Packages
– Standard
– TEXTIO

Copyright © 2003 Altera Corporation

Package Example

LIBRARY ieee;
USE ieee.std_logic_1164.all;
PACKAGE filt_cmp IS
 TYPE state_type IS (idle, tap1, tap2, tap3, tap4);
 COMPONENT acc

port(xh : in std_logic_vector(10 downto 0);
 clk, first: in std_logic;
 yn : out std_logic_vector(11 downto 4));

 END COMPONENT;
FUNCTION compare (variable a , b : integer) RETURN boolean;
END filt_cmp;
PACKAGE BODY filt_cmp IS
FUNCTION compare (variable a , b : integer) IS
 VARIABLE temp : boolean;
 Begin

If a < b then
 temp := true ;

 else
 temp := false ;
end if;

 RETURN temp ;
END compare ;
END fily_cmp ;

Package Declaration

Package Body

Copyright © 2003 Altera Corporation

Libraries

n Contains a package or a collection of packages
n Resource Libraries

– Standard Package
– IEEE developed packages
– Altera Component packages
– Any library of design units that are referenced in a

design
n Working Library

– Library into which the unit is being compiled

Copyright © 2003 Altera Corporation

Model Referencing of Library/Package

n All packages must be compiled
n Implicit Libraries

– Work
– STD
ð Note: Items in these packages do not need to be referenced,

they are implied
• LIBRARY Clause

– Defines the library name that can be referenced
– Is a symbolic name to path/directory
– Defined by the Compiler Tool

n USE Clause
– Specifies the package and object in the library that you have

specified in the Library clause

Copyright © 2003 Altera Corporation

Example
n LIBRARY <name>, <name> ;

– name is symbolic and define by
compiler tool

ð Note: Remember that WORK
 and STD do not need to
 be defined.

• USE lib_name.pack_name.object;
• ALL is a reserved word

n Placing the Library/Use clause 1st
will allow all following design units
to access it

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY cmpl_sig IS
PORT (a, b, sel : IN std_logic;

x, y, z : OUT std_logic;
END cmpl_sig;
ARCHITECTURE logic OF cmpl_sig IS
BEGIN

 -- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);
 -- conditional signal assignment
y <= a WHEN sel='0' ELSE
 b;
 -- selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
 b WHEN '1',
 '0' WHEN OTHERS;

END logic;
CONFIGURATION cmpl_sig_conf OF cmpl_sig IS

FOR logic
END FOR;

END cmpl_sig_conf;

Copyright © 2003 Altera Corporation

Libraries

n LIBRARY STD ;
– Contains the following packages:

• standard (Types: Bit, Boolean, Integer, Real, and Time.
All operator functions to support types)

• textio (File operations)

– An implicit library (built-in)
• Does not need to be referenced in VHDL design

Copyright © 2003 Altera Corporation

Types Defined in Standard Package

n Type BIT
– 2 logic value system (‘0’, ‘1’)

signal a_temp : bit;
– BIT_VECTOR array of bits

signal temp : bit_vector(3 downto 0);
signal temp : bit_vector(0 to 3) ;

n Type BOOLEAN
– (false, true)

n Integer
– Positive and negative values in decimal

signal int_tmp : integer; -- 32 bit number
signal int_tmp1 : integer range 0 to 255; --8 bit number

ð Note: Standard package has other types

Copyright © 2003 Altera Corporation

Libraries

n LIBRARY IEEE;
– Contains the following packages:

• std_logic_1164 (std_logic types & related functions)
• std_logic_arith (arithmetic functions)
• std_logic_signed (signed arithmetic functions)
• std_logic_unsigned (unsigned arithmetic functions)

Copyright © 2003 Altera Corporation

Types Defined in std_logic_1164 Package

n Type STD_LOGIC
– 9 logic value system (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’)

• ‘W’, ‘L’, ‘H” weak values (Not supported by Synthesis)
• ‘X’ - used for unknown
• ‘Z’ - (not ‘z’) used for tri-state
• ‘-’ Don’t Care

– Resolved type: supports signals with multiple drives

n Type STD_ULOGIC
– Same 9 value system as STD_LOGIC
– Unresolved type: Does not support multiple signal drives;

Error will occur

Copyright © 2003 Altera Corporation

Operator Type Operator Name/Symbol

Logical and or nand nor xor xnor(1)

Relational = /= < <= > >=

Adding + - &

Signing + -

Multiplying * / mod rem

Miscellaneous ** abs not
(1) Supported in VHDL ‘93 only

VHDL Operators

Copyright © 2003 Altera Corporation

Operator Overloading

n How do you use Arithmetic & Boolean functions with
other data types?
– Operator Overloading - defining Arithmetic & Boolean

functions with other data types

n Operators are overloaded by defining a function
whose name is the same as the operator itself
– Because the operator and function name are the same, the

function name must be enclosed within double quotes to
distinguish it from the actual VHDL operator

– The function is normally declared in a package so that it is
globally visible for any design

Copyright © 2003 Altera Corporation

Review

n Terminology
– Synthesis
– Behavior Modeling
– Structural Modeling

n Design Units
– Entity
– Architecture
– Configuration
– Package

n Libraries
– work
– ieee

Copyright © 2003 Altera Corporation

Architecture Modeling
Fundamentals

Copyright © 2003 Altera Corporation

Using Signals
n Signals represent physical interconnect (wire) that communicate

between processes (functions)
n Signals can be declared in Packages, Entity and Architecture

Functional
 Block:
 MUX
 (signals)

 Functional
 Block:
REGISTERS
 (signals)

process process
signals

signals signals

signals

Copyright © 2003 Altera Corporation

Assigning Values to Signals

n All bits:
temp <= “10101010”;
temp <= x”AA” ; (1076-1993)

n Single bit:
temp(7) <= ‘1’;

n Bit-slicing:
temp (7 downto 4) <= “1010”;

n Single-bit: single-quote (‘)
n Multi-bit: double-quote (“)

SIGNAL temp : STD_LOGIC_VECTOR (7 downto 0);

Copyright © 2003 Altera Corporation

Signal Used As an Interconnect

r

t

g

h

qb

Signal Declaration
inside Architecture

• r, t, g, h, and qb are Signals (by default)
• qa is a buried Signal and needs to be
 declared

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY simp IS
PORT(r, t, g, h : IN STD_LOGIC;

 qb : OUT STD_LOGIC);
END simp;
ARCHITECTURE logic OF simp IS
SIGNAL qa : STD_LOGIC;

BEGIN

qa <= r or t;
qb <= (qa and not(g xor h));

END logic;

Signal: qa

Copyright © 2003 Altera Corporation

Simple Signal Assignments

n Format: <signal_name> <= <expression>;

n Example:

r

t

g

h

qb

n VHDL Operators are used to describe the process

implied process
qa <= r or t ;
qb <= (qa and not(g xor h));

ð Parenthesis () give the
order of operation

Copyright © 2003 Altera Corporation

Conditional Signal Assignments

<signal_name> <= <signal/value> when <condition1> else
<signal/value> when <condition2> else

.

.
<signal/value> when <condition3> else
<signal/value>;

n Format:

n Example:
c

b
selb a

sela

q

implied process

q <= a WHEN sela = ‘1’ ELSE
 b WHEN selb = ‘1’ ELSE
 c;

Copyright © 2003 Altera Corporation

Selected Signal Assignments

with <expression> select
<signal_name> <= <signal/value> when <condition1>,

 <signal/value> when <condition2>,

.

.
 <signal/value> when others;

n Format:

n Example:
a

d
sel

2

b
c

q

implied process

WITH sel SELECT
 q <= a WHEN “00”,

 b WHEN “01”,
 c WHEN “10”,
 d WHEN OTHERS;

Copyright © 2003 Altera Corporation

If-Then Statements

IF <condition1> THEN
{sequence of statement(s)}

ELSIF <condition2> THEN
{sequence of statement(s)}

.

.
ELSE

{sequence of statement(s)}
END IF;

n Format: n Example:

c

b
selb a

sela

q

PROCESS(sela, selb, a, b, c)
BEGIN
 IF sela=‘1’ THEN

q <= a;
 ELSIF selb=‘1’ THEN

q <= b;
 ELSE

q <= c;
 END IF;
END PROCESS;

Copyright © 2003 Altera Corporation

Case Statement

CASE {expression} IS
WHEN <condition1> =>

{sequence of statements}
WHEN <condition2> =>

{sequence of statements}

.

.
WHEN OTHERS => -- (optional)

{sequence of statements}
END CASE;

n Format: n Example:

a

d
sel

2

b
c

q

PROCESS(sel, a, b, c, d)
BEGIN
 CASE sel IS

WHEN “00” =>
q <= a;

WHEN “01” =>
q <= b;

WHEN “10” =>
q <= c;

WHEN OTHERS =>
q <= d;

 END CASE;
END PROCESS;

Copyright © 2003 Altera Corporation

Sequential LOOPS

n Infinite Loop
– Loops infinitely unless EXIT

statement exists

n While Loop
– Conditional test to end loop

n FOR Loop
– Iteration Loop

[loop_label]LOOP
 --sequential statement
 EXIT loop_label ;
END LOOP;

WHILE <condition> LOOP
 --sequential statements
END LOOP;

FOR <identifier> IN <range> LOOP
 --sequential statements
END LOOP;

Copyright © 2003 Altera Corporation

a

b

sel

c

CLRN
ENA

D Qd

clk

clr

q

sensitivity list includes all inputs used
in the combinatorial logic

sensitivity list does not include the d input,
only the clock or/and control signals

• Sequential Process
– Sensitive to a clock or/and
 control signals

• Example
 PROCESS(clr, clk)

• Combinatorial Process
– Sensitive to all inputs used in
 the combinatorial logic

• Example
 PROCESS(a, b, sel)

Two Types of Process Statements

Copyright © 2003 Altera Corporation

DFF - rising_edge

rising_edge
– IEEE function that is defined in
the
 std_logic_1164 package
– specifies that the signal value
 must be 0 to 1
– X, Z to 1 transition is not allowed

CLRN
ENA

D Qd

clk

q

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_b IS
PORT (d : in std_logic;

clk : in std_logic;
q : out std_logic

);
END dff_b;

ARCHITECTURE behavior OFdff_b IS
BEGIN
PROCESS(clk)

BEGIN
IF rising_edge(clk) THEN

q <= d;
END IF;

END PROCESS;
END behavior;

Copyright © 2003 Altera Corporation

DFF with asynchronous clear

– This is how to implement
asynchronous
 control signals for the register
– Note: This IF-THEN statement
 is outside the IF-THEN statement
 that checks the condition rising_edge
– Therefore, clr=‘1’ does not depend
 on the clock

CLRN
ENA

D Qd

clk

clr

q

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY dff_clr IS
PORT (clr : in bit;

d, clk : in std_logic;
q : out std_logic
);

END dff_clr;

ARCHITECTURE behavior OF dff_clr IS
BEGIN
PROCESS(clk, clr)

BEGIN

IF clr = '0' THEN
q <= '0';

ELSIF rising_edge(clk) THEN
q <= d;

END IF;
END PROCESS;
END behavior;

Copyright © 2003 Altera Corporation

Design Hierarchically - Multiple Design Files

n VHDL hierarchical design requires Component
Declarations and Component Instantiations

top.vhd
entity-architecture “top”
component “mid_a”
component “mid_b”

mid_a.vhd
entity-architecture “mid_a”
component “bottom_a”

mid_b.vhd
entity-architecture “mid_b”
component “bottom_a”
component “bottom_b”

bottom_a.vhd
entity-architecture “bottom_a”

bottom_b.vhd
entity-architecture “bottom_b”

Copyright © 2003 Altera Corporation

n Component Declaration - Used to declare the Port types and
the Data Types of the ports for a lower-level design

COMPONENT <lower-level_design_name> IS
PORT (<port_name> : <port_type> <data_type>;

.

.
 <port_name> : <port_type> <data_type>);

END COMPONENT;
n Component Instantiation - Used to map the ports of a lower-

level design to that of the current-level design
<instance_name> : <lower-level_design_name>
PORT MAP(<lower-level_port_name> => <current_level_port_name>,

 …,<lower-level_port_name> => <current_level_port_name>);

Component Declaration and Instantiation

Copyright © 2003 Altera Corporation

Library Altera/LPM

n LIBRARY ALTERA ;
– Contains the following packages:

• maxplus2 (Component declarations for all primitives and old-
style megafunction Altera libraries)

• megacore (Component declarations for some Altera
Megacores)

n LIBRARY LPM;
– Contains the following packages:

• lpm_components (Component Declarations for all Altera LPM
functions)

ð Note: See MAX+PLUS II or Quartus online help for more
information

Copyright © 2003 Altera Corporation

LPM Instantiation

n All of the Altera LPM macrofunctions are declared in
the package lpm_components.all in the
LIBRARY lpm;

n The MegaWizard Plug-in Manager in MAX+plus II
and Quartus creates the VHDL code instantiating the
LPM or Megafunction

n In the VHDL Code:
LIBRARY lpm;
USE lpm.lpm_components.all;

Copyright © 2003 Altera Corporation

LPM Instantiation - lpm_mult
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY tst_mult IS
PORT (a, b : in std_logic_vector(7 downto 0);

q_out : out std_logic_vector(15 downto 0));
END tst_mult;

ARCHITECTURE behavior OF tst_mult IS

BEGIN

u1 : lpm_mult GENERIC MAP (lpm_widtha => 8, lpm_widthb => 8,
lpm_widths => 16, lpm_widthp => 16)

 PORT MAP(dataa => a, datab => b, result => q_out);

END behavior;

Copyright © 2003 Altera Corporation

Exemplo 10 - HelloWorld

n Fazer um led piscar a uma frequência de 1 s
n Utiliza a frequência de 50 MHz

Copyright © 2003 Altera Corporation

Exemplo 10 – HelloWorld - VHDL

Copyright © 2003 Altera Corporation

Exemplo 10 – HelloWorld – VHDL

Copyright © 2003 Altera Corporation

Exemplo 10 – HelloWorld

Copyright © 2003 Altera Corporation

Exemplo 10 – HelloWorld - TestBench

n Elaboração de um
TestBench para o HelloWord
usando o Quartus II -
University Program WVF

n Simulação máxima 100 us
n O VHDL precisa ser alterado

para comportar esse tempo
n Sugere-se uma frequência

de 500 kHz

Copyright © 2003 Altera Corporation

Exemplo 10 – HelloWorld - TestBench

Copyright © 2003 Altera Corporation

Exemplo 10 – HelloWorld - TestBench

Copyright © 2003 Altera Corporation

Exemplo 10 – HelloWorld - TestBench

Copyright © 2003 Altera Corporation

Exemplo 10 – HelloWorld - TestBench

Copyright © 2003 Altera Corporation

Exemplo 10 – HelloWorld - TestBench

Copyright © 2003 Altera Corporation

Exemplo 10 – HelloWorld - TestBench

