
Apr. 2015 Computer Arithmetic, Multiplication Slide 1

Part III
Multiplication

 Number Representation
 Numbers and Arithmetic
 Representing Signed Numbers
 Redundant Number Systems
 Residue Number Systems

 Addition / Subtraction
 Basic Addition and Counting
 Carry-Lookahead Adders
 Variations in Fast Adders
 Multioperand Addition

 Multiplication
 Basic Multiplication Schemes
 High-Radix Multipliers
 Tree and Array Multipliers
 Variations in Multipliers

 Division
 Basic Division Schemes
 High-Radix Dividers
 Variations in Dividers
 Division by Convergence

 Real Arithmetic
 Floating-Point Reperesentations
 Floating-Point Operations
 Errors and Error Control
 Precise and Certifiable Arithmetic

 Function Evaluation
 Square-Rooting Methods
 The CORDIC Algorithms
 Variations in Function Evaluation
 Arithmetic by Table Lookup

 Implementation Topics
 High-Throughput Arithmetic
 Low-Power Arithmetic
 Fault-Tolerant Arithmetic
 Past, Present, and Future

 Parts Chapters

I.

II.

III.

IV.

V.

VI.

VII.

 1.
 2.
 3.
 4.

5.
6.
7.
8.

9.
10.
11.
12.

25.
26.
27.
28.

21.
22.
23.
24.

17.
18.
19.
20.

13.
14.
15.
16.

E
le

m
en

ta
ry

 O
pe

ra
tio

ns

28. Reconfigurable Arithmetic

Appendix: Past, Present, and Future

Apr. 2015 Computer Arithmetic, Multiplication Slide 2

About This Presentation

Edition Released Revised Revised Revised Revised
First Jan. 2000 Sep. 2001 Sep. 2003 Oct. 2005 May 2007

Apr. 2008 Apr. 2009

Second Apr. 2010 Apr. 2011 Apr. 2012 Apr. 2015

This presentation is intended to support the use of the textbook
Computer Arithmetic: Algorithms and Hardware Designs (Oxford
U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated
regularly by the author as part of his teaching of the graduate
course ECE 252B, Computer Arithmetic, at the University of
California, Santa Barbara. Instructors can use these slides freely
in classroom teaching and for other educational purposes.
Unauthorized uses are strictly prohibited. © Behrooz Parhami

Apr. 2015 Computer Arithmetic, Multiplication Slide 3

III Multiplication

Topics in This Part
Chapter 9 Basic Multiplication Schemes
Chapter 10 High-Radix Multipliers
Chapter 11 Tree and Array Multipliers
Chapter 12 Variations in Multipliers

Review multiplication schemes and various speedup methods
• Multiplication is heavily used (in arith & array indexing)
• Division = reciprocation + multiplication
• Multiplication speedup: high-radix, tree, recursive
• Bit-serial, modular, and array multipliers

Apr. 2015 Computer Arithmetic, Multiplication Slide 4

“Well, well, for a rabbit, you’re not
very good at multiplying, are you?”

Apr. 2015 Computer Arithmetic, Multiplication Slide 5

9 Basic Multiplication Schemes

Chapter Goals
Study shift/add or bit-at-a-time multipliers
and set the stage for faster methods and
variations to be covered in Chapters 10-12

Chapter Highlights
Multiplication = multioperand addition
Hardware, firmware, software algorithms
Multiplying 2’s-complement numbers
The special case of one constant operand

Apr. 2015 Computer Arithmetic, Multiplication Slide 6

Basic Multiplication Schemes: Topics

Topics in This Chapter

9.1 Shift/Add Multiplication Algorithms

9.2 Programmed Multiplication

9.3 Basic Hardware Multipliers

9.4 Multiplication of Signed Numbers

9.5 Multiplication by Constants

9.6 Preview of Fast Multipliers

Apr. 2015 Computer Arithmetic, Multiplication Slide 7

9.1 Shift/Add Multiplication Algorithms
Notation for our discussion of multiplication algorithms:

a Multiplicand ak–1ak–2 . . . a1a0
x Multiplier xk–1xk–2 . . . x1x0
p Product (a x) p2k–1p2k–2 . . . p3p2p1p0

Initially, we assume unsigned operands

Fig. 9.1 Multiplication of two 4-bit unsigned binary numbers in dot notation.

Product

Partial
products
bit-matrix

a
x

p

2

x a

0
 0

1 x a 2

1
 x a 2

2
 2

2

3
 3

x a

Multiplicand
Multiplier

Apr. 2015 Computer Arithmetic, Multiplication Slide 8

Preferred

Multiplication Recurrence

Multiplication with right shifts: top-to-bottom accumulation

p(j+1) = (p(j) + xj a 2k) 2–1 with p(0) = 0 and
|–––add–––| p(k) = p = ax + p(0)2–k

|––shift right––|

Product

Partial
products
bit-matrix

a
x

p

2

x a

0
 0

1 x a 2

1
 x a 2

2
 2

2

3
 3

x a

Multiplicand
Multiplier

Multiplication with left shifts: bottom-to-top accumulation

p(j+1) = 2p(j) + xk–j–1a with p(0) = 0 and
|shift| p(k) = p = ax + p(0)2k

|––––add––––|

Fig. 9.1

Apr. 2015 Computer Arithmetic, Multiplication Slide 9

Examples of Basic Multiplication

Fig. 9.2
Examples
of
sequential
multipli-
cation with
right and
left shifts.

Right-shift algorithm Left-shift algorithm
======================== =======================
a 1 0 1 0 a 1 0 1 0
x 1 0 1 1 x 1 0 1 1
======================== =======================
p(0) 0 0 0 0 p(0) 0 0 0 0
+x0a 1 0 1 0 2p(0) 0 0 0 0 0
––––––––––––––––––––––––– +x3a 1 0 1 0
2p(1) 0 1 0 1 0 ––––––––––––––––––––––––
p(1) 0 1 0 1 0 p(1) 0 1 0 1 0
+x1a 1 0 1 0 2p(1) 0 1 0 1 0 0
––––––––––––––––––––––––– +x2a 0 0 0 0
2p(2) 0 1 1 1 1 0 ––––––––––––––––––––––––
p(2) 0 1 1 1 1 0 p(2) 0 1 0 1 0 0
+x2a 0 0 0 0 2p(2) 0 1 0 1 0 0 0
––––––––––––––––––––––––– +x1a 1 0 1 0
2p(3) 0 0 1 1 1 1 0 ––––––––––––––––––––––––
p(3) 0 0 1 1 1 1 0 p(3) 0 1 1 0 0 1 0
+x3a 1 0 1 0 2p(3) 0 1 1 0 0 1 0 0
––––––––––––––––––––––––– +x0a 1 0 1 0
2p(4) 0 1 1 0 1 1 1 0 ––––––––––––––––––––––––
p(4) 0 1 1 0 1 1 1 0 p(4) 0 1 1 0 1 1 1 0
======================== =======================

p(j+1) = (p(j) + xj a 2k) 2–1

|–––add–––|
|––shift right––|

1 0 1 0

Check:
10 11
= 110
= 64 + 32 +

8 + 4 + 2

Apr. 2015 Computer Arithmetic, Multiplication Slide 10

Examples of Basic Multiplication (Continued)

Fig. 9.2
Examples
of
sequential
multipli-
cation with
right and
left shifts.

Right-shift algorithm Left-shift algorithm
======================== =======================
a 1 0 1 0 a 1 0 1 0
x 1 0 1 1 x 1 0 1 1
======================== =======================
p(0) 0 0 0 0 p(0) 0 0 0 0
+x0a 1 0 1 0 2p(0) 0 0 0 0 0
––––––––––––––––––––––––– +x3a 1 0 1 0
2p(1) 0 1 0 1 0 ––––––––––––––––––––––––
p(1) 0 1 0 1 0 p(1) 0 1 0 1 0
+x1a 1 0 1 0 2p(1) 0 1 0 1 0 0
––––––––––––––––––––––––– +x2a 0 0 0 0
2p(2) 0 1 1 1 1 0 ––––––––––––––––––––––––
p(2) 0 1 1 1 1 0 p(2) 0 1 0 1 0 0
+x2a 0 0 0 0 2p(2) 0 1 0 1 0 0 0
––––––––––––––––––––––––– +x1a 1 0 1 0
2p(3) 0 0 1 1 1 1 0 ––––––––––––––––––––––––
p(3) 0 0 1 1 1 1 0 p(3) 0 1 1 0 0 1 0
+x3a 1 0 1 0 2p(3) 0 1 1 0 0 1 0 0
––––––––––––––––––––––––– +x0a 1 0 1 0
2p(4) 0 1 1 0 1 1 1 0 ––––––––––––––––––––––––
p(4) 0 1 1 0 1 1 1 0 p(4) 0 1 1 0 1 1 1 0
======================== =======================

p(j+1) = 2p(j) + xk–j–1a
|shift|
|––––add––––|

Check:
10 11
= 110
= 64 + 32 +

8 + 4 + 2

Apr. 2015 Computer Arithmetic, Multiplication Slide 11

9.2 Programmed Multiplication

Fig. 9.3 Programmed
multiplication (right-shift
algorithm).

{Using right shifts, multiply unsigned m_cand and m_ier,
storing the resultant 2k-bit product in p_high and p_low.
Registers: R0 holds 0 Rc for counter

Ra for m_cand Rx for m_ier
Rp for p_high Rq for p_low}

{Load operands into registers Ra and Rx}
mult: load Ra with m_cand

load Rx with m_ier
{Initialize partial product and counter}

copy R0 into Rp
copy R0 into Rq
load k into Rc

{Begin multiplication loop}
m_loop: shift Rx right 1 {LSB moves to carry flag}

branch no_add if carry = 0
add Ra to Rp {carry flag is set to cout}

no_add: rotate Rp right 1 {carry to MSB, LSB to carry}
rotate Rq right 1 {carry to MSB, LSB to carry}
decr Rc {decrement counter by 1}
branch m_loop if Rc 0

{Store the product}
store Rp into p_high
store Rq into p_low

m_done: ...

R0 Rc Counter0
Ra Rx
Rp Rq

Multiplicand Multiplier
Product, high Product, low

Apr. 2015 Computer Arithmetic, Multiplication Slide 12

Time Complexity of Programmed Multiplication

Assume k-bit words

k iterations of the main loop
6-7 instructions per iteration, depending on the multiplier bit

Thus, 6k + 3 to 7k + 3 machine instructions,
ignoring operand loads and result store

k = 32 implies 200+ instructions on average

This is too slow for many modern applications!

Microprogrammed multiply would be somewhat better

Apr. 2015 Computer Arithmetic, Multiplication Slide 13

9.3 Basic Hardware Multipliers

Fig. 9.4 Hardware realization of the sequential multiplication
algorithm with additions and right shifts.

Multiplier x

Mux

Adder

0

out c

0 1

Doublewidth partial product p

Multiplicand a

Shift

Shift

(j)

j x

x a j

k

k

k p(j+1) = (p(j) + xj a 2k) 2–1

|–––add–––|
|––shift right––|

Apr. 2015 Computer Arithmetic, Multiplication Slide 14

Example of Hardware Multiplication

Fig. 9.4a Hardware realization of the sequential multiplication
algorithm with additions and right shifts.

1 0 1 1

1 0 1 0

0 0 0 01 0 1 0
1 0 1

0 1 0 1 01 1 1 1 0
1 0

0 1 1 1 1 0
1

0 0 1 1 1 1 01 1 0 1 1 1 00 1 1 0 1 1 1 0
(11)ten

(10)ten

(110)ten

p(j+1) = (p(j) + xj a 2k) 2–1

|–––add–––|
|––shift right––|

Apr. 2015 Computer Arithmetic, Multiplication Slide 15

Performing Add and Shift in One Clock Cycle

Partial product p (j)

k

Unused
part of the
multiplier x

Adder’s
carry-out

Adder’s sum

k

k – 1

k – 1

To mux control To adder

Fig. 9.5 Combining the loading and shifting of the
double-width register holding the partial product and
the partially used multiplier.

Apr. 2015 Computer Arithmetic, Multiplication Slide 16

Sequential Multiplication with Left Shifts

Fig. 9.4b Hardware realization of the sequential multiplication
algorithm with left shifts and additions.

Multiplier x

Mux

2k-bit adder

0

out c

0 1

Doublewidth partial product p

Multiplicand a

Shift

Shift

(j)

k-j-1 x

a

 2k

k k-j-1 x

2k

Apr. 2015 Computer Arithmetic, Multiplication Slide 17

9.4 Multiplication of
Signed Numbers

Fig. 9.6 Sequential
multiplication of
2’s-complement
numbers with right
shifts (positive
multiplier).

============================
a 1 0 1 1 0
x 0 1 0 1 1
============================
p(0) 0 0 0 0 0
+x0a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(1) 1 1 0 1 1 0
p(1) 1 1 0 1 1 0
+x1a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(2) 1 1 0 0 0 1 0
p(2) 1 1 0 0 0 1 0
+x2a 0 0 0 0 0
–––––––––––––––––––––––––––––
2p(3) 1 1 1 0 0 0 1 0
p(3) 1 1 1 0 0 0 1 0
+x3a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(4) 1 1 0 0 1 0 0 1 0
p(4) 1 1 0 0 1 0 0 1 0
+x4a 0 0 0 0 0
–––––––––––––––––––––––––––––
2p(5) 1 1 1 0 0 1 0 0 1 0
p(5) 1 1 1 0 0 1 0 0 1 0
============================

Negative multiplicand,
positive multiplier:

No change, other than
looking out for proper
sign extension

Check:
–10 11
= –110
= –512 +

256 +
128 +
16 + 2

Apr. 2015 Computer Arithmetic, Multiplication Slide 18

The Case of a
Negative Multiplier

Fig. 9.7 Sequential
multiplication of
2’s-complement
numbers with right
shifts (negative
multiplier).

============================
a 1 0 1 1 0
x 1 0 1 0 1
============================
p(0) 0 0 0 0 0
+x0a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(1) 1 1 0 1 1 0
p(1) 1 1 0 1 1 0
+x1a 0 0 0 0 0
–––––––––––––––––––––––––––––
2p(2) 1 1 1 0 1 1 0
p(2) 1 1 1 0 1 1 0
+x2a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(3) 1 1 0 0 1 1 1 0
p(3) 1 1 0 0 1 1 1 0
+x3a 0 0 0 0 0
–––––––––––––––––––––––––––––
2p(4) 1 1 1 0 0 1 1 1 0
p(4) 1 1 1 0 0 1 1 1 0
+(x4a) 0 1 0 1 0
–––––––––––––––––––––––––––––
2p(5) 0 0 0 1 1 0 1 1 1 0
p(5) 0 0 0 1 1 0 1 1 1 0
============================

Negative multiplicand,
negative multiplier:

In last step (the sign bit),
subtract rather than add

Check:
–10 –11
= 110
= 64 + 32 +

8 + 4 + 2

Apr. 2015 Computer Arithmetic, Multiplication Slide 19

Signed 2’s-Complement Hardware Multiplier

Fig. 9.8 The 2’s-complement sequential hardware multiplier.

Adder

k + 1

0, except in
last cycle

01
Mux

k + 1

Enable

Select

Partial product

Multiplier

Multiplicand

k + 1

cincout

Apr. 2015 Computer Arithmetic, Multiplication Slide 20

Booth’s Recoding

Table 9.1 Radix-2 Booth’s recoding
–––––––––––––––––––––––––––––––––––––
xi xi–1 yi Explanation
–––––––––––––––––––––––––––––––––––––
0 0 0 No string of 1s in sight
0 1 1 End of string of 1s in x
1 0 1 Beginning of string of 1s in x
1 1 0 Continuation of string of 1s in x
–––––––––––––––––––––––––––––––––––––

Example
1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 Operand x

(1) 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 0 Recoded version y

Justification
2j + 2j–1 + . . . + 2i+1 + 2i = 2j+1 – 2i

Apr. 2015 Computer Arithmetic, Multiplication Slide 21

Example Multiplication
with Booth’s Recoding

Fig. 9.9 Sequential
multiplication of
2’s-complement
numbers with right
shifts by means of
Booth’s recoding.

============================
a 1 0 1 1 0
x 1 0 1 0 1 Multiplier
y 1 1 1 1 1 Booth-recoded
============================
p(0) 0 0 0 0 0
+y0a 0 1 0 1 0
–––––––––––––––––––––––––––––
2p(1) 0 0 1 0 1 0
p(1) 0 0 1 0 1 0
+y1a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(2) 1 1 1 0 1 1 0
p(2) 1 1 1 0 1 1 0
+y2a 0 1 0 1 0
–––––––––––––––––––––––––––––
2p(3) 0 0 0 1 1 1 1 0
p(3) 0 0 0 1 1 1 1 0
+y3a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(4) 1 1 1 0 0 1 1 1 0
p(4) 1 1 1 0 0 1 1 1 0
y4a 0 1 0 1 0
–––––––––––––––––––––––––––––
2p(5) 0 0 0 1 1 0 1 1 1 0
p(5) 0 0 0 1 1 0 1 1 1 0
============================

––––––––––
xi xi–1 yi
––––––––––
0 0 0
0 1 1
1 0 1
1 1 0
––––––––––

Check:
–10 –11
= 110
= 64 + 32 +

8 + 4 + 2

Apr. 2015 Computer Arithmetic, Multiplication Slide 22

9.5 Multiplication by Constants
Explicit, e.g. y := 12 x + 1

Implicit, e.g. A[i, j] := A[i, j] + B[i, j]

Address of A[i, j] = base + n i + j

Software aspects:
Optimizing compilers replace multiplications by shifts/adds/subs

Produce efficient code using as few registers as possible
Find the best code by a time/space-efficient algorithm

0 1 2 . . . n – 1
0
1
2
.
.
.

m – 1

Row i

Column j

Hardware aspects:
Synthesize special-purpose units such as filters

y[t] = a0x[t] + a1x[t – 1] + a2x[t – 2] + b1y[t – 1] + b2y[t – 2]

Apr. 2015 Computer Arithmetic, Multiplication Slide 23

Multiplication Using Binary Expansion

Example: Multiply R1 by the constant 113 = (1 1 1 0 0 0 1)two

R2 R1 shift-left 1
R3 R2 + R1
R6 R3 shift-left 1
R7 R6 + R1
R112 R7 shift-left 4
R113 R112 + R1

Shift, add Shift

Ri: Register that contains i times (R1)

This notation is for clarity; only one
register other than R1 is needed

Shorter sequence using shift-and-add instructions

R3 R1 shift-left 1 + R1
R7 R3 shift-left 1 + R1
R113 R7 shift-left 4 + R1

Apr. 2015 Computer Arithmetic, Multiplication Slide 24

Multiplication via Recoding

Example: Multiply R1 by 113 = (1 1 1 0 0 0 1)two = (1 0 01 0 0 0 1)two

R8 R1 shift-left 3
R7 R8 – R1
R112 R7 shift-left 4
R113 R112 + R1 Shift, add

Shift

Shorter sequence using shift-and-add/subtract instructions

R7 R1 shift-left 3 – R1
R113 R7 shift-left 4 + R1

Shift, subtract

6 shift or add (3 shift-and-add) instructions needed without recoding

The canonic signed-digit representation of a number contains no
consecutive nonzero digits: average number of shift-adds is O(k/3)

Apr. 2015 Computer Arithmetic, Multiplication Slide 25

Multiplication via Factorization

Example: Multiply R1 by 119 = 7 17
= (8 – 1) (16 + 1)

R8 R1 shift-left 3
R7 R8 – R1
R112 R7 shift-left 4
R119 R112 + R7

Shorter sequence using shift-and-add/subtract instructions

R7 R1 shift-left 3 – R1
R119 R7 shift-left 4 + R7

119 = (1 1 1 0 1 1 1)two = (1 0 0 01 0 01)two

More instructions may be needed without factorization

Requires a scratch register
for holding the 7 multiple

CSA

CPA

128x 8x x

119x

1

1

Apr. 2015 Computer Arithmetic, Multiplication Slide 26

Multiplication by Multiple Constants

Example: Multiplying a number by 45, 49, and 65

R9 R1 shift-left 3 + R1
R45 R9 shift-left 2 + R9

R7 R1 shift-left 3 – R1
R49 R7 shift-left 3 – R7

R65 R1 shift-left 6 + R1

A combined solution for all three constants

R65 R1 shift-left 6 + R1
R49 R65 – R1 left-shift 4
R45 R49 – R1 left-shift 2

Separate solutions:
5 shift-add/subtract
operations

A programmable
block can perform
any of the three
multiplications

Apr. 2015 Computer Arithmetic, Multiplication Slide 27

9.6 Preview of Fast Multipliers
Viewing multiplication as a multioperand addition problem,
there are but two ways to speed it up

a. Reducing the number of operands to be added:
Handling more than one multiplier bit at a time
(high-radix multipliers, Chapter 10)

b. Adding the operands faster:
Parallel/pipelined multioperand addition
(tree and array multipliers, Chapter 11)

In Chapter 12, we cover all remaining multiplication topics:

Bit-serial multipliers
Modular multipliers
Multiply-add units
Squaring as a special case

Apr. 2015 Computer Arithmetic, Multiplication Slide 28

10 High-Radix Multipliers

Chapter Goals
Study techniques that allow us to handle
more than one multiplier bit in each cycle
(two bits in radix 4, three in radix 8, . . .)

Chapter Highlights
High radix gives rise to “difficult” multiples
Recoding (change of digit-set) as remedy
Carry-save addition reduces cycle time
Implementation and optimization methods

Apr. 2015 Computer Arithmetic, Multiplication Slide 29

High-Radix Multipliers: Topics

Topics in This Chapter

10.1 Radix-4 Multiplication

10.2 Modified Booth’s Recoding

10.3 Using Carry-Save Adders

10.4 Radix-8 and Radix-16 Multipliers

10.5 Multibeat Multipliers

10.6 VLSI Complexity Issues

Apr. 2015 Computer Arithmetic, Multiplication Slide 30

10.1 Radix-4 Multiplication

Preferred

Multiplication with right shifts in radix r : top-to-bottom accumulation

p(j+1) = (p(j) + xj a r k) r –1 with p(0) = 0 and
|–––add–––| p(k) = p = ax + p(0)r –k

|––shift right––|

Multiplication with left shifts in radix r : bottom-to-top accumulation

p(j+1) = rp(j) + xk–j–1a with p(0) = 0 and
|shift| p(k) = p = ax + p(0)r k

|––––add––––|

Fig. 9.1
(modified)

Product

Partial
products
bit-matrix

a
x

p

2

x a

0
 0

1 x a 2

1
 x a 2

2
 2

2

3
 3

x a

Multiplicand
Multiplier

x0 a r 0

x1 a r 1

x2 a r 2

x3 a r 3

Apr. 2015 Computer Arithmetic, Multiplication Slide 31

Radix-4 Multiplication in Dot Notation

Number of cycles is
halved, but now the
“difficult” multiple 3a
must be dealt with

Product

Partial
products
bit-matrix

a
x

p

2

x a

0
 0

1 x a 2

1
 x a 2

2
 2

2

3
 3

x a

Multiplicand
Multiplier

Multiplier x

p Product

Multiplicand a

(x x) a 4 1
3 2 two

4 0 a (x x) 1 0 two

Fig. 9.1

Fig. 10.1 Radix-4,
or two-bit-at-a-time,
multiplication in dot
notation

Apr. 2015 Computer Arithmetic, Multiplication Slide 32

A Possible Design for a Radix-4 Multiplier

Precomputed via
shift-and-add
(3a = 2a + a)

k/2 + 1 cycles, rather than k

One extra cycle over k/2
not too bad, but we would like
to avoid it if possible

Solving this problem for radix 4
may also help when dealing
with even higher radices

0 a 2a

3a
Multiplier

To the adder

2-bit shifts

00 01 10 11
Mux

xi+1 xi

Fig. 10.2 The multiple
generation part of a radix-4
multiplier with
precomputation of 3a.

Apr. 2015 Computer Arithmetic, Multiplication Slide 33

Example Radix-4 Multiplication Using 3a

================================
a 0 1 1 0
3a 0 1 0 0 1 0
x 1 1 1 0
================================
p(0) 0 0 0 0
+(x1x0)twoa 0 0 1 1 0 0
–––––––––––––––––––––––––––––––––
4p(1) 0 0 1 1 0 0
p(1) 0 0 1 1 0 0
+(x3x2)twoa 0 1 0 0 1 0
–––––––––––––––––––––––––––––––––
4p(2) 0 1 0 1 0 1 0 0
p(2) 0 1 0 1 0 1 0 0
================================

Fig. 10.3 Example of
radix-4 multiplication
using the 3a multiple.

x

p

a

(x x)3 2

(x x)1 0

Apr. 2015 Computer Arithmetic, Multiplication Slide 34

A Second Design for a Radix-4 Multiplier

xi+1 xi c Mux control Set carry
---- --- --- ---------------- ------------
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 0 1

Fig. 10.4 The multiple generation
part of a radix-4 multiplier based on
replacing 3a with 4a (carry into next
higher radix-4 multiplier digit) and –a.

0 a 2a –a

Multiplier

To the adder

+c FF Set if = = 1
 or if = c = 1c

00 01 10 11
Mux

2-bit shifts

mod 4
Carry

xi+1 xi

xi+1
xi+1

xixi+1(xi c)
xi+1 xi c xi c

c

Apr. 2015 Computer Arithmetic, Multiplication Slide 35

10.2 Modified Booth’s Recoding
Table 10.1 Radix-4 Booth’s recoding yielding (zk/2 . . . z1z0)four

–––
xi+1 xi xi–1 yi+1 yi zi/2 Explanation
–––
0 0 0 0 0 0 No string of 1s in sight
0 0 1 0 1 1 End of string of 1s
0 1 0 0 1 1 Isolated 1
0 1 1 1 0 2 End of string of 1s
1 0 0 1 0 2 Beginning of string of 1s
1 0 1 1 1 1 End a string, begin new one
1 1 0 0 1 1 Beginning of string of 1s
1 1 1 0 0 0 Continuation of string of 1s
–––

(1) 2 2 1 2 1 1 0 2 Radix-4 version z

Context
Recoded

radix-2 digits Radix-4 digit

Example
1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 Operand x

(1) 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 0 Recoded version y

Apr. 2015 Computer Arithmetic, Multiplication Slide 36

Example Multiplication via Modified Booth’s Recoding

================================
a 0 1 1 0
x 1 0 1 0
z 1 2 Radix-4
================================
p(0) 0 0 0 0 0 0
+z0a 1 1 0 1 0 0
–––––––––––––––––––––––––––––––––
4p(1) 1 1 0 1 0 0
p(1) 1 1 1 1 0 1 0 0
+z1a 1 1 1 0 1 0
–––––––––––––––––––––––––––––––––
4p(2) 1 1 0 1 1 1 0 0
p(2) 1 1 0 1 1 1 0 0
================================

Fig. 10.5 Example of
radix-4 multiplication
with modified Booth’s
recoding of the 2’s-
complement multiplier.

x

p

a

(x x)3 2

(x x)1 0

Apr. 2015 Computer Arithmetic, Multiplication Slide 37

Multiple Generation with Radix-4 Booth’s Recoding

Fig. 10.6 The multiple generation part of a radix-4
multiplier based on Booth’s recoding.

Could have named
this signal one/two

two non0
a 2a

Enable
Select

 z a

neg

ii+1 i–1

i/2

0 1
Mux

k+1
0, a, or 2a

To adder input
Add/subtract
 control

x

Multiplier

xx

Recoding Logic

Multiplicand

0

k

0

2-bit shift

Init. 0

Sign
of a

---- Encoding ----
Digit neg two non0
–2 1 1 1
–1 1 0 1
0 0 0 0
1 0 0 1
2 0 1 1

Apr. 2015 Computer Arithmetic, Multiplication Slide 38

10.3 Using Carry-Save Adders

Fig. 10.7 Radix-4 multiplication with a carry-save adder used to
combine the cumulative partial product, xia, and 2xi+1a into two numbers.

Mux

0 2a

0 a

Multiplier

New Cumulative Partial Product

Old Cumulative
 Partial Product

CSA

Mux xi+1 xi

Adder

Apr. 2015 Computer Arithmetic, Multiplication Slide 39

Keeping the Partial Product in Carry-Save Form

Fig. 10.8 Radix-2 multiplication with
the upper half of the cumulative partial
product kept in stored-carry form.

0

Multiplier

k

k

k-Bit CSA

k

Partial Product

k

Mux

k-Bit Adder

Mux

Multiplicand

Carry

Sum

Upper half of PP Lower half of PP

Right
shift

Sum

Carry

Sum

Carry

(a) Multiplier
block diagram (b) Operation in a typical cycle

Apr. 2015 Computer Arithmetic, Multiplication Slide 40

Carry-Save Multiplier with Radix-4 Booth’s Recoding

Fig. 10.9 Radix-4 multiplication with a CSA used to combine the
stored-carry cumulative partial product and zi/2a into two numbers.

a

Multiplier

x
 i+1

x
 i

Adder

New cumulative
 partial product

Old cumulative
 partial product

FF

2-bit
 Adder

To the lower half
 of partial product

 Booth recoder
and selector

CSA

x
 i-1

z a
 i/2

Extra “dot”

Apr. 2015 Computer Arithmetic, Multiplication Slide 41

Radix-4 Booth’s Recoding for Parallel Multiplication

Fig. 10.10 Booth
recoding and multiple
selection logic for
high-radix or parallel
multiplication.

x x x x

Recoding Logic

two non0
a 2a

Enable
Select

 z a

neg

ii+1 i–1

i/2

i–2

0 1
Mux

k+1
0, a, or 2a

k+2

Selective Complement

0, a, –a, 2a, or –2a

 Extra "Dot"
for Column i

xi+2

Apr. 2015 Computer Arithmetic, Multiplication Slide 42

Yet Another Design for Radix-4 Multiplication

Fig. 10.11 Radix-4 multiplication,
with the cumulative partial product,
xia, and 2xi+1a combined into two
numbers by two CSAs.

Mux

0 2a

0 a

Multiplier

CSA

Mux xi+1 xi

Adder

CSA
New Cumulative
 Partial Product

Old Cumulative
 Partial Product

FF
2-Bit
Adder

To the Lower Half
 of Partial Product

(4; 2)-counter

Apr. 2015 Computer Arithmetic, Multiplication Slide 43

10.4 Radix-8 and Radix-16 Multipliers

Fig. 10.12 Radix-16
multiplication with the
upper half of the
cumulative partial
product in carry-save
form.

Multiplier

CSA CSA

CSA

CSA

Partial Product
 (Upper Half)

Mux
0 8a

Mux
0 4a

Mux
0 2a

Mux
0 a

x i+3

x i+2

x i+1

x i

Carry
Sum

4-Bit
Shift

FF

To the Lower Half
 of Partial Product

3 4-Bit
Adder

4

4

4-bit
right
shift

Apr. 2015 Computer Arithmetic, Multiplication Slide 44

Other High-Radix Multipliers
Multiplier

CSA CSA

CSA

CSA

Partial Product
 (Upper Half)

Mux
0 8a

Mux
0 4a

Mux
0 2a

Mux
0 a

xi+3

xi+2

xi+1

xi

Carry
Sum

4-Bit
Shift

FF

To the Lower Half
 of Partial Product

3 4-Bit
Adder

4

4

Fig. 10.12
A radix-16 multiplier design
becomes a radix-256
multiplier if radix-4 Booth’s
recoding is applied first
(the muxes are replaced by
Booth recoding and multiple
selection logic)

Remove this mux & CSA and
replace the 4-bit shift (adder)
with a 3-bit shift (adder) to get
a radix-8 multiplier (cycle time
will remain the same, though)

Apr. 2015 Computer Arithmetic, Multiplication Slide 45

A Spectrum of Multiplier Design Choices

Basic
binary

Adder

Adder

 Next
multiple

Partial product

...

 Several
multiples

Adder

. . .
All multiples

Small CSA
 tree Full CSA

 tree

High-radix
 or
 partial tree

Full
treeSpeed up Economize

Partial product

Fig. 10.13 High-radix multipliers as intermediate
between sequential radix-2 and full-tree multipliers.

Apr. 2015 Computer Arithmetic, Multiplication Slide 46

10.5 Multibeat Multipliers

Observation: Half of the
clock cycle goes to waste

Fig. 10.15 Two-phase clocking for sequential logic.

Next-state
logic

State
flip-flops

Inputs Next-state
excitation

Present
state

Next-state
logic

State
latches

Inputs

Next-state
logic

Inputs
State

latches

PH1

PH2 CLK

(a) Sequential machine with FFs (b) Sequential machine with latches and 2-phase clock

Once cycle

Begin changing FF contents
Change becomes visible at FF output

Apr. 2015 Computer Arithmetic, Multiplication Slide 47

Twin-Beat and Three-Beat Multipliers

This radix-64 multiplier
runs at the clock rate of a
radix-8 design (2X speed)

Fig. 10.14 Twin-beat multiplier
with radix-8 Booth’s recoding.

Adder

CSA

Sum

Carry

CSA

Sum

Carry

FF

To the Lower Half
 of Partial Product

6-Bit
Adder

6

65

 Pipelined
 Radix-8
 Booth
 Recoder
& Selector

3a a 3a a
4 4

Twin Multiplier
 Registers

 Pipelined
 Radix-8
 Booth
 Recoder
& Selector

Beat-1
 Input

Beat-3
 Input

Beat-2
 Input

Node 1

Node 2

Node 3

Fig. 10.16 Conceptual view
of a three-beat multiplier.

Apr. 2015 Computer Arithmetic, Multiplication Slide 48

10.6 VLSI Complexity Issues
A radix-2b multiplier requires:

bk two-input AND gates to form the partial products bit-matrix
O(bk) area for the CSA tree
At least (k) area for the final carry-propagate adder

Total area: A = O(bk)
Latency: T = O((k/b) log b + log k)

Any VLSI circuit computing the product of two k-bit integers must
satisfy the following constraints:

AT grows at least as fast as k3/2

AT2 is at least proportional to k2

The preceding radix-2b implementations are suboptimal, because:

AT = O(k2 log b + bk log k)
AT2 = O((k3/b) log2b)

Apr. 2015 Computer Arithmetic, Multiplication Slide 49

Comparing High- and Low-Radix Multipliers

Intermediate designs do not yield better AT or AT2 values;
The multipliers remain asymptotically suboptimal for any b

Low-Cost
b = O(1)

High Speed
b = O(k)

AT- or AT 2-
Optimal

AT O(k2) O(k2 log k) O(k3/2)
AT 2 O(k3) O(k2 log2k) O(k2)

AT = O(k2 log b + bk log k) AT2 = O((k3/b) log2b)

By the AT measure (indicator of cost-effectiveness), slower radix-2
multipliers are better than high-radix or tree multipliers
Thus, when an application requires many independent multiplications,
it is more cost-effective to use a large number of slower multipliers

High-radix multiplier latency can be reduced from O((k/b) log b + log k)
to O(k/b + log k) through more effective pipelining (Chapter 11)

Apr. 2015 Computer Arithmetic, Multiplication Slide 50

11 Tree and Array Multipliers

Chapter Goals
Study the design of multipliers for highest
possible performance (speed, throughput)

Chapter Highlights
Tree multiplier = reduction tree

+ redundant-to-binary converter
Avoiding full sign extension in multiplying

signed numbers
Array multiplier = one-sided reduction tree

+ ripple-carry adder

Apr. 2015 Computer Arithmetic, Multiplication Slide 51

Tree and Array Multipliers: Topics

Topics in This Chapter

11.1. Full-Tree Multipliers

11.2. Alternative Reduction Trees

11.3. Tree Multipliers for Signed Numbers

11.4. Partial-Tree and Truncated Multipliers

11.5. Array Multipliers

11.6. Pipelined Tree and Array Multipliers

Apr. 2015 Computer Arithmetic, Multiplication Slide 52

11.1 Full-Tree Multipliers

Basic
binary

Adder

Adder

 Next
multiple

Partial product

...

 Several
multiples

Adder

. . .
All multiples

Small CSA
 tree Full CSA

 tree

High-radix
 or
 partial tree

Full
treeSpeed up Economize

Partial product

Fig. 10.13 High-radix multipliers
as intermediate between sequential
radix-2 and full-tree multipliers. Higher-order

 product bits

Multiplier
a

a

a

a. . .

. . .

Some lower-order
product bits are
generated directly

Redundant result

Redundant-to-Binary
 Converter

Multiple-
Forming
Circuits

(Multi-Operand
 Addition Tree)

Partial-Products
 Reduction Tree

Fig. 11.1 General structure of a full-tree multiplier.

Multiplier x

p Product

Multiplicand a

(x x) a 4 1
3 2 two

4 0 a (x x) 1 0 two

Apr. 2015 Computer Arithmetic, Multiplication Slide 53

Full-Tree versus Partial-Tree Multiplier

Schematic diagrams for full-tree and partial-tree multipliers.

Adder

Large tree of
carry-save

adders

. . .

All partial products

Product

Adder

Small tree of
carry-save

adders

. . .

Several partial products

Product

Log-
depth

Log-
depth

Apr. 2015 Computer Arithmetic, Multiplication Slide 54

Variations in Full-Tree Multiplier Design

Designs are distinguished by
variations in three elements:

Higher-order
 product bits

Multiplier
a

a

a

a. . .

. . .

Some lower-order
product bits are
generated directly

Redundant result

Redundant-to-Binary
 Converter

Multiple-
Forming
Circuits

(Multi-Operand
 Addition Tree)

Partial-Products
 Reduction Tree

Fig. 11.1

2. Partial products reduction tree

3. Redundant-to-binary converter

1. Multiple-forming circuits

Apr. 2015 Computer Arithmetic, Multiplication Slide 55

Product

Partial
products
bit-matrix

a
x

p

2

x a

0
 0

1 x a 2

1
 x a 2

2
 2

2

3
 3

x a

Multiplicand
Multiplier

Example of Variations in CSA Tree Design

 1 2 3 4 3 2 1
 FA FA FA HA

 1 3 2 3 2 1 1
 FA HA FA HA

 2 2 2 2 1 1 1
 4-Bit Adder

1 1 1 1 1 1 1 1

Wallace Tree
(5 FAs + 3 HAs + 4-Bit Adder)

 1 2 3 4 3 2 1
 FA FA

 1 3 2 2 3 2 1
 FA HA HA FA

 2 2 2 2 1 2 1
 6-Bit Adder

1 1 1 1 1 1 1 1

Dadda Tree
(4 FAs + 2 HAs + 6-Bit Adder)

Fig. 11.2 Two different binary 4 4 tree multipliers.

HA

3

HA

3
FAFA HA

Corrections
shown in red

2

Apr. 2015 Computer Arithmetic, Multiplication Slide 56

Details of a CSA Tree

Fig. 11.3 Possible
CSA tree for a 7 7
tree multiplier.

CSA trees are quite
irregular, causing
some difficulties in
VLSI realization

10-bit CPA

7-bit CSA 7-bit CSA

7-bit CSA

10-bit CSA

2Ignore

The index pair
[i, j] means that
bit positions
from i up to j
are involved.

7-bit CSA

[0, 6]
[1, 7]

[2, 8]
[6, 12]

[3, 11] [1,8]

[3, 9]
[4, 10]

[5, 11]

[2, 8] [5, 11]

[6, 12]

[2,12]

[3, 12]

[4,13] [4,12]

[4, 13]

[3,9]

3

[3,12]

[2, 8]

[3,12]

[1, 6]

01

Thus, our motivation
to examine alternate
methods for partial
products reduction

Apr. 2015 Computer Arithmetic, Multiplication Slide 57

11.2 Alternative Reduction Trees

Fig. 11.4
A slice of a
balanced-delay
tree for 11
inputs.

FA FA FA

FA FA

FA FA

FA

FA

Inputs

Level-1
carries

Level-2
carries

Level-3
carries

Level-4
carry

Outputs

FA

FA

FA

FA

FA

FA

FA

FA

FA

11 + 1 = 21 + 3

Therefore, 1 = 8
carries are needed

Level
1

Level
5

Level
4

Level
3

Level
2

Apr. 2015 Computer Arithmetic, Multiplication Slide 58

Binary Tree of 4-to-2 Reduction Modules

Due to its recursive structure, a binary tree is more regular
than a 3-to-2 reduction tree when laid out in VLSI

Fig. 11.5 Tree multiplier with a more regular
structure based on 4-to-2 reduction modules.

(a) Binary tree of (4; 2)-counters

4-to-2 4-to-2 4-to-2 4-to-2

4-to-2 4-to-2

4-to-2

(b) Realization with FAs (c) A faster realization

FA

FA

c s c s

0 1

0 1

4-to-2 compressor

Apr. 2015 Computer Arithmetic, Multiplication Slide 59

Example Multiplier with 4-to-2 Reduction Tree

Fig. 11.6 Layout of a partial-products reduction tree composed of
4-to-2 reduction modules. Each solid arrow represents two numbers.

M u l t i p l i c a n d . . .

Redundant-to-binary converter

Multiple
generation

circuits

M
 u

 l
t i

 p
 l

e
 s

 e
 l

e
c

t i
 o

 n

s
i g

 n
 a

 l
s Even if 4-to-2 reduction

is implemented using
two CSA levels, design
regularity potentially
makes up for the larger
number of logic levels

Similarly,
using Booth’s
recoding may
not yield any
advantage,
because it
introduces
irregularity

Apr. 2015 Computer Arithmetic, Multiplication Slide 60

11.3 Tree Multipliers for Signed Numbers

From Fig. 8.19a Sign extension in multioperand addition.

---------- Extended positions ---------- Sign Magnitude positions ---------

xk–1 xk–1 xk–1 xk–1 xk–1 xk–1 xk–2 xk–3 xk–4 . . .
yk–1 yk–1 yk–1 yk–1 yk–1 yk–1 yk–2 yk–3 yk–4 . . .
zk–1 zk–1 zk–1 zk–1 zk–1 zk–1 zk–2 zk–3 zk–4 . . .

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

 FA FA FA FA FA FA

Five redundant copies
removed

Sign extensions
Signs

The difference in
multiplication is the
shifting sign positions

Fig. 11.7 Sharing of full adders to reduce
the CSA width in a signed tree multiplier.

Apr. 2015 Computer Arithmetic, Multiplication Slide 61

Using the Negative-Weight
Property of the Sign Bit

Fig. 11.8 Baugh-Wooley
2’s-complement multiplication.

Sign extension is a way of
converting negatively weighted bits
(negabits) to positively weighted
bits (posibits) to facilitate reduction,
but there are other methods of
accomplishing the same without
introducing a lot of extra bits

Baugh and Wooley have
contributed two such methods

 4 3 2 1 0
 4 3 2 1 0

 4 3 2 1 0
 4 3 2 1 0
 a x a x a x a x a x

 a a a a a
 x x x x x

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4

 a a a a a
 x x x x x

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 --
-

p p p p p p p p p p

 a a a a a
 x x x x x

 -a x a x a x a x a x
 -a x a x a x a x a x
 -a x a x a x a x a x
 -a x a x a x a x a x
 a x -a x -a x -a x -a x
 --
-

p p p p p p p p p p

 a a a a a
 x x x x x

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a a
 1 x x
 --
-

p p p p p p p p p p

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x

 --- p p p p p p p p p p

1 1

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4
 4 4
 4 4

 4 3 2 1 0
 4 3 2 1 0

 4 3 2 1 0
 4 3 2 1 0

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

a. Unsigned

b. 2's-complement

c. Baugh-Wooley

d. Modified B-W
 __

__
__

__
__ __ __ __

_
_

_
_

_ _ _ _

Apr. 2015 Computer Arithmetic, Multiplication Slide 62

Fig. 11.8

 4 3 2 1 0
 4 3 2 1 0
 a x a x a x a x a x

 a a a a a
 x x x x x

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4

 a x -a x -a x -a x -a x
 --
-

p p p p p p p p p p

 a a a a a
 x x x x x

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a a
 1 x x
 --
-

p p p p p p p p p p

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x

 --- p p p p p p p p p p

1 1

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4
 4 4
 4 4

 4 3 2 1 0
 4 3 2 1 0

 4 4 3 4 2 4 1 4 0 4

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

c. Baugh-Wooley

d. Modified B-W
 __

__
__

__
__ __ __ __

_
_

_
_

_ _ _ _

The Baugh-Wooley Method and Its Modified Form

–a4x0 = a4(1 – x0) – a4
= a4x0 – a4

–a4 a4x0
a4

In next column

–a4x0 = (1 – a4x0) – 1
= (a4x0) – 1

–1 (a4x0)
1

In next column

Apr. 2015 Computer Arithmetic, Multiplication Slide 63

Alternate Views of the
Baugh-Wooley Methods
+ 0 0 –a4x3 –a4x2 –a4x1 –a4x0
+ 0 0 –a3x4 –a2x4 –a1x4 –a0x4--
– 0 0 a4x3 a4x2 a4x1 a4x0
– 0 0 a3x4 a2x4 a1x4 a0x4--
+ 1 1 a4x3 a4x2 a4x1 a4x0
+ 1 1 a3x4 a2x4 a1x4 a0x4

1
1

--
+ a4 a4 a4x3 a4x2 a4x1 a4x0
+ x4 x4 a3x4 a2x4 a1x4 a0x4

a4
x4--

a4
1 x4

 4 3 2 1 0
 4 3 2 1 0

 4 3 2 1 0
 4 3 2 1 0
 a x a x a x a x a x

 a a a a a
 x x x x x

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4

 a a a a a
 x x x x x

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 --
-

p p p p p p p p p p

 a a a a a
 x x x x x

 -a x a x a x a x a x
 -a x a x a x a x a x
 -a x a x a x a x a x
 -a x a x a x a x a x
 a x -a x -a x -a x -a x
 --
-

p p p p p p p p p p

 a a a a a
 x x x x x

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a a
 1 x x
 --
-

p p p p p p p p p p

 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x
 a x a x a x a x a x

 --- p p p p p p p p p p

1 1

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4
 4 4
 4 4

 4 3 2 1 0
 4 3 2 1 0

 4 3 2 1 0
 4 3 2 1 0

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4

 4 0 3 0 2 0 1 0 0 0
 4 1 3 1 2 1 1 1 0 1
 4 2 3 2 2 2 1 2 0 2
 4 3 3 3 2 3 1 3 0 3
 4 4 3 4 2 4 1 4 0 4

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

a. Unsigned

b. 2's-complement

c. Baugh-Wooley

d. Modified B-W
 __

__
__

__
__ __ __ __

_
_

_
_

_ _ _ _

Apr. 2015 Computer Arithmetic, Multiplication Slide 64

11.4 Partial-Tree and Truncated Multipliers

Fig. 11.9 General structure
of a partial-tree multiplier.

. . .

CSA Tree

h inputs

Adder

Lower part of
 the cumulative
 partial product

FF

h-Bit
 Adder

Sum
 Carry

Upper part of
 the cumulative
 partial product
 (stored-carry)

High-radix versus partial-tree
multipliers: The difference is
quantitative, not qualitative

For small h, say 8 bits,
we view the multiplier of
Fig. 11.9 as high-radix

When h is a significant
fraction of k, say k/2 or k/4,
then we tend to view it as
a partial-tree multiplier

Better design through pipelining
to be covered in Section 11.6

Apr. 2015 Computer Arithmetic, Multiplication Slide 65

Why Truncated Multipliers?

Fig. 11.10 The idea of a truncated multiplier with 8-bit fractional operands.

Nearly half of the hardware in array/tree multipliers is there to get the
last bit right (1 dot = one FPGA cell)

ulp
. k-by-k fractional

 . multiplication

. |
. |

. |

. |

. |

. |

. |

. |

. |

Max error = 8/2 + 7/4
+ 6/8 + 5/16 + 4/32
+ 3/64 + 2/128
+ 1/256 = 7.004 ulp

Mean error =
1.751 ulp

Apr. 2015 Computer Arithmetic, Multiplication Slide 66

Truncated Multipliers with Error Compensation

Constant and variable error compensation for truncated multipliers.

We can introduce additional “dots” on the left-hand side to compensate
for the removal of dots from the right-hand side

Constant compensation Variable compensation

. o o o o o o o| . o o o o o o o|

. o o o o o o| . o o o o o o|

. o o o o o| . o o o o o|

. o o o o| . o o o o|

. o o o| . o o o|

. 1 o o| . o o|

. o| . x-1o|

. | . y-1 |

Max error = +4 ulp
Max error 3 ulp

Max error = +? ulp
Max error ? ulp

Mean error = ? ulp Mean error = ? ulp

Apr. 2015 Computer Arithmetic, Multiplication Slide 67

11.5 Array Multipliers

Fig. 11.11 A basic array
multiplier uses a one-sided CSA
tree and a ripple-carry adder.

0x ax ax a

x a

x a

CSA

CSA

CSA

CSA

Ripple-Carry Adder

012

3

4

ax

p

0

p

1

p

2

p

3

p

4

p 6 p 7 p 8

a x

0 0

a x

1 0

a x

2 0

a x

3 0

a x

4 0

0

0

0

0

a x

0 1

a x

1 1

a x

2 1

a x

3 1

p 9 p 5

a x

4 1

a x

4 2

a x

4 3

a x

4 4

a x

0 2

a x

1 2

a x

2 2

a x

3 2

a x

0 3

a x

1 3

a x

2 3

a x

3 3

a x

0 4

a x

1 4

a x

2 4

a x

3 4

0

Fig. 11.12 Details of a 55
array multiplier using FA blocks.

Apr. 2015 Computer Arithmetic, Multiplication Slide 68

Signed (2’s-complement) Array Multiplier

Fig. 11.13
Modifications in a 55
array multiplier to deal
with 2’s-complement
inputs using the
Baugh-Wooley
method or to shorten
the critical path.

p

0

p

1

p

2

p

3

p 4 p 6p 7p 8

a x

0 0

a x

1 0

a x

2 0

a x

3 0

a x

4 0

0

0

0

0

a x

0 1

a x

1 1

a x

2 1

a x

3 1

p 9 p 5

a x

4 1

a x

4 2

a x

4 3

a x

4 4

a x

0 2

a x

1 2

a x

2 2

a x

3 2

a x

0 3

a x

1 3

a x

2 3

a x

3 3

a x

0 4

a x

1 4

a x

2 4

a x

3 4
 1

 x

4

a

4

a

4
 x

4

_

_

_

_

_

_

_

_

_

_

Apr. 2015 Computer Arithmetic, Multiplication Slide 69

Array Multiplier Built of Modified Full-Adder Cells

Fig. 11.14 Design of
a 5 5 array multiplier
with two additive
inputs and full-adder
blocks that include
AND gates.

p p p p p

4 3 2 1 0 a a a a a

4

3

2

1

0

x

x

x

x

x

4

3

2

1

0

p

p

p

p

p

9 8 7 6
5

FA

Apr. 2015 Computer Arithmetic, Multiplication Slide 70

Array Multiplier without a Final Carry-Propagate Adder

Fig. 11.15 Conceptual
view of a modified
array multiplier that
does not need a final
carry-propagate adder.

i+1
i

i+1
i

i i

Mux

Mux

Mux
k

[k, 2k–1] 1i–1ii+1k–1

Level i

k k

0

Mux

..
.

..
.

Bi+1

Bi

Dots in row i + 1

B

 i

B i+1

Dots in row i

i Conditional bits

 i + 1 Conditional bits
of the final product

Fig. 11.16 Carry-save
addition, performed in
level i, extends the
conditionally computed
bits of the final product.

All remaining bits of the final product
produced only 2 gate levels after pk–1

Apr. 2015 Computer Arithmetic, Multiplication Slide 71

11.6 Pipelined Tree and Array Multipliers

. . .

CSA Tree

h inputs

Adder

Lower part of
 the cumulative
 partial product

FF

h-Bit
 Adder

Sum
 Carry

Upper part of
 the cumulative
 partial product
 (stored-carry)

Fig. 11.9 General structure
of a partial-tree multiplier.

Fig. 11.17 Efficiently pipelined
partial-tree multiplier.

. . .

h inputs

Adder

Lower part of
 the cumulative
 partial product

FF

h-Bit
 Adder

Sum
 Carry

CSA

Pipelined
CSA Tree

Latches

Latches

Latches

CSA

(h + 2)-input
CSA tree

Latch

Apr. 2015 Computer Arithmetic, Multiplication Slide 72

Pipelined Array Multipliers

With latches after every
FA level, the maximum
throughput is achieved

Latches may be inserted
after every h FA levels for
an intermediate design

Fig. 11.18 Pipelined 55
array multiplier using
latched FA blocks.
The small shaded boxes
are latches.

p p p p p

4 3 2 1 0 a a a a a 4 3 2 1 0 xxxxx

4 3 2 1 0 p p p p p 9 8 7 6 5

Latched
FA with
AND gate

Latch

FA

FA

FA

FA

Example: 3-stage pipeline

Apr. 2015 Computer Arithmetic, Multiplication Slide 73

12 Variations in Multipliers

Chapter Goals
Learn additional methods for synthesizing
fast multipliers as well as other types
of multipliers (bit-serial, modular, etc.)

Chapter Highlights
Building a multiplier from smaller units
Performing multiply-add as one operation
Bit-serial and (semi)systolic multipliers
Using a multiplier for squaring is wasteful

Apr. 2015 Computer Arithmetic, Multiplication Slide 74

Variations in Multipliers: Topics

Topics in This Chapter

12.1 Divide-and-Conquer Designs

12.2 Additive Multiply Modules

12.3 Bit-Serial Multipliers

12.4 Modular Multipliers

12.5 The Special Case of Squaring

12.6 Combined Multiply-Add Units

Apr. 2015 Computer Arithmetic, Multiplication Slide 75

12.1 Divide-and-Conquer Designs

Building wide multiplier from narrower ones

Fig. 12.1 Divide-and-conquer (recursive) strategy for
synthesizing a 2b 2b multiplier from b b multipliers.

a

p

Rearranged partial products
 in 2b-by-2b multiplication

2b bits

3b bits

H a L

xH xL

a L xH

a L xL

a H xL
xHa H

a H xL

a L xH

a L xLxHa H

b bits

Apr. 2015 Computer Arithmetic, Multiplication Slide 76

General Structure of a Recursive Multiplier

2b 2b use (3; 2)-counters
3b 3b use (5; 2)-counters
4b 4b use (7; 2)-counters

Fig. 12.2 Using b b multipliers to synthesize
2b 2b, 3b 3b, and 4b 4b multipliers.

4b 4b

3b 3b

2b 2b

b b

Apr. 2015 Computer Arithmetic, Multiplication Slide 77

Using b c, rather than b b Building Blocks

2b 2c use b c multipliers and (3; 2)-counters
2b 4c use b c multipliers and (5?; 2)-counters
gb hc use b c multipliers and (?; 2)-counters

4b 4b

3b 3b

2b 2b

b b

Apr. 2015 Computer Arithmetic, Multiplication Slide 78

Wide Multiplier Built of Narrow Multipliers and Adders
Fig. 12.3 Using 4 4
multipliers and 4-bit
adders to synthesize
an 8 8 multiplier.

a x a x a x a x

Add

Add

Add

Add Add

pp p p

000

8

8

12

12

H LH H H LLL

[4, 7] [4, 7] [0, 3] [4, 7] [4, 7] [0, 3] [0, 3] [0, 3]

[12,15] [8,11] [8,11] [4, 7] [8,11] [4, 7] [4, 7] [0, 3]

[4, 7]

[4, 7]

[8,11]

[8,11]

[12,15]

[12,15] [8,11] [0, 3][4, 7]

Multiply MultiplyMultiplyMultiply

Apr. 2015 Computer Arithmetic, Multiplication Slide 79

Karatsuba Multiplication

2b 2b multiplication requires four b b multiplications:

(2baH + aL) (2bxH + xL) = 22baHxH + 2b (aHxL + aLxH) + aLxL

aH aL

xH xL

Karatsuba noted that one of the four multiplications can be removed
at the expense of introducing a few additions:

(2baH + aL) (2bxH + xL) =

22baHxH + 2b [(aH + aL) (xH + xL) – aHxH – aLxL] + aLxL

Mult 1 Mult 2Mult 3

Benefit is quite significant for extremely wide operands
(4/3)5 = 4.2 (4/3)10 = 17.8 (4/3)20 = 315.3 (4/3)50 = 1,765,781

b bits

Apr. 2015 Computer Arithmetic, Multiplication Slide 80

12.2 Additive Multiply Modules

Fig. 12.4 Additive multiply module with 2 4 multiplier (ax)
plus 4-bit and 2-bit additive inputs (y and z).

c

in

y

z

ax

p

4-bit adder

y

z

x
 a

p = ax + y + z

(a) Block diagram (b) Dot notation

b-bit and c-bit multiplicative inputs
b c AMM b-bit and c-bit additive inputs

(b + c)-bit output

(2b – 1) (2c – 1) + (2b – 1) + (2c – 1) = 2b+c – 1

Apr. 2015 Computer Arithmetic, Multiplication Slide 81

Multiplier Built of AMMs

Fig. 12.5 An 8 8 multiplier built of 42 AMMs.
Inputs marked with an asterisk carry 0s.

 [0, 1]

 [2, 3]

 [4, 5]

 [6, 7]

[8, 9][10,11][12,15]

[0, 1]
[2, 3]

[4,5]
[6, 7]

x

x

x

x
 [0, 3]a

[0, 3]a

[0, 3]a

[0, 3]a

p

p
p

p
ppp

 [0, 1]x

 [2, 3]

 [4, 5]

 [6, 7]x

x

x

[10,11]

[8, 9]

[4, 7]a

[4, 7]a

[4, 7]a

[4, 7]a

[8, 9]

[0, 1]

[2, 3][4, 5]

[6, 7]
[4,5]

[6, 7]

[8, 11]

[10,13]

[2, 5]

[4,7]

[6, 9]
[8, 11]

[6, 9]

*

*

* *

**

Legend:
2 bits
4 bits Understanding

an 8 8 multiplier
built of 4 2
AMMs using dot
notation

Apr. 2015 Computer Arithmetic, Multiplication Slide 82

Multiplier Built of AMMs: Alternate Design

Fig. 12.6 Alternate 8 8
multiplier design based on
4 2 AMMs. Inputs marked
with an asterisk carry 0s.

[8, 9]p

* *

*

*

*

*

 [0, 1]

 [2, 3]

 [4, 5]

 [6, 7]

x

x

x

x

[10,11][12,15]

[0, 1]
[2, 3]

[4,5]
[6, 7]

p

p
p

p
p

p

 [0,3] [4, 7] aa

Legend:
2 bits
4 bits

This design is more regular
than that in Fig. 12.5 and is
easily expandable to larger
configurations; its latency,
however, is greater

Apr. 2015 Computer Arithmetic, Multiplication Slide 83

12.3 Bit-Serial Multipliers

What goes inside the box to make a bit-serial multiplier?
Can the circuit be designed to support a high clock rate?

FA

FF
Bit-serial adder
(LSB first) x0

y
0

s0
x1

y
1

s1
x2

y
2

s2
…

…

…

Bit-serial multiplier
a1

x
1

p1
a0

x
0

p0
a2

x
2

p2
…

…

…(Must follow the k-bit
inputs with k 0s;
alternatively, view
the product as being
only k bits wide)

?

Apr. 2015 Computer Arithmetic, Multiplication Slide 84

Semisystolic Serial-Parallel Multiplier
Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Carry

Sum
FA

Product
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x0 x1 x2 x3

Fig. 12.7 Semi-systolic circuit for 4 4 multiplication in 8 clock cycles.

This is called “semisystolic” because it has a large signal fan-out of k
(k-way broadcasting) and a long wire spanning all k positions

Apr. 2015 Computer Arithmetic, Multiplication Slide 85

Systolic Retiming as a Design Tool

Fig. 12.8 Example of retiming by delaying the inputs to CL
and advancing the outputs from CL by d units

Cut

CL CR CL CR

e
f

g
h

e+d
f+d

g–d
h–d

+d

–d

–d

+d
Original delays Adjusted delays

A semisystolic circuit can be converted to a systolic circuit
via retiming, which involves advancing and retarding signals
by means of delay removal and delay insertion in such a
way that the relative timings of various parts are unaffected

Apr. 2015 Computer Arithmetic, Multiplication Slide 86

Alternate Explanation of Systolic Retiming

Transferring delay from the outputs of a subsystem to its
inputs does not change the behavior of the overall system

td1

d2 t+a+d1+d2

t+d1

t+a+d1

tt

t + a d1 d2 t+a+d1+d2

Apr. 2015 Computer Arithmetic, Multiplication Slide 87

A First Attempt
at Retiming

Fig. 12.9 A retimed version
of our semi-systolic multiplier.

Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Carry

FA
Product
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x0 x1 x2 x3

Sum

Cut 1Cut 2Cut 3

Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Carry

Sum
FA

Product
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x0 x1 x2 x3

Fig. 12.7

Apr. 2015 Computer Arithmetic, Multiplication Slide 88

Deriving a Fully
Systolic Multiplier

Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Carry

Sum
FA

Product
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x 0 x 1 x 2 x 3

Fig. 12.7

Fig. 12.10 Systolic circuit for
44 multiplication in 15 cycles.

Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Sum
FA

Product
(serial out)

FA FA FA

a3 a2 a1 a0
x0 x1 x2 x3

Carry

Apr. 2015 Computer Arithmetic, Multiplication Slide 89

A Direct Design for a Bit-Serial Multiplier

Fig. 12.13 Bit-serial multiplier
design in dot notation.

p

x

a

Already
accumulated

into three
numbers

(i - 1)

a

x

(i - 1)

i

a

x

i

 x

i

(i - 1)

a

i

a

x

(i - 1)

x

i

i

a

Already output

(a) Structure of the bit-matrix

(b) Reduction after each input bit

p

(i - 1)

i

a

x

(i - 1)

 x

i

(i - 1)

a

x

i

i

a

2p

 (i)

Shift right to
obtain p

(i)

Mux

(5; 3)-counter

0

1

012

a x

a x

ss

c c

t t in

out in

in out

out

p

ii

ii(i–1)

a
x

ss

c c

t t in

out in

in out

out

p

i
i

. . .
. . .

. . .

. . .

. . .

i

LSB

0

Fig. 12.11 Building block for a
latency-free bit-serial multiplier.

Fig. 12.12 The cellular structure
of the bit-serial multiplier based on
the cell in Fig. 12.11.

Apr. 2015 Computer Arithmetic, Multiplication Slide 90

12.4 Modular Multipliers

. . .FA FAFAFAFA

Mod-15 CSA

Divide by 16

4

4

4

4

Mod-15 CSA

4

Mod-15 CPA

Fig. 12.14 Modulo-(2b – 1)
carry-save adder.

Fig. 12.15 Design of a
4 4 modulo-15 multiplier.

Apr. 2015 Computer Arithmetic, Multiplication Slide 91

Other Examples of Modular Multiplication

Fig. 12.16 One way
to design of a 4 4
modulo-13 multiplier.

Fig. 12.17 A method for
modular multioperand addition.

. . .

Table

n inputs

CSA Tree

sum mod m

 3-input
Modulo-m
 Adder

.

.

.

Address

Data

Apr. 2015 Computer Arithmetic, Multiplication Slide 92

12.5 The Special Case of Squaring
x 0 x 1 x 2 x 3 x 4
x 0 x 1 x 2 x 3 x 4

x 0 x 1 x 2 x 3 x 4 x 0 x 0

p 0

x 4

x 1

x 4

x 0
x 1

x 2
x 3

x 4

x 0
x 1

x 2
x 3

x 4

x 0

Multiply x by x

x 1 x 2 x 3 x 4 x 0
x 1 x 2 x 3 x 4 x 0

x 1 x 2 x 3 x 4 x 0
x 1 x 2 x 3 x 4 x 0

x 1
x 2
x 3

x 1
x 2
x 3

x 2
x 3

x 4

p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9

x 1 x 2 x 3 x 4 x 0
x 1

x 0

x 2

x 0
x 1

x 0
x 2 x 3

x 4 x 0
x 3

x 4

x 0

x 1
x 2 x 1

x 2
x 3

x 3 x 4
x 4

p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 0

_

Simplify

Fig. 12.18 Design of a 5-bit squarer.

x1x0 –x1x0

Apr. 2015 Computer Arithmetic, Multiplication Slide 93

Divide-and-Conquer Squarers

Building wide squarers from narrower ones

Divide-and-conquer (recursive) strategy for synthesizing a
2b 2b squarer from b b squarers and multiplier.

a

p

Rearranged partial products
 in 2b-by-2b multiplication

2b bits

3b bits

H a L

xH xL

a L xH

a L xL

a H xL
xHa H

a H xL

a L xH

a L xLxHa H

b bits

xLxH

xL
xL xLxH

xL

xH

xH
xH

Apr. 2015 Computer Arithmetic, Multiplication Slide 94

12.6 Combined Multiply-Add Units

Fig. 12.19
Dot-notation
representations
of various methods
for performing
a multiply-add
operation
in hardware.

Multiply-add
versus
multiply-accumulate

Multiply-accumulate
units often have wider
additive inputs

(c)

Additive input

Dot matrix for the
4 4 multiplication

(a)
Additive input

CSA tree output

(b)

Carry-save additive input

CSA tree output

(d)

Carry-save additive input

Dot matrix for the
4 4 multiplication

