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III   Multiplication

Topics in This Part
Chapter 9 Basic Multiplication Schemes
Chapter 10 High-Radix Multipliers
Chapter 11 Tree and Array Multipliers
Chapter 12 Variations in Multipliers

Review multiplication schemes and various speedup methods
• Multiplication is heavily used (in arith & array indexing)
• Division = reciprocation + multiplication
• Multiplication speedup: high-radix, tree, recursive 
• Bit-serial, modular, and array multipliers
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“Well, well, for a rabbit, you’re not 
very good at multiplying, are you?”
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9  Basic Multiplication Schemes

Chapter Goals
Study shift/add or bit-at-a-time multipliers
and set the stage for faster methods and
variations to be covered in Chapters 10-12

Chapter Highlights
Multiplication = multioperand addition
Hardware, firmware, software algorithms
Multiplying 2’s-complement numbers
The special case of one constant operand
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Basic Multiplication Schemes: Topics

Topics in This Chapter

9.1 Shift/Add Multiplication Algorithms

9.2 Programmed Multiplication

9.3 Basic Hardware Multipliers

9.4 Multiplication of Signed Numbers

9.5 Multiplication by Constants

9.6 Preview of Fast Multipliers
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9.1  Shift/Add Multiplication Algorithms
Notation for our discussion of multiplication algorithms:

a Multiplicand ak–1ak–2 . . . a1a0
x Multiplier xk–1xk–2 . . . x1x0
p Product (a  x) p2k–1p2k–2 . . . p3p2p1p0

Initially, we assume unsigned operands

Fig. 9.1   Multiplication of two 4-bit unsigned binary numbers in dot notation.
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Preferred

Multiplication Recurrence

Multiplication with right shifts: top-to-bottom accumulation

p(j+1) = (p(j) + xj a 2k) 2–1 with p(0) = 0 and
|–––add–––| p(k) = p =  ax + p(0)2–k

|––shift right––|
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Multiplication with left shifts: bottom-to-top accumulation

p(j+1) = 2p(j) +  xk–j–1a with p(0) = 0 and
|shift| p(k) = p =  ax + p(0)2k

|––––add––––|

Fig. 9.1
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Examples of Basic Multiplication

Fig. 9.2
Examples 
of 
sequential 
multipli-
cation with 
right and 
left shifts. 

Right-shift algorithm Left-shift algorithm
======================== =======================
a 1  0  1  0 a 1  0  1  0
x 1  0  1  1 x 1  0  1  1
======================== =======================
p(0) 0  0  0  0 p(0) 0  0  0  0
+x0a 1  0  1  0 2p(0) 0    0  0  0  0
––––––––––––––––––––––––– +x3a 1  0  1  0
2p(1) 0  1  0  1  0 ––––––––––––––––––––––––
p(1) 0  1  0  1    0 p(1) 0    1  0  1  0
+x1a 1  0  1  0 2p(1) 0  1    0  1  0  0
––––––––––––––––––––––––– +x2a 0  0  0  0
2p(2) 0  1  1  1  1    0 ––––––––––––––––––––––––
p(2) 0  1  1  1    1  0 p(2) 0  1    0  1  0  0
+x2a 0  0  0  0 2p(2) 0  1  0    1  0  0  0
––––––––––––––––––––––––– +x1a 1  0  1  0
2p(3) 0  0  1  1  1    1  0 ––––––––––––––––––––––––
p(3) 0  0  1  1    1  1  0 p(3) 0  1  1    0  0  1  0
+x3a 1  0  1  0 2p(3) 0  1  1  0    0  1  0  0
––––––––––––––––––––––––– +x0a 1  0  1  0
2p(4) 0  1  1  0  1    1  1  0 ––––––––––––––––––––––––
p(4) 0  1  1  0    1  1  1  0 p(4) 0  1  1  0    1  1  1  0
======================== =======================

p(j+1) = (p(j) + xj a 2k) 2–1

|–––add–––|
|––shift right––|

1 0 1 0

Check:
10  11
= 110
= 64 + 32 +

8 + 4 + 2
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Examples of Basic Multiplication (Continued)

Fig. 9.2
Examples 
of 
sequential 
multipli-
cation with 
right and 
left shifts. 

Right-shift algorithm Left-shift algorithm
======================== =======================
a 1  0  1  0 a 1  0  1  0
x 1  0  1  1 x 1  0  1  1
======================== =======================
p(0) 0  0  0  0 p(0) 0  0  0  0
+x0a 1  0  1  0 2p(0) 0    0  0  0  0
––––––––––––––––––––––––– +x3a 1  0  1  0
2p(1) 0  1  0  1  0 ––––––––––––––––––––––––
p(1) 0  1  0  1    0 p(1) 0    1  0  1  0
+x1a 1  0  1  0 2p(1) 0  1    0  1  0  0
––––––––––––––––––––––––– +x2a 0  0  0  0
2p(2) 0  1  1  1  1    0 ––––––––––––––––––––––––
p(2) 0  1  1  1    1  0 p(2) 0  1    0  1  0  0
+x2a 0  0  0  0 2p(2) 0  1  0    1  0  0  0
––––––––––––––––––––––––– +x1a 1  0  1  0
2p(3) 0  0  1  1  1    1  0 ––––––––––––––––––––––––
p(3) 0  0  1  1    1  1  0 p(3) 0  1  1    0  0  1  0
+x3a 1  0  1  0 2p(3) 0  1  1  0    0  1  0  0
––––––––––––––––––––––––– +x0a 1  0  1  0
2p(4) 0  1  1  0  1    1  1  0 ––––––––––––––––––––––––
p(4) 0  1  1  0    1  1  1  0 p(4) 0  1  1  0    1  1  1  0
======================== =======================

p(j+1) = 2p(j) +  xk–j–1a
|shift|
|––––add––––|

Check:
10  11
= 110
= 64 + 32 +

8 + 4 + 2
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9.2  Programmed Multiplication

Fig. 9.3 Programmed 
multiplication (right-shift 
algorithm).

{Using right shifts, multiply unsigned m_cand and m_ier,  
storing the resultant 2k-bit product in p_high and p_low.  
Registers: R0 holds 0      Rc for counter

Ra for m_cand   Rx for m_ier
Rp for p_high   Rq for p_low}

{Load operands into registers Ra and Rx}
mult:  load Ra with m_cand

load Rx with m_ier 
{Initialize partial product and counter}

copy R0 into Rp
copy R0 into Rq
load k into Rc

{Begin multiplication loop}
m_loop:  shift   Rx right 1  {LSB moves to carry flag}

branch  no_add if carry = 0 
add     Ra to Rp    {carry flag is set to cout}

no_add:  rotate  Rp right 1  {carry to MSB, LSB to carry}
rotate  Rq right 1  {carry to MSB, LSB to carry}
decr    Rc          {decrement counter by 1}
branch  m_loop if Rc  0

{Store the product}
store   Rp into p_high
store   Rq into p_low

m_done:  ...

R0 Rc Counter0
Ra Rx
Rp Rq

Multiplicand Multiplier
Product, high Product, low
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Time Complexity of Programmed Multiplication

Assume k-bit words

k iterations of the main loop
6-7 instructions per iteration, depending on the multiplier bit

Thus, 6k + 3 to 7k + 3 machine instructions,
ignoring operand loads and result store

k = 32 implies 200+ instructions on average

This is too slow for many modern applications!

Microprogrammed multiply would be somewhat better
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9.3  Basic Hardware Multipliers

Fig. 9.4 Hardware realization of the sequential multiplication 
algorithm with additions and right shifts.
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Example of Hardware Multiplication

Fig. 9.4a    Hardware realization of the sequential multiplication 
algorithm with additions and right shifts.

1  0  1  1

1  0  1  0

0  0  0  01  0  1  0
1  0  1

0  1  0  1  01  1  1  1  0
1  0

0  1  1  1  1  0
1

0  0  1  1  1  1  01  1  0  1  1  1  00  1  1  0  1  1  1  0
(11)ten

(10)ten

(110)ten

p(j+1) = (p(j) + xj a 2k) 2–1

|–––add–––|
|––shift right––|
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Performing Add and Shift in One Clock Cycle

Partial product p (j) 

k 

Unused 
part of the 
multiplier x 

Adder’s  
carry-out  

Adder’s sum 

k 

k – 1 

k – 1 

To mux control To adder 

Fig. 9.5   Combining the loading and shifting of the 
double-width register holding the partial product and 
the partially used multiplier.
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Sequential Multiplication with Left Shifts

Fig. 9.4b    Hardware realization of the sequential multiplication 
algorithm with left shifts and additions.
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9.4  Multiplication of 
Signed Numbers

Fig. 9.6 Sequential 
multiplication of 
2’s-complement 
numbers with right 
shifts (positive 
multiplier). 

============================
a 1  0  1  1  0
x 0  1  0  1  1
============================
p(0) 0  0  0  0  0
+x0a 1  0  1  1  0
–––––––––––––––––––––––––––––
2p(1) 1  1  0  1  1  0
p(1) 1  1  0  1  1    0
+x1a 1  0  1  1  0
–––––––––––––––––––––––––––––
2p(2) 1  1  0  0  0  1    0
p(2) 1  1  0  0  0    1  0
+x2a 0  0  0  0  0
–––––––––––––––––––––––––––––
2p(3) 1  1  1  0  0  0    1  0
p(3) 1  1  1  0  0    0  1  0
+x3a 1  0  1  1  0
–––––––––––––––––––––––––––––
2p(4) 1  1  0  0  1  0    0  1  0
p(4) 1  1  0  0  1    0  0  1  0
+x4a 0  0  0  0  0
–––––––––––––––––––––––––––––
2p(5) 1  1  1  0  0  1    0  0  1  0
p(5) 1  1  1  0  0    1  0  0  1  0
============================

Negative multiplicand,
positive multiplier:

No change, other than 
looking out for proper
sign extension

Check:
–10  11
= –110
= –512 +

256 + 
128 + 
16 + 2



Apr. 2015 Computer Arithmetic, Multiplication Slide 18

The Case of a 
Negative Multiplier

Fig. 9.7 Sequential 
multiplication of 
2’s-complement 
numbers with right 
shifts (negative 
multiplier). 

============================
a 1  0  1  1  0
x 1  0  1  0  1
============================
p(0) 0  0  0  0  0
+x0a 1  0  1  1  0
–––––––––––––––––––––––––––––
2p(1) 1  1  0  1  1  0
p(1) 1  1  0  1  1    0
+x1a 0  0  0  0  0
–––––––––––––––––––––––––––––
2p(2) 1  1  1  0  1  1    0
p(2) 1  1  1  0  1    1  0
+x2a 1  0  1  1  0
–––––––––––––––––––––––––––––
2p(3) 1  1  0  0  1  1    1  0
p(3) 1  1  0  0  1    1  1  0
+x3a 0  0  0  0  0
–––––––––––––––––––––––––––––
2p(4) 1  1  1  0  0  1    1  1  0
p(4) 1  1  1  0  0    1  1  1  0
+(x4a) 0  1  0  1  0
–––––––––––––––––––––––––––––
2p(5) 0  0  0  1  1  0    1  1  1  0
p(5) 0  0  0  1  1    0  1  1  1  0
============================

Negative multiplicand,
negative multiplier:

In last step (the sign bit), 
subtract rather than add

Check:
–10  –11
= 110
= 64 + 32 + 

8 + 4 + 2
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Signed 2’s-Complement Hardware Multiplier

Fig. 9.8    The 2’s-complement sequential hardware multiplier.
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Booth’s Recoding

Table 9.1    Radix-2 Booth’s recoding
–––––––––––––––––––––––––––––––––––––
xi xi–1 yi Explanation
–––––––––––––––––––––––––––––––––––––
0     0 0 No string of 1s in sight
0     1 1 End of string of 1s in x
1     0 1 Beginning of string of 1s in x
1     1 0 Continuation of string of 1s in x
–––––––––––––––––––––––––––––––––––––

Example
1  0  0 1   1  1  0  1   1  0  1  0    1  1  1  0      Operand x

(1)  1  0  1  0    0 1  1  0   1  1 1  1   0  0 1  0      Recoded version y

Justification
2j + 2j–1 + . . . + 2i+1 + 2i =  2j+1 – 2i
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Example Multiplication 
with Booth’s Recoding

Fig. 9.9 Sequential 
multiplication of 
2’s-complement 
numbers with right 
shifts by means of 
Booth’s recoding. 

============================
a 1  0  1  1  0
x 1  0  1  0  1     Multiplier
y 1  1 1  1 1     Booth-recoded
============================
p(0) 0  0  0  0  0
+y0a 0  1  0  1  0
–––––––––––––––––––––––––––––
2p(1) 0  0  1  0  1  0
p(1) 0  0  1  0  1    0
+y1a 1  0  1  1  0
–––––––––––––––––––––––––––––
2p(2) 1  1  1  0  1  1    0
p(2) 1  1  1  0  1    1  0
+y2a 0  1  0  1  0
–––––––––––––––––––––––––––––
2p(3) 0  0  0  1  1  1    1  0
p(3) 0  0  0  1  1    1  1  0
+y3a 1  0  1  1  0
–––––––––––––––––––––––––––––
2p(4) 1  1  1  0  0  1    1  1  0
p(4) 1  1  1  0  0    1  1  1  0
y4a 0  1  0  1  0
–––––––––––––––––––––––––––––
2p(5) 0  0  0  1  1  0    1  1  1  0
p(5) 0  0  0  1  1    0  1  1  1  0
============================

––––––––––
xi xi–1 yi
––––––––––
0     0 0
0     1 1
1     0 1
1     1 0
––––––––––

Check:
–10  –11
= 110
= 64 + 32 + 

8 + 4 + 2
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9.5  Multiplication by Constants
Explicit, e.g. y := 12  x + 1

Implicit, e.g. A[i, j] := A[i, j] + B[i, j]     

Address of A[i, j] = base + n  i + j

Software aspects:
Optimizing compilers replace multiplications by shifts/adds/subs

Produce efficient code using as few registers as possible 
Find the best code by a time/space-efficient algorithm

0     1    2      .  .  .     n – 1 
0     
1    
2     
.
.
.     

m – 1 

Row i

Column j

Hardware aspects:
Synthesize special-purpose units such as filters

y[t] = a0x[t] + a1x[t – 1] + a2x[t – 2] + b1y[t – 1] + b2y[t – 2]
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Multiplication Using Binary Expansion

Example: Multiply R1 by the constant 113 = (1 1 1 0 0 0 1)two

R2   R1  shift-left  1
R3   R2  +  R1
R6   R3  shift-left  1
R7   R6  +  R1
R112  R7  shift-left  4
R113  R112  +  R1

Shift, add Shift

Ri: Register that contains i times (R1)

This notation is for clarity; only one 
register other than R1 is needed

Shorter sequence using shift-and-add instructions

R3   R1  shift-left  1  +  R1
R7   R3  shift-left  1  +  R1
R113  R7  shift-left  4  +  R1
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Multiplication via Recoding

Example: Multiply R1 by 113 = (1 1 1 0 0 0 1)two = (1 0 01 0 0 0 1)two

R8   R1  shift-left  3
R7   R8  – R1
R112  R7  shift-left  4
R113  R112  +  R1 Shift, add

Shift

Shorter sequence using shift-and-add/subtract instructions

R7   R1  shift-left  3  – R1
R113  R7  shift-left  4  +  R1

Shift, subtract

6 shift or add (3 shift-and-add) instructions needed without recoding

The canonic signed-digit representation of a number contains no 
consecutive nonzero digits: average number of shift-adds is O(k/3)
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Multiplication via Factorization

Example: Multiply R1 by 119 = 7  17 
= (8 – 1)  (16 + 1)

R8  R1 shift-left 3
R7  R8 – R1
R112  R7 shift-left 4
R119  R112  +  R7

Shorter sequence using shift-and-add/subtract instructions

R7   R1  shift-left  3  – R1
R119  R7  shift-left  4  +  R7

119 = (1 1 1 0 1 1 1)two = (1 0 0 01 0 01)two

More instructions may be needed without factorization

Requires a scratch register 
for holding the 7 multiple

CSA

CPA

128x 8x x

119x

1

1



Apr. 2015 Computer Arithmetic, Multiplication Slide 26

Multiplication by Multiple Constants

Example: Multiplying a number by 45, 49, and 65

R9  R1 shift-left 3 + R1
R45  R9  shift-left  2  +  R9

R7  R1 shift-left 3 – R1
R49  R7  shift-left  3  – R7

R65   R1  shift-left  6  +  R1

A combined solution for all three constants

R65   R1  shift-left  6  +  R1
R49  R65  – R1  left-shift  4
R45   R49  – R1  left-shift  2

Separate solutions:
5 shift-add/subtract
operations

A programmable 
block can perform 
any of the three 
multiplications
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9.6  Preview of Fast Multipliers
Viewing multiplication as a multioperand addition problem,
there are but two ways to speed it up

a. Reducing the number of operands to be added:
Handling more than one multiplier bit at a time
(high-radix multipliers, Chapter 10)

b. Adding the operands faster:
Parallel/pipelined multioperand addition
(tree and array multipliers, Chapter 11)

In Chapter 12, we cover all remaining multiplication topics:

Bit-serial multipliers
Modular multipliers
Multiply-add units
Squaring as a special case
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10  High-Radix Multipliers

Chapter Goals
Study techniques that allow us to handle
more than one multiplier bit in each cycle
(two bits in radix 4, three in radix 8, . . .)

Chapter Highlights
High radix gives rise to “difficult” multiples
Recoding (change of digit-set) as remedy
Carry-save addition reduces cycle time
Implementation and optimization methods
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High-Radix Multipliers: Topics

Topics in This Chapter

10.1 Radix-4 Multiplication

10.2 Modified Booth’s Recoding

10.3 Using Carry-Save Adders

10.4 Radix-8 and Radix-16 Multipliers

10.5 Multibeat Multipliers

10.6 VLSI Complexity Issues
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10.1  Radix-4 Multiplication

Preferred

Multiplication with right shifts in radix r : top-to-bottom accumulation

p(j+1) = (p(j) + xj a r k) r –1 with p(0) = 0 and
|–––add–––| p(k) = p =  ax + p(0)r –k

|––shift right––|

Multiplication with left shifts in radix r : bottom-to-top accumulation

p(j+1) = rp(j) +  xk–j–1a with p(0) = 0 and
|shift| p(k) = p =  ax + p(0)r k

|––––add––––|

Fig. 9.1 
(modified)
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Partial 
products 
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Radix-4 Multiplication in Dot Notation

Number of cycles is 
halved, but now the 
“difficult” multiple 3a
must be dealt with

Product  

Partial 
products 
bit-matrix  

a 
x 

p 

2 
 

x a 
 

0 
 0 

1 x a 2 
 
1 
 x a 2 

 
2 
 2 

2 
 
3 
 3 

 
x a 

 

Multiplicand 
Multiplier  

Multiplier x 

p Product  

Multiplicand a 

(x  x  ) a 4 1 
3 2 two 

4 0 a (x  x  ) 1 0 two 

 

Fig. 9.1

Fig. 10.1   Radix-4, 
or two-bit-at-a-time, 
multiplication in dot 
notation
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A Possible Design for a Radix-4 Multiplier

Precomputed via 
shift-and-add
(3a = 2a + a)

k/2 + 1 cycles, rather than k

One extra cycle over k/2 
not too bad, but we would like 
to avoid it if possible

Solving this problem for radix 4 
may also help when dealing 
with even higher radices

0 a 2a

3a
Multiplier

To the adder

2-bit shifts

00    01    10    11
Mux

xi+1 xi

Fig. 10.2   The multiple 
generation part of a radix-4 
multiplier with 
precomputation of 3a.
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Example Radix-4 Multiplication Using 3a

================================
a 0 1 1 0
3a 0 1 0 0 1 0
x 1 1 1 0
================================
p(0) 0 0 0 0
+(x1x0)twoa 0 0 1 1 0 0
–––––––––––––––––––––––––––––––––
4p(1) 0 0 1 1 0 0
p(1) 0 0 1 1 0 0
+(x3x2)twoa 0 1 0 0 1 0
–––––––––––––––––––––––––––––––––
4p(2) 0 1 0 1 0 1 0 0
p(2) 0 1 0 1 0 1 0 0
================================

Fig. 10.3   Example of 
radix-4 multiplication 
using the 3a multiple.

x 

p 

a 

(x  x  )3 2 

(x  x  )1 0 
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A Second Design for a Radix-4 Multiplier

xi+1 xi c Mux control Set carry
---- --- --- ---------------- ------------
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 0 1

Fig. 10.4   The multiple generation 
part of a radix-4 multiplier based on 
replacing 3a with 4a (carry into next 
higher radix-4 multiplier digit) and –a.

0 a 2a –a

Multiplier

To the adder

+c FF Set if          =      = 1  
 or if           =  c  = 1c

00    01    10    11
Mux

2-bit shifts

mod 4
Carry

xi+1 xi

xi+1
xi+1

xixi+1(xi  c)
xi+1 xi c xi  c

c
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10.2  Modified Booth’s Recoding
Table 10.1    Radix-4 Booth’s recoding yielding (zk/2 . . . z1z0)four

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
xi+1 xi xi–1 yi+1 yi zi/2 Explanation
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
0     0 0 0 0 0 No string of 1s in sight
0 0 1 0 1 1 End of string of 1s
0 1 0 0 1 1 Isolated 1
0 1 1 1 0 2 End of string of 1s
1 0 0 1 0 2 Beginning of string of 1s
1 0 1 1 1 1 End a string, begin new one
1 1 0 0 1 1 Beginning of string of 1s
1 1 1 0 0 0 Continuation of string of 1s
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

(1)      2   2       1      2       1     1      0     2 Radix-4 version z

Context
Recoded 

radix-2 digits Radix-4 digit

Example
1  0  0 1   1  1  0  1   1  0  1  0    1  1  1  0  Operand x

(1)  1  0  1  0    0 1  1  0   1  1 1  1   0  0 1  0 Recoded version y
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Example Multiplication via Modified Booth’s Recoding

================================
a 0 1 1 0
x 1 0 1 0
z 1 2 Radix-4
================================
p(0) 0 0 0 0 0 0
+z0a 1 1 0 1 0 0
–––––––––––––––––––––––––––––––––
4p(1) 1 1 0 1 0 0
p(1) 1 1 1 1 0 1 0 0
+z1a 1 1 1 0 1 0
–––––––––––––––––––––––––––––––––
4p(2) 1 1 0 1 1 1 0 0
p(2) 1 1 0 1 1 1 0 0
================================

Fig. 10.5   Example of 
radix-4 multiplication 
with modified Booth’s 
recoding of the 2’s-
complement multiplier.

x 

p 

a 

(x  x  )3 2 

(x  x  )1 0 
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Multiple Generation with Radix-4 Booth’s Recoding

Fig. 10.6     The multiple generation part of a radix-4 
multiplier based on Booth’s recoding.

Could have named 
this signal one/two

two non0
a             2a

Enable
Select
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neg
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0           1
Mux
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To adder input
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    control

x

Multiplier

xx

Recoding Logic

Multiplicand

0

k

0

2-bit shift

Init. 0

Sign 
of a

---- Encoding ----
Digit neg two non0
–2   1   1 1 
–1   1   0   1 
0   0   0   0
1   0   0   1
2   0   1   1
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10.3  Using Carry-Save Adders

Fig. 10.7    Radix-4 multiplication with a carry-save adder used to 
combine the cumulative partial product, xia, and 2xi+1a into two numbers.

Mux

0 2a

0 a

Multiplier

New Cumulative Partial Product

Old Cumulative 
 Partial Product

CSA

Mux xi+1 xi

Adder
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Keeping the Partial Product in Carry-Save Form

Fig. 10.8    Radix-2 multiplication with 
the upper half of the cumulative partial 
product kept in stored-carry form.

0

Multiplier

k

k

k-Bit CSA    

k

Partial   Product

k

Mux

k-Bit Adder

Mux

Multiplicand

Carry

Sum

Upper half of PP Lower half of PP

Right 
shift

Sum

Carry

Sum

Carry

(a) Multiplier 
block diagram (b) Operation in a typical cycle
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Carry-Save Multiplier with Radix-4 Booth’s Recoding

Fig. 10.9    Radix-4 multiplication with a CSA used to combine the 
stored-carry cumulative partial product and zi/2a into two numbers.
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Radix-4 Booth’s Recoding for Parallel Multiplication

Fig. 10.10    Booth 
recoding and multiple 
selection logic for 
high-radix or parallel 
multiplication.

x                  x                 x                   x

Recoding Logic

two non0
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Yet Another Design for Radix-4 Multiplication

Fig. 10.11    Radix-4 multiplication, 
with the cumulative partial product, 
xia, and 2xi+1a combined into two 
numbers by two CSAs.

Mux

0 2a

0 a

Multiplier

CSA
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FF
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10.4  Radix-8 and Radix-16 Multipliers

Fig. 10.12    Radix-16 
multiplication with the 
upper half of the 
cumulative partial 
product in carry-save 
form. 

Multiplier

CSA CSA

CSA

CSA

Partial Product 
  (Upper Half)

Mux
0 8a

Mux
0 4a

Mux
0 2a

Mux
0 a

x i+3
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x i+1

x i

Carry
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4-Bit 
Shift

FF
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 of Partial Product

3 4-Bit
Adder

4

4
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right
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Other High-Radix Multipliers
Multiplier

CSA CSA

CSA

CSA

Partial Product 
  (Upper Half)

Mux
0 8a

Mux
0 4a

Mux
0 2a

Mux
0 a

xi+3

xi+2

xi+1

xi

Carry
Sum

4-Bit 
Shift

FF

To the Lower Half 
 of Partial Product

3 4-Bit
Adder

4

4

Fig. 10.12
A radix-16 multiplier design 
becomes a radix-256 
multiplier if radix-4 Booth’s 
recoding is applied first 
(the muxes are replaced by 
Booth recoding and multiple 
selection logic) 

Remove this mux & CSA and 
replace the 4-bit shift (adder) 
with a 3-bit shift (adder) to get 
a radix-8 multiplier (cycle time 
will remain the same, though)
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A Spectrum of Multiplier Design Choices

Basic 
binary

Adder

Adder

  Next 
multiple

Partial  product

...

 Several 
multiples

Adder

. . .
All multiples

Small CSA 
     tree Full CSA 

    tree

High-radix 
       or 
 partial tree

Full 
treeSpeed up Economize

Partial  product

Fig. 10.13     High-radix multipliers as intermediate 
between sequential radix-2 and full-tree multipliers.
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10.5  Multibeat Multipliers

Observation: Half of the 
clock cycle goes to waste

Fig. 10.15    Two-phase clocking for sequential logic.

Next-state 
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Inputs Next-state 
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Once cycle

Begin changing FF contents
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Twin-Beat and Three-Beat Multipliers

This radix-64 multiplier 
runs at the clock rate of a 
radix-8 design (2X speed)

Fig. 10.14    Twin-beat multiplier 
with radix-8 Booth’s recoding.

Adder

CSA

Sum

Carry

CSA

Sum

Carry

FF

To the Lower Half 
 of Partial Product

6-Bit
Adder

6

65

 Pipelined 
  Radix-8 
   Booth 
  Recoder 
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3a a 3a a
4 4

Twin Multiplier 
     Registers

 Pipelined 
  Radix-8 
   Booth 
  Recoder 
& Selector

Beat-1 
 Input

Beat-3 
 Input

Beat-2 
 Input

Node 1

Node 2

Node 3

Fig. 10.16    Conceptual view 
of a three-beat multiplier.
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10.6  VLSI Complexity Issues
A radix-2b multiplier requires:

bk two-input AND gates to form the partial products bit-matrix
O(bk) area for the CSA tree
At least (k) area for the final carry-propagate adder

Total area: A = O(bk)
Latency: T = O((k/b) log b + log k)

Any VLSI circuit computing the product of two k-bit integers must 
satisfy the following constraints:

AT grows at least as fast as k3/2

AT2 is at least proportional to k2

The preceding radix-2b implementations are suboptimal, because:

AT =    O(k2 log b + bk log k)
AT2 =    O((k3/b) log2b)
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Comparing High- and Low-Radix Multipliers

Intermediate designs do not yield better AT or AT2 values;
The multipliers remain asymptotically suboptimal for any b

Low-Cost
b = O(1)

High Speed
b = O(k)

AT- or AT 2-
Optimal

AT O(k2) O(k2 log k) O(k3/2)
AT 2 O(k3) O(k2 log2k) O(k2)

AT = O(k2 log b + bk log k)  AT2 = O((k3/b) log2b)

By the AT measure (indicator of cost-effectiveness), slower radix-2 
multipliers are better than high-radix or tree multipliers
Thus, when an application requires many independent multiplications, 
it is more cost-effective to use a large number of slower multipliers

High-radix multiplier latency can be reduced from O((k/b) log b + log k) 
to O(k/b + log k) through more effective pipelining (Chapter 11)
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11   Tree and Array Multipliers

Chapter Goals
Study the design of multipliers for highest
possible performance (speed, throughput)

Chapter Highlights
Tree multiplier = reduction tree

+ redundant-to-binary converter
Avoiding full sign extension in multiplying

signed numbers
Array multiplier = one-sided reduction tree

+ ripple-carry adder
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Tree and Array Multipliers: Topics

Topics in This Chapter

11.1. Full-Tree Multipliers

11.2. Alternative Reduction Trees

11.3. Tree Multipliers for Signed Numbers

11.4. Partial-Tree and Truncated Multipliers

11.5. Array Multipliers

11.6. Pipelined Tree and Array Multipliers
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11.1  Full-Tree Multipliers

Basic 
binary

Adder

Adder

  Next 
multiple

Partial  product

...

 Several 
multiples

Adder

. . .
All multiples

Small CSA 
     tree Full CSA 

    tree

High-radix 
       or 
 partial tree

Full 
treeSpeed up Economize

Partial  product

Fig. 10.13     High-radix multipliers 
as intermediate between sequential 
radix-2 and full-tree multipliers. Higher-order 

 product bits
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. . .

Some lower-order 
product bits are 
generated directly

Redundant result
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(Multi-Operand 
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Fig. 11.1    General structure of a full-tree multiplier.
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Full-Tree versus Partial-Tree Multiplier

Schematic diagrams for full-tree and partial-tree multipliers.
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Variations in Full-Tree Multiplier Design

Designs are distinguished by 
variations in three elements:

Higher-order 
 product bits

Multiplier
a

a

a

a.  .  .

. . .

Some lower-order 
product bits are 
generated directly

Redundant result

Redundant-to-Binary 
        Converter

Multiple- 
Forming 
Circuits

(Multi-Operand 
 Addition Tree)

Partial-Products 
 Reduction Tree

Fig. 11.1

2. Partial products reduction tree

3. Redundant-to-binary converter

1. Multiple-forming circuits
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Product  

Partial 
products 
bit-matrix  

a 
x 

p 

2 
 

x a 
 

0 
 0 

1 x a 2 
 
1 
 x a 2 

 
2 
 2 

2 
 
3 
 3 

 
x a 

 

Multiplicand 
Multiplier  

Example of Variations in CSA Tree Design
 

   1  2  3  4  3  2  1 
         FA FA FA HA 
  --------------------
   1  3  2  3  2  1  1 
      FA HA FA HA 
---------------------- 
   2  2  2  2  1  1  1 
   4-Bit Adder 
----------------------
1  1  1  1  1  1  1  1  

Wallace Tree  
(5 FAs + 3 HAs + 4-Bit Adder) 

 

   1  2  3  4  3  2  1   
         FA FA      
  --------------------
   1  3  2  2  3  2  1   
      FA HA HA FA      
----------------------
   2  2  2  2  1  2  1 
     6-Bit Adder 
----------------------
1  1  1  1  1  1  1  1   

Dadda Tree  
(4 FAs + 2 HAs + 6-Bit Adder)  

Fig. 11.2    Two different binary 4  4 tree multipliers.

HA

3

HA

3
FAFA HA

Corrections
shown in red

2
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Details of a CSA Tree

Fig. 11.3    Possible 
CSA tree for a 7  7 
tree multiplier.

CSA trees are quite 
irregular, causing 
some difficulties in 
VLSI realization

10-bit CPA

7-bit  CSA 7-bit CSA

7-bit CSA

10-bit CSA

2Ignore

The index pair  
[i, j] means that  
bit positions  
from i up to j  
are involved.

7-bit CSA

[0, 6]  
[1, 7]  

[2, 8]  
[6, 12]  

[3, 11]  [1,8]  

[3, 9]  
[4, 10]  

[5, 11]  

[2, 8] [5, 11]

[6, 12]

[2,12]

[3, 12]  

[4,13]  [4,12]  

[4, 13]  

[3,9]  

3

[3,12]  

[2, 8]

[3,12]

[1, 6]  

01

Thus, our motivation 
to examine alternate 
methods for partial 
products reduction
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11.2  Alternative Reduction Trees

Fig. 11.4    
A slice of a 
balanced-delay 
tree for 11 
inputs.
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Binary Tree of 4-to-2 Reduction Modules

Due to its recursive structure, a binary tree is more regular 
than a 3-to-2 reduction tree when laid out in VLSI

Fig. 11.5     Tree multiplier with a more regular 
structure based on 4-to-2 reduction modules. 

(a) Binary tree of (4; 2)-counters

4-to-2 4-to-2 4-to-2 4-to-2

4-to-2 4-to-2

4-to-2

(b) Realization with FAs (c) A faster realization

FA

FA

c         s c               s

0         1

0         1

4-to-2 compressor
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Example Multiplier with 4-to-2 Reduction Tree

Fig. 11.6    Layout of a partial-products reduction tree composed of 
4-to-2 reduction modules. Each solid arrow represents two numbers. 
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introduces 
irregularity
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11.3  Tree Multipliers for Signed Numbers

From Fig. 8.19a    Sign extension in multioperand addition. 

---------- Extended positions ---------- Sign Magnitude positions ---------

xk–1 xk–1 xk–1 xk–1 xk–1 xk–1 xk–2 xk–3 xk–4 . . .
yk–1 yk–1 yk–1 yk–1 yk–1 yk–1 yk–2 yk–3 yk–4 . . .
zk–1 zk–1 zk–1 zk–1 zk–1 zk–1 zk–2 zk–3 zk–4 . . .
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The difference in 
multiplication is the 
shifting sign positions

Fig. 11.7    Sharing of full adders to reduce 
the CSA width in a signed tree multiplier. 
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Using the Negative-Weight 
Property of the Sign Bit

Fig. 11.8     Baugh-Wooley 
2’s-complement multiplication. 

Sign extension is a way of 
converting negatively weighted bits 
(negabits) to positively weighted 
bits (posibits) to facilitate reduction, 
but there are other methods of 
accomplishing the same without 
introducing a lot of extra bits

Baugh and Wooley have 
contributed two such methods
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Fig. 11.8
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The Baugh-Wooley Method and Its Modified Form

–a4x0 = a4(1 – x0) – a4
= a4x0 – a4

–a4 a4x0
a4

In next column

–a4x0 = (1 – a4x0) – 1
= (a4x0) – 1

–1 (a4x0)
1

In next column
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Alternate Views of the 
Baugh-Wooley Methods
+  0      0    –a4x3 –a4x2 –a4x1 –a4x0
+  0      0    –a3x4 –a2x4 –a1x4 –a0x4--------------------------------------------
– 0      0      a4x3 a4x2 a4x1 a4x0
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+  1      1      a4x3 a4x2 a4x1 a4x0
+  1      1      a3x4 a2x4 a1x4 a0x4

1
1

--------------------------------------------
+  a4 a4 a4x3 a4x2 a4x1 a4x0
+  x4 x4 a3x4 a2x4 a1x4 a0x4

a4
x4--------------------------------------------

a4
1      x4
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11.4  Partial-Tree and Truncated Multipliers

Fig. 11.9     General structure 
of a partial-tree multiplier.

. . . 
 

CSA Tree 
 

h inputs 
 

Adder 
 

Lower part of  
 the cumulative 
 partial product 
 

FF 
 

h-Bit 
 Adder 
 

Sum 
 Carry 
 

Upper part of  
 the cumulative 
 partial product  
 (stored-carry) 
 

High-radix versus partial-tree 
multipliers: The difference is 
quantitative, not qualitative

For small h, say  8 bits, 
we view the multiplier of 
Fig. 11.9 as high-radix

When h is a significant 
fraction of k, say k/2 or k/4,
then we tend to view it as 
a partial-tree multiplier 

Better design through pipelining 
to be covered in Section 11.6
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Why Truncated Multipliers?

Fig. 11.10    The idea of a truncated multiplier with 8-bit fractional operands.

Nearly half of the hardware in array/tree multipliers is there to get the 
last bit right (1 dot = one FPGA cell) 

ulp
.         k-by-k fractional

 .         multiplication
---------------------------------
.       |
.      | 

.     |  

.    |   

.   |    

.  |     

. |      

.                |       

---------------------------------
.        |       

Max error = 8/2 + 7/4 
+ 6/8 + 5/16 + 4/32 
+ 3/64 + 2/128 
+ 1/256 = 7.004 ulp

Mean error = 
1.751 ulp
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Truncated Multipliers with Error Compensation

Constant and variable error compensation for truncated multipliers.

We can introduce additional “dots” on the left-hand side to compensate 
for the removal of dots from the right-hand side 

Constant compensation Variable compensation 

.   o o o o o o o| .   o o o o o o o|

.     o o o o o o| .     o o o o o o|

.       o o o o o| .       o o o o o|

.         o o o o| .         o o o o|

.           o o o| .           o o o|

.           1 o o| .           o o|

.               o| .            x-1o|

.                | .            y-1 |

Max error = +4 ulp
Max error  3 ulp

Max error = +? ulp
Max error  ? ulp

Mean error = ? ulp Mean error = ? ulp
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11.5  Array Multipliers

Fig. 11.11    A basic array 
multiplier uses a one-sided CSA 
tree and a ripple-carry adder.

0x  ax  ax  a

x  a

x  a

CSA

CSA

CSA

CSA

Ripple-Carry Adder

012

3

4

ax

p 
 

0 
 

p 
 

1 
 

p 
 

2 
 

p 
 

3 
 

p 
 

4 
 

p 6 p 7 p 8 

a  x      
 

0   0 
 

a  x       
 

1   0 
 

a  x       
 

2   0 
 

a  x       
 

3   0 
 

a  x       
 

4   0 
 

0 
 

0 
 

0 
 

0 
 

a  x       
 

0   1 
 

a  x       
 

1   1 
 

a  x       
 

2   1 
 

a  x       
 

3   1 
 

p 9 p 5 

a  x       
 

4   1 
 

a  x       
 

4   2 
 

a  x       
 

4   3 
 

a  x       
 

4   4 
 

a  x       
 

0  2 
 

a  x       
 

1   2 
 

a  x       
 

2   2 
 

a  x       
 

3   2 
 

a  x       
 

0   3 
 

a  x       
 

1   3 
 

a  x       
 

2   3 
 

a  x       
 

3   3 
 

a  x       
 

0   4 
 

a  x       
 

1   4 
 

a  x       
 

2   4 
 

a  x       
 

3   4 
 

0 
 

Fig. 11.12    Details of a 55 
array multiplier using FA blocks.
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Signed (2’s-complement) Array Multiplier

Fig. 11.13     
Modifications in a 55 
array multiplier to deal 
with 2’s-complement 
inputs using the 
Baugh-Wooley 
method or to shorten 
the critical path.
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Array Multiplier Built of Modified Full-Adder Cells

Fig. 11.14    Design of 
a 5  5 array multiplier 
with two additive 
inputs and full-adder 
blocks that include 
AND gates.
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Array Multiplier without a Final Carry-Propagate Adder

Fig. 11.15  Conceptual 
view of a modified 
array multiplier that 
does not need a final 
carry-propagate adder.

i+1
i

i+1
i

i i

Mux

Mux

Mux
k

[k, 2k–1] 1i–1ii+1k–1

Level i

k k

0

Mux

..
.

..
.

Bi+1

Bi

Dots in row i + 1
 

B 
 

 i 
 

B  i+1 

Dots in row i  
 

i Conditional bits  
 

 i + 1 Conditional bits 
of the final product 

Fig. 11.16   Carry-save 
addition, performed in 
level i, extends the 
conditionally computed 
bits of the final product.

All remaining bits of the final product 
produced only 2 gate levels after pk–1
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11.6  Pipelined Tree and Array Multipliers

. . . 
 

CSA Tree 
 

h inputs 
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Lower part of  
 the cumulative 
 partial product 
 

FF 
 

h-Bit 
 Adder 
 

Sum 
 Carry 
 

Upper part of  
 the cumulative 
 partial product  
 (stored-carry) 
 

Fig. 11.9     General structure 
of a partial-tree multiplier.

Fig. 11.17     Efficiently pipelined 
partial-tree multiplier.
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Pipelined Array Multipliers

With latches after every 
FA level, the maximum 
throughput is achieved 

Latches may be inserted 
after every h FA levels for 
an intermediate design

Fig. 11.18   Pipelined 55 
array multiplier using 
latched FA blocks. 
The small shaded boxes 
are latches.

p p p p p 

4 3 2 1 0 a a a a a 4 3 2 1 0 xxxxx

4 3 2 1 0 p p p p p 9 8 7 6 5 

Latched 
FA with 
AND gate 

Latch 

FA 

FA 

FA 

FA 

Example: 3-stage pipeline
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12   Variations in Multipliers

Chapter Goals
Learn additional methods for synthesizing
fast multipliers as well as other types
of multipliers (bit-serial, modular, etc.)

Chapter Highlights
Building a multiplier from smaller units
Performing multiply-add as one operation
Bit-serial and (semi)systolic multipliers
Using a multiplier for squaring is wasteful
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Variations in Multipliers: Topics

Topics in This Chapter

12.1 Divide-and-Conquer Designs

12.2 Additive Multiply Modules

12.3 Bit-Serial Multipliers

12.4 Modular Multipliers

12.5 The Special Case of Squaring

12.6 Combined Multiply-Add Units
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12.1  Divide-and-Conquer Designs

Building wide multiplier from narrower ones

Fig. 12.1     Divide-and-conquer (recursive) strategy for 
synthesizing a 2b  2b multiplier from b  b multipliers.

a



p

Rearranged partial products 
 in 2b-by-2b multiplication
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H a L

xH xL
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xHa H

a H xL

a L xH

a L xLxHa H

b bits
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General Structure of a Recursive Multiplier

2b  2b use (3; 2)-counters
3b  3b use (5; 2)-counters
4b  4b use (7; 2)-counters

Fig. 12.2     Using b  b multipliers to synthesize 
2b  2b, 3b  3b, and 4b  4b multipliers.

4b  4b

3b  3b 

2b  2b 

b  b 
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Using b  c, rather than b  b Building Blocks

2b  2c use b  c multipliers and (3; 2)-counters
2b  4c use b  c multipliers and (5?; 2)-counters
gb  hc use b  c multipliers and (?; 2)-counters

4b  4b 

3b  3b 

2b  2b 

b  b 
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Wide Multiplier Built of Narrow Multipliers and Adders
Fig. 12.3   Using 4  4 
multipliers and 4-bit 
adders to synthesize 
an 8  8 multiplier.
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Karatsuba Multiplication

2b  2b multiplication requires four b  b multiplications:

(2baH + aL)  (2bxH + xL) = 22baHxH + 2b (aHxL + aLxH) + aLxL

aH aL

xH xL

Karatsuba noted that one of the four multiplications can be removed
at the expense of introducing a few additions:

(2baH + aL)  (2bxH + xL) =

22baHxH + 2b [(aH + aL)  (xH + xL) – aHxH – aLxL] + aLxL

Mult 1 Mult 2Mult 3

Benefit is quite significant for extremely wide operands
(4/3)5 = 4.2 (4/3)10 = 17.8 (4/3)20 = 315.3 (4/3)50 = 1,765,781

b bits
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12.2  Additive Multiply Modules

Fig. 12.4   Additive multiply module with 2  4 multiplier (ax) 
plus 4-bit and 2-bit additive inputs (y and z).
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b-bit and c-bit multiplicative inputs
b  c AMM b-bit and c-bit additive inputs

(b + c)-bit output

(2b – 1)  (2c – 1) + (2b – 1) + (2c – 1) = 2b+c – 1
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Multiplier Built of AMMs

Fig. 12.5    An 8  8 multiplier built of 42 AMMs. 
Inputs marked with an asterisk carry 0s.
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2 bits 
4 bits Understanding 

an 8  8 multiplier 
built of 4  2 
AMMs using dot 
notation 
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Multiplier Built of AMMs: Alternate Design

Fig. 12.6    Alternate 8  8 
multiplier design based on 
4  2 AMMs. Inputs marked 
with an asterisk carry 0s.
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This design is more regular 
than that in Fig. 12.5 and is 
easily expandable to larger 
configurations; its latency, 
however, is greater
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12.3  Bit-Serial Multipliers

What goes inside the box to make a bit-serial multiplier?
Can the circuit be designed to support a high clock rate?

FA

FF
Bit-serial adder
(LSB first) x0

y
0

s0
x1

y
1

s1
x2

y
2

s2
…

…

…

Bit-serial multiplier
a1

x
1

p1
a0

x
0

p0
a2

x
2

p2
…

…

…(Must follow the k-bit 
inputs with k 0s; 
alternatively, view 
the product as being 
only k bits wide)

?
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Semisystolic Serial-Parallel Multiplier
Multiplicand (parallel in)

Multiplier 
(serial in)
LSB-first

Carry

Sum
FA

Product 
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x0 x1 x2 x3

Fig. 12.7   Semi-systolic circuit for 4  4 multiplication in 8 clock cycles.

This is called “semisystolic” because it has a large signal fan-out of k
(k-way broadcasting) and a long wire spanning all k positions 
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Systolic Retiming as a Design Tool

Fig. 12.8     Example of retiming by delaying the inputs to CL
and advancing the outputs from CL by d units 

Cut

CL CR CL CR

e
f

g
h

e+d
f+d

g–d
h–d

+d

–d

–d

+d
Original delays Adjusted delays

A semisystolic circuit can be converted to a systolic circuit 
via retiming, which involves advancing and retarding signals 
by means of delay removal and delay insertion in such a 
way that the relative timings of various parts are unaffected
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Alternate Explanation of Systolic Retiming

Transferring delay from the outputs of a subsystem to its 
inputs does not change the behavior of the overall system

td1

d2 t+a+d1+d2

t+d1

t+a+d1

tt

t + a d1 d2 t+a+d1+d2
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A First Attempt 
at Retiming

Fig. 12.9   A retimed version 
of our semi-systolic multiplier.
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Deriving a Fully 
Systolic Multiplier

Multiplicand (parallel in)

Multiplier 
(serial in)
LSB-first

Carry

Sum
FA

Product 
(serial out)

FA FA FA

a 3 a 2 a 1 a 0
x 0 x 1 x 2 x 3

Fig. 12.7

Fig. 12.10   Systolic circuit for 
44 multiplication in 15 cycles.
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A Direct Design for a Bit-Serial Multiplier

Fig. 12.13    Bit-serial multiplier 
design in dot notation.
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Fig. 12.11    Building block for a 
latency-free bit-serial multiplier.

Fig. 12.12    The cellular structure 
of the bit-serial multiplier based on 
the cell in Fig. 12.11.
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12.4  Modular Multipliers

. . .FA FAFAFAFA

Mod-15 CSA 

Divide by 16 

4 
 

4 
 

4 
 

4 
 

Mod-15 CSA 

4 

Mod-15 CPA 

Fig. 12.14    Modulo-(2b – 1) 
carry-save adder.

Fig. 12.15    Design of a 
4  4 modulo-15 multiplier.
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Other Examples of Modular Multiplication

Fig. 12.16    One way 
to design of a 4  4 
modulo-13 multiplier.

Fig. 12.17    A method for 
modular multioperand addition.

. . .

Table

n inputs

CSA Tree

sum mod m

  3-input 
Modulo-m 
   Adder

. 

. 

.

Address

Data
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12.5  The Special Case of Squaring
x 0 x 1 x 2 x 3 x 4 
x 0 x 1 x 2 x 3 x 4 

x 0 x 1 x 2 x 3 x 4 x 0 x 0 

p 0 

x 4 

x 1 

x 4 

x 0 
x 1 

x 2 
x 3 

x 4 

x 0 
x 1 

x 2 
x 3 

x 4 

x 0 

Multiply x by x 

x 1 x 2 x 3 x 4 x 0 
x 1 x 2 x 3 x 4 x 0 

x 1 x 2 x 3 x 4 x 0 
x 1 x 2 x 3 x 4 x 0 

x 1 
x 2 
x 3 

x 1 
x 2 
x 3 

x 2 
x 3 

x 4 

p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 

x 1 x 2 x 3 x 4 x 0 
x 1 

x 0 

x 2 

x 0 
x 1 

x 0 
x 2 x 3 

x 4 x 0 
x 3 

x 4 

x 0 

x 1 
x 2 x 1 

x 2 
x 3 

x 3 x 4 
x 4 

p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 0 

_ 

Simplify 

Fig. 12.18    Design of a 5-bit squarer.

x1x0 –x1x0
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Divide-and-Conquer Squarers

Building wide squarers from narrower ones

Divide-and-conquer (recursive) strategy for synthesizing a 
2b  2b squarer from b  b squarers and multiplier.

a



p

Rearranged partial products 
 in 2b-by-2b multiplication

2b bits

3b bits

H a L

xH xL

a L xH

a L xL

a H xL
xHa H

a H xL

a L xH

a L xLxHa H

b bits

xLxH

xL
xL xLxH

xL

xH

xH
xH
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12.6  Combined Multiply-Add Units

Fig. 12.19  
Dot-notation 
representations 
of various methods 
for performing 
a multiply-add 
operation 
in hardware.

Multiply-add 
versus 
multiply-accumulate

Multiply-accumulate 
units often have wider 
additive inputs

(c)

Additive input

Dot matrix for the
4  4 multiplication

(a)
Additive input

CSA tree output

(b)

Carry-save additive input

CSA tree output

(d)

Carry-save additive input

Dot matrix for the
4  4 multiplication


