

#### **Part IV** Division

|   | Parts                      | Chapters                                                                                                                                                               |  |  |
|---|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | I. Number Representation   | <ol> <li>Numbers and Arithmetic</li> <li>Representing Signed Numbers</li> <li>Redundant Number Systems</li> <li>Residue Number Systems</li> </ol>                      |  |  |
| 0 | II. Addition / Subtraction | <ol> <li>5. Basic Addition and Counting</li> <li>6. Carry-Look ahead Adders</li> <li>7. Variations in Fast Adders</li> <li>8. Multioperand Addition</li> </ol>         |  |  |
|   | III. Multiplication        | <ol> <li>9. Basic Multiplication Schemes</li> <li>10. High-Radix Multipliers</li> <li>11. Tree and Array Multipliers</li> <li>12. Variations in Multipliers</li> </ol> |  |  |
|   | V. Division                | <ol> <li>Basic Division Schemes</li> <li>High-Radix Dividers</li> <li>Variations in Dividers</li> <li>Division by Convergence</li> </ol>                               |  |  |
|   | V. Real Arithmetic         | <ol> <li>Floating-Point Reperesentations</li> <li>Floating-Point Operations</li> <li>Errors and Error Control</li> <li>Precise and Certifiable Arithmetic</li> </ol>   |  |  |
|   | VI. Function Evaluation    | <ol> <li>Square-Rooting Methods</li> <li>The CORDIC Algorithms</li> <li>Variations in Function Evaluation</li> <li>Arithmetic by Table Lookup</li> </ol>               |  |  |
|   | VII. Implementation Topics | <ol> <li>High-Throughput Arithmetic</li> <li>Low-Power Arithmetic</li> <li>Fault-Tolerant Arithmetic</li> <li>Reconfigurable Arithmetic</li> </ol>                     |  |  |

Appendix: Past, Present, and Future

Computer Arithmetic, Division



Slide 1

May 2015



## About This Presentation

This presentation is intended to support the use of the textbook *Computer Arithmetic: Algorithms and Hardware Designs* (Oxford U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated regularly by the author as part of his teaching of the graduate course ECE 252B, Computer Arithmetic, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes. Unauthorized uses are strictly prohibited. © Behrooz Parhami

| Edition         | Released | Revised   | Revised   | Revised   | Revised  |
|-----------------|----------|-----------|-----------|-----------|----------|
| First Jan. 2000 |          | Sep. 2001 | Sep. 2003 | Oct. 2005 | May 2007 |
|                 |          | May 2008  | May 2009  |           |          |
| Second          | May 2010 | Apr. 2011 | May 2012  | May 2015  |          |





Computer Arithmetic, Division



# IV Division

Review Division schemes and various speedup methods

- Hardest basic operation (fortunately, also the rarest)
- Division speedup methods: high-radix, array, . . .
- Combined multiplication/division hardware
- Digit-recurrence vs convergence division schemes

| <b>Topics in This Part</b> |                         |  |  |  |
|----------------------------|-------------------------|--|--|--|
| Chapter 13                 | Basic Division Schemes  |  |  |  |
| Chapter 14                 | High-Radix Dividers     |  |  |  |
| Chapter 15                 | Variations in Dividers  |  |  |  |
| Chapter 16                 | Division by Convergence |  |  |  |



Computer Arithmetic, Division







Be fruitful and multiply . . .



Now, divide.

May 2015



Computer Arithmetic, Division



# 13 Basic Division Schemes

#### **Chapter Goals**

Study shift/subtract or bit-at-a-time dividers and set the stage for faster methods and variations to be covered in Chapters 14-16

#### **Chapter Highlights**

Shift/subtract divide vs shift/add multiply Hardware, firmware, software algorithms Dividing 2's-complement numbers The special case of a constant divisor

May 2015



Computer Arithmetic, Division



## **Basic Division Schemes: Topics**

#### **Topics in This Chapter**

- 13.1 Shift/Subtract Division Algorithms
- 13.2 Programmed Division
- 13.3 Restoring Hardware Dividers
- 13.4 Nonrestoring and Signed Division
- 13.5 Division by Constants
- 13.6 Radix-2 SRT Division

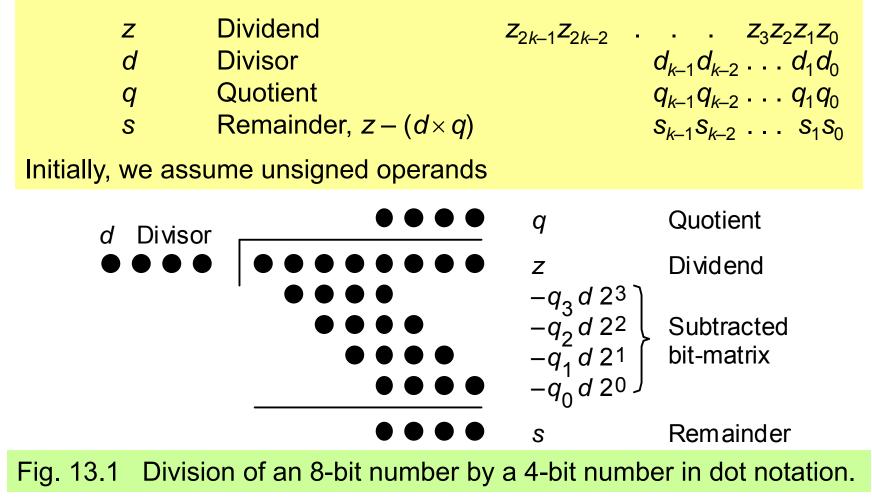


Computer Arithmetic, Division



# 13.1 Shift/Subtract Division Algorithms

Notation for our discussion of division algorithms:



May 2015



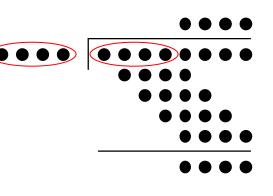
Computer Arithmetic, Division



#### **Division versus Multiplication**

Division is more complex than multiplication: Need for quotient digit selection or estimation

Overflow possibility: the high-order k bits of z must be strictly less than *d*; this overflow check also detects the divide-by-zero condition.



#### Pentium III latencies

| Instruction                    | Latency | Cycles |
|--------------------------------|---------|--------|
| Load / Store                   | 3       | 1      |
| Integer Multiply               | 4       | 1      |
| Integer Divide                 | 36      | 36     |
| <b>Double/Single FP Multip</b> | ly 5    | 2      |
| Double/Single FP Add           | 3       | 1      |
| <b>Double/Single FP Divide</b> | 38      | 38     |

#### s/Issue

The ratios haven't changed much in later Pentiums, Atom, or AMD products\*

\*Source: T. Granlund, "Instruction Latencies and Throughput for AMD and Intel x86 Processors," Feb. 2012

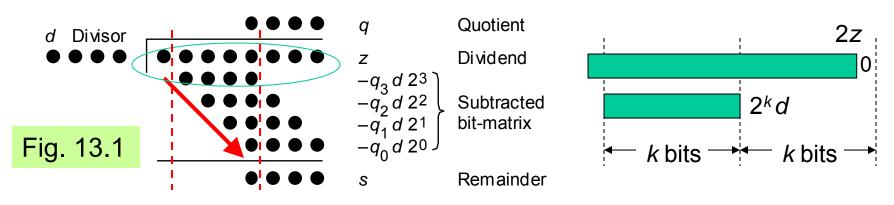




Computer Arithmetic, Division



## **Division Recurrence**



Division with left shifts (There is no corresponding right-shift algorithm)

$$s^{(j)} = 2s^{(j-1)} - q_{k-j}(2^k d)$$
  
|-shift-|  
|---subtract----|

with  $s^{(0)} = z$  and  $s^{(k)} = 2^k s$ 

Integer division is characterized by  $z = d \times q + s$ 

$$2^{-2k}z = (2^{-k}d) \times (2^{-k}q) + 2^{-2k}s$$
  
$$z_{\text{frac}} = d_{\text{frac}} \times q_{\text{frac}} + 2^{-k}s_{\text{frac}}$$

Divide fractions like integers; adjust the remainder

May 2015



Computer Arithmetic, Division



Slide 9

No-overflow

condition for

fractions is:

 $z_{\rm frac} < d_{\rm frac}$ 

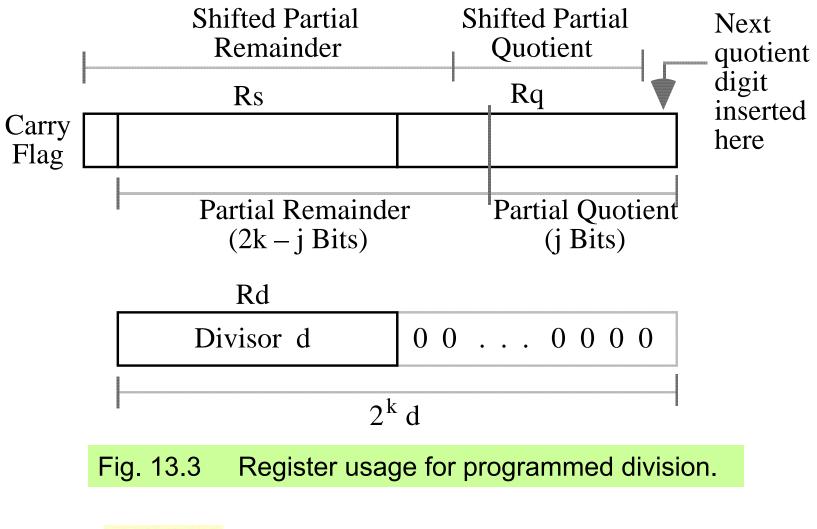
#### **Examples of Basic Division**

| Decima<br>Integer divi                     | al<br>sion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| z 117<br>2 <sup>4</sup> d 10               | 0 1 1 1 0 1 0 1<br>1 0 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -  |
| $s^{(0)}$<br>2 $s^{(0)}$<br>$-q_3 2^4 d$   | $\begin{array}{c} 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & \mathbf{q_3} = \mathbf{q_3}$ | 1} |
| $\frac{s^{(1)}}{2s^{(1)}}$<br>$-q_2 2^4 d$ | $\begin{array}{c} 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 0 \ \mathbf{q}_2 = \mathbf{q}_2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0} |
| $ \frac{s^{(2)}}{2s^{(2)}} \\ -q_1 2^4 d $ | $\begin{array}{c} 1 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 1 \ 0 \ 1 \ 0 \ 1 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1} |
| $s^{(3)}$<br>2 $s^{(3)}$<br>$-q_0 2^4 d$   | 10001<br>10001<br>1010 { <b>q</b> <sub>0</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1} |
|                                            | 0 1 1 1<br>0 1 1 1<br>1 0 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  |
| May 2015                                   | UCSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (  |

|                               | Fractional division             |                                    |   |  |
|-------------------------------|---------------------------------|------------------------------------|---|--|
|                               | ======                          | =============                      | F |  |
|                               | Z <sub>frac</sub>               | .01110101                          | E |  |
|                               | d <sub>frac</sub>               | . 1 0 1 0                          | ç |  |
|                               | <b>S</b> <sup>(0)</sup>         | .01110101                          |   |  |
|                               | 2s <sup>(0)</sup>               | 0.1110 101                         | ( |  |
|                               | $-q_{-1}d$                      | 1010 { <b>q</b> <sub>-1</sub> =1}  | İ |  |
|                               | <u>s(1)</u>                     | .0100 101                          | f |  |
|                               | $2s^{(1)}$                      | 0.100101                           | ( |  |
|                               | $-q_{-2}d$                      | .0000 { <b>q</b> <sub>-2</sub> =0} |   |  |
|                               | $\frac{q_{-2}}{s^{(2)}}$        |                                    |   |  |
|                               | $S^{(2)}$<br>2 $S^{(2)}$        | .100101                            |   |  |
|                               |                                 | 1.00101                            |   |  |
|                               | $-q_{-3}d$                      | .1010 <b>{q</b> _3=1}              |   |  |
|                               | <b>S</b> <sup>(3)</sup>         | .10001                             |   |  |
|                               | 2s <sup>(3)</sup>               | 1.0001                             |   |  |
|                               | $-q_{-4}d$                      | .1010 <b>{q_4=1}</b>               |   |  |
|                               | <u></u> <i>S</i> <sup>(4)</sup> | . 0 1 1 1                          |   |  |
|                               | S <sub>frac</sub>               | 0.00000111                         |   |  |
|                               | <b>q</b> <sub>frac</sub>        | . 1 0 1 1                          |   |  |
|                               |                                 | =============                      |   |  |
| Computer Arithmetic, Division |                                 |                                    |   |  |

Fig. 13.2 Examples of sequential division with integer and fractional operands.

# 13.2 Programmed Division



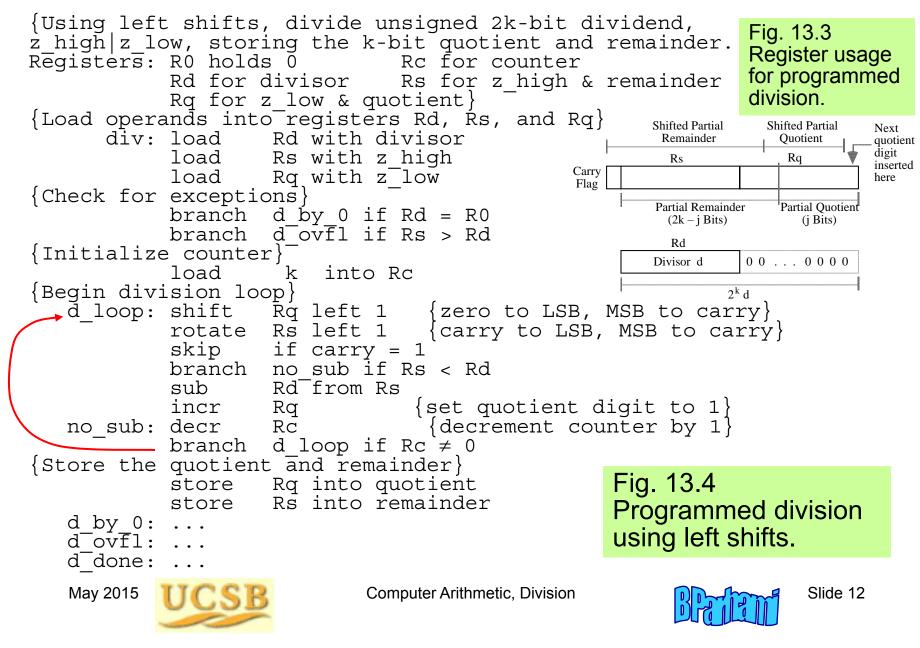




Computer Arithmetic, Division



#### Assembly Language Program for Division



#### Time Complexity of Programmed Division

Assume *k*-bit words

*k* iterations of the main loop 6-8 instructions per iteration, depending on the quotient bit

Thus, 6k + 3 to 8k + 3 machine instructions, ignoring operand loads and result store

k = 32 implies  $220^+$  instructions on average

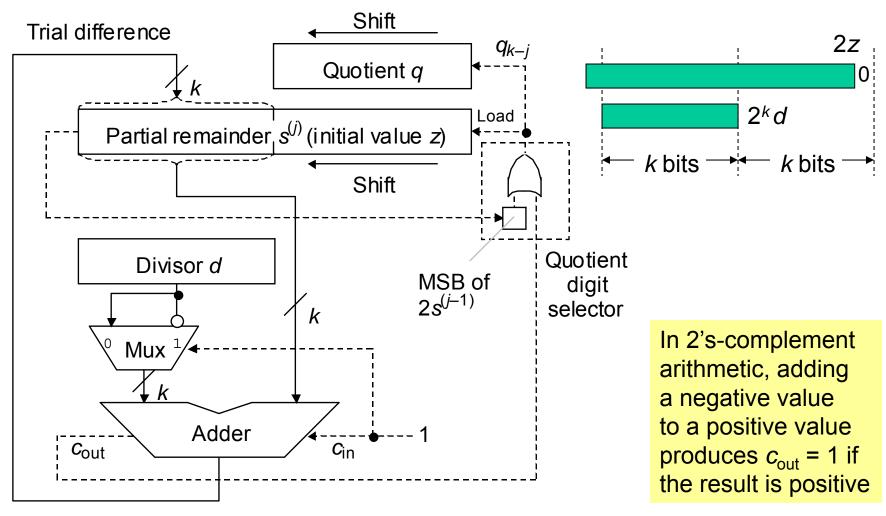
This is too slow for many modern applications!

Microprogrammed division would be somewhat better





# 13.3 Restoring Hardware Dividers



#### Fig. 13.5 Shift/subtract sequential restoring divider.

Computer Arithmetic, Division



Slide 14

May 2015



| =======                                   | ===    |                       |
|-------------------------------------------|--------|-----------------------|
| Ζ                                         |        | 0111010101            |
| z<br>2 <sup>4</sup> d<br>2 <sup>4</sup> d | 0      | 1010                  |
| $-2^{4}d$                                 | 1      | 0110                  |
| =======<br>S <sup>(0)</sup>               |        |                       |
| 2s <sup>(0)</sup>                         | 0<br>0 | 0111 0101<br>1110 101 |
| -                                         | 0<br>1 |                       |
| $+(-2^4d)$                                |        | 0110                  |
| <b>S</b> <sup>(1)</sup>                   | 0      | 0100 101              |
| 2s <sup>(1)</sup>                         | 0      | 1001 01               |
| $+(-2^{4}d)$                              | 1      | 0110                  |
| S <sup>(2)</sup>                          | 1      | 1111 01               |
| s <sup>(2)</sup> =2s <sup>(1)</sup>       | 0      | 1001 01               |
| 2s <sup>(2)</sup>                         | 1      | 0010 1                |
| $+(-2^4d)$                                | 1      | 0110                  |
| <b>S</b> <sup>(3)</sup>                   | 0      | 1000 1                |
| 2s <sup>(3)</sup>                         | 1      | 0001                  |
| $+(-2^{4}d)$                              | 1      | 0110                  |
| S <sup>(4)</sup>                          | 0      | 0111                  |
| S                                         |        | 0111                  |
| q                                         |        | 1011                  |
| ========                                  | ===    | =============         |

## Example of Restoring Unsigned Division

No overflow, because  $(0111)_{two} < (1010)_{two}$ 

Positive, so set 
$$q_3 = 1$$

Negative, so set  $q_2 = 0$ and restore

Positive, so set  $q_1 = 1$ 

Positive, so set  $q_0 = 1$ 

Fig. 13.6 Example of restoring unsigned division.

May 2015



Computer Arithmetic, Division



### **Indirect Signed Division**

In division with signed operands, q and s are defined by

 $z = d \times q + s$  sign(s) = sign(z) |s| < |d|

Examples of division with signed operands

| <i>z</i> = 5  | <i>d</i> = 3 | $\Rightarrow$ | <i>q</i> = 1 | s = 2  |                                    |
|---------------|--------------|---------------|--------------|--------|------------------------------------|
| <i>z</i> = 5  | d = -3       | $\Rightarrow$ | q = -1       | s = 2  | (not <i>q</i> = –2, <i>s</i> = –1) |
| <i>z</i> = –5 | <i>d</i> = 3 | $\Rightarrow$ | q = -1       | s = -2 |                                    |
| <i>z</i> = –5 | d = -3       | $\Rightarrow$ | <i>q</i> = 1 | s = -2 |                                    |

Magnitudes of q and s are unaffected by input signs Signs of q and s are derivable from signs of z and d

Will discuss direct signed division later

May 2015



Computer Arithmetic, Division



# 13.4 Nonrestoring and Signed Division

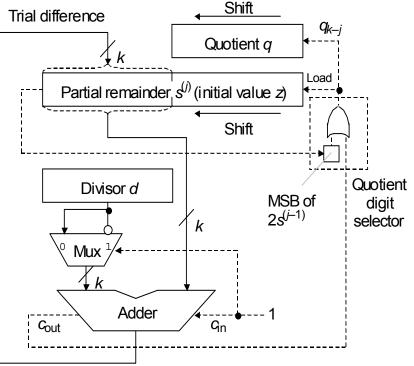
The cycle time in restoring division must accommodate:

Shifting the registers Allowing signals to propagate through the adder Determining and storing the next quotient digit Storing the trial difference, if required

Later events depend on earlier ones in the same cycle, causing a lengthening of the clock cycle

Nonrestoring division to the rescue!

Assume  $q_{k-j}$  = 1 and subtract Store the result as the new PR (the partial remainder can become incorrect, hence the name "nonrestoring")



May 2015



Computer Arithmetic, Division



### Justification for Nonrestoring Division

Why it is acceptable to store an incorrect value in the partial-remainder register?

Shifted partial remainder at start of the cycle is *u* 

Suppose subtraction yields the negative result  $u - 2^k d$ 

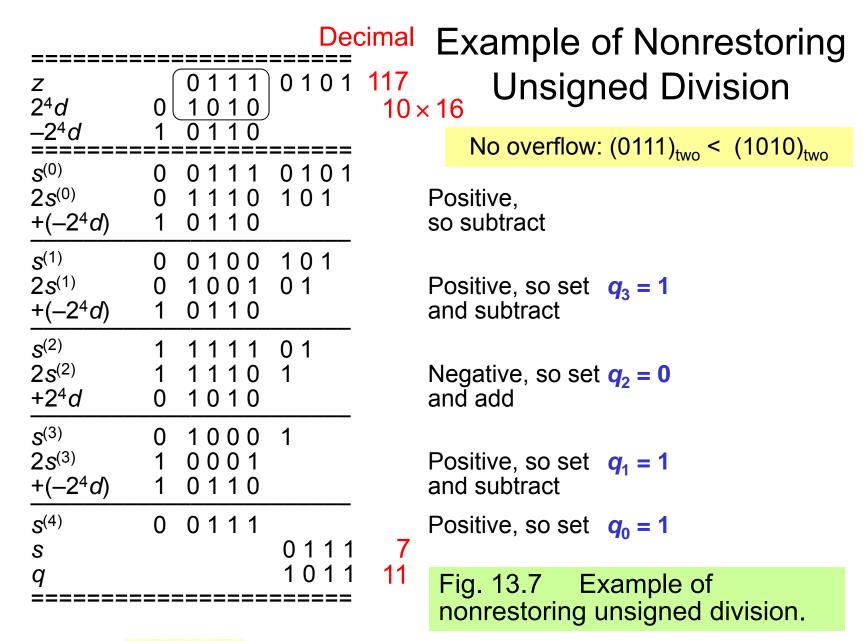
Option 1: Restore the partial remainder to correct value u, shift left, and subtract to get  $2u - 2^k d$ 

Option 2: Keep the incorrect partial remainder  $u - 2^k d$ , shift left, and add to get  $2(u - 2^k d) + 2^k d = 2u - 2^k d$ 



Computer Arithmetic, Division





Computer Arithmetic, Division

May 2015



## **Graphical Depiction of Nonrestoring Division**

Example

 $(0\ 1\ 1\ 1\ 0\ 1\ 0\ 1)_{two}$  /  $(1\ 0\ 1\ 0)_{two}$ 

 $(117)_{ten} / (10)_{ten}$ 

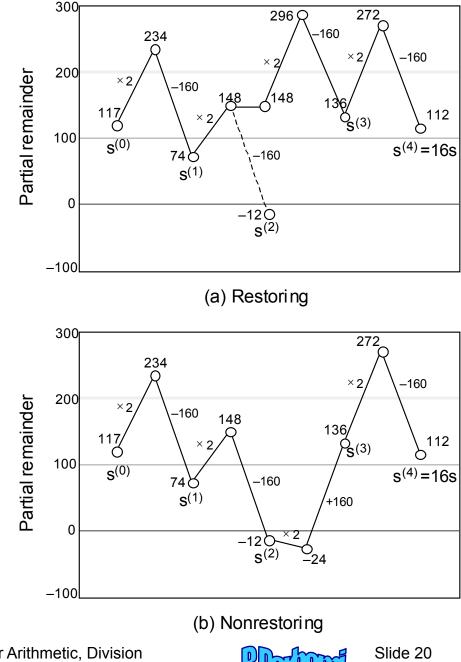


Fig. 13.8 Partial remainder variations for restoring and nonrestoring division.

May 2015



Computer Arithmetic, Division

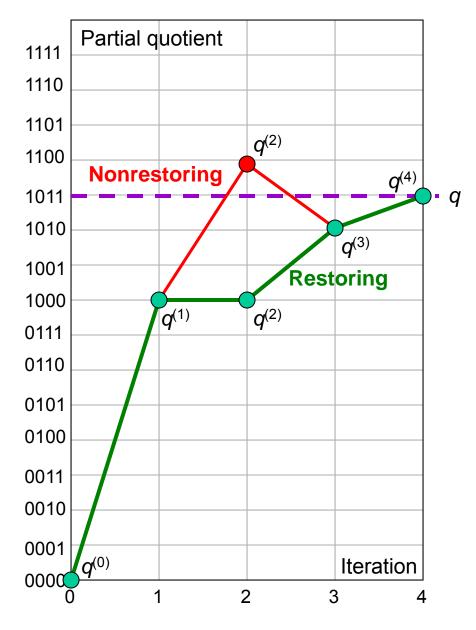
# Convergence of the Partial Quotient to *q*

Example

 $(0\ 1\ 1\ 1\ 0\ 1\ 0\ 1)_{two} / (1\ 0\ 1\ 0)_{two}$  $(117)_{ten}/(10)_{ten} = (11)_{ten} = (1011)_{two}$ 

In restoring division, the partial quotient converges to *q* from below

In nonrestoring division, the partial quotient may overshoot *q*, but converges to it after some oscillations



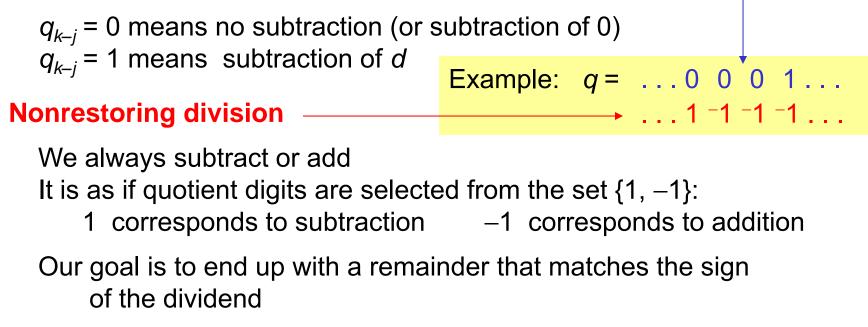
May 2015

Computer Arithmetic, Division



## Nonrestoring Division with Signed Operands

#### **Restoring division** –



This idea of trying to match the sign of s with the sign of z, leads to a direct signed division algorithm

if sign(s) = sign(d) then 
$$q_{k-j} = 1$$
 else  $q_{k-j} = -1$ 

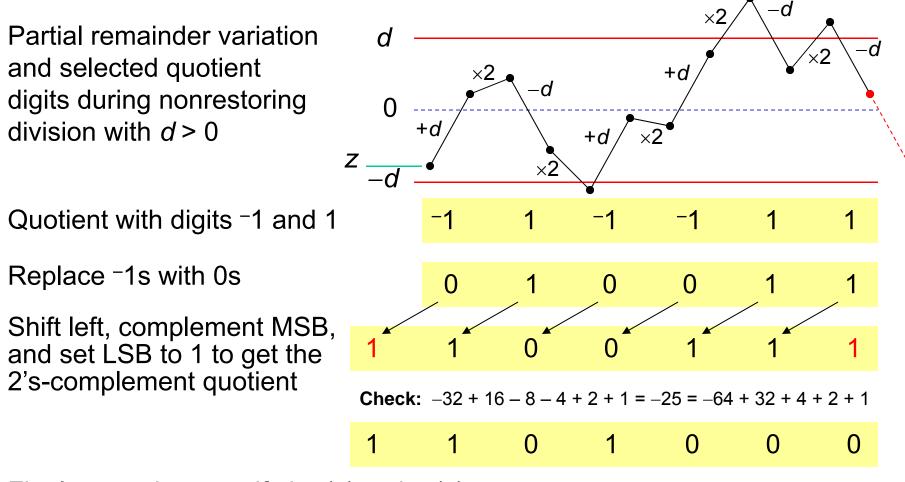
May 2015



Computer Arithmetic, Division



### **Quotient Conversion and Final Correction**



Final correction step if sign(s)  $\neq$  sign(z): Add d to, or subtract d from, s; subtract 1 from, or add 1 to, q

May 2015

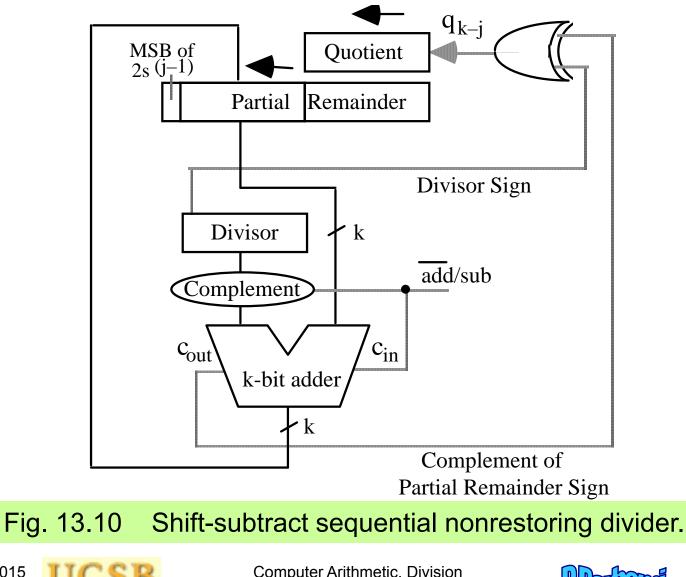


Computer Arithmetic, Division



| ====================================                          | 1<br>0<br>0 | 0 0 1 0<br>1 0 0 1<br>0 1 1 1 | 0001                          | Example of Non<br>Signed Divi                                                                        | <b>.</b> .                            |
|---------------------------------------------------------------|-------------|-------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------|
| $2s^{(0)}$<br>+ $2^4d$                                        | 0<br>0<br>1 | 0010<br>0100<br>1001          | 0001                          | sign( $s^{(0)}$ ) $\neq$ sign( $d$ ),<br>so set $q_3 = -1$ and add                                   | Fig. 13.9<br>Example of               |
| s <sup>(1)</sup><br>2s <sup>(1)</sup><br>+(-2 <sup>4</sup> d) | 1<br>1<br>0 | 1 1 0 1<br>1 0 1 0<br>0 1 1 1 | 0 0 1<br>0 1                  | sign( <i>s</i> <sup>(1)</sup> ) = sign( <i>d</i> ),<br>so set <b>q</b> <sub>2</sub> = 1 and subtract | nonrestoring<br>signed<br>division.   |
| $s^{(2)}$<br>2s^{(2)}<br>+2 <sup>4</sup> d                    | 0<br>0<br>1 | 0 0 0 1<br>0 0 1 0<br>1 0 0 1 | 0 1<br>1                      | sign( $s^{(2)}$ ) $\neq$ sign( $d$ ),<br>so set $q_1 = -1$ and add                                   |                                       |
| $\frac{s^{(3)}}{2s^{(3)}}$<br>+(-2 <sup>4</sup> d)            | 1<br>1<br>0 | 1011<br>0111<br>0111          | 1                             | sign( $s^{(3)}$ ) = sign( $d$ ),<br>so set $q_0 = 1$ and subtract                                    |                                       |
| s <sup>(4)</sup><br>+(-2 <sup>4</sup> d)                      | 1<br>0      | 1 1 1 0<br>0 1 1 1            |                               | sign( <i>s</i> <sup>(4)</sup> ) ≠ sign( <i>z</i> ),<br>so perform corrective subtra                  | ction                                 |
| s <sup>(4)</sup><br>s<br>q<br>=======                         | 0           | 0101                          | 0 1 0 1<br>-1 1-1 1<br>====== | 1 1 0 1 1 Add 1 t                                                                                    | ompl MSB<br>o correct<br>33/(–7) = –4 |
| May 2015                                                      | U           | ICSB                          |                               | Computer Arithmetic, Division                                                                        | Slide 24                              |

### Nonrestoring Hardware Divider



Slide 25

May 2015



Computer Arithmetic, Division



# 13.5 Division by Constants

#### Software and hardware aspects:

As was the case for multiplications by constants, optimizing compilers may replace some divisions by shifts/adds/subs; likewise, in custom VLSI circuits, hardware dividers may be replaced by simpler adders

**Method 1:** Find the reciprocal of the constant and multiply (particularly efficient if several numbers must be divided by the same divisor)

**Method 2:** Use the property that for each odd integer *d*, there exists an odd integer *m* such that  $d \times m = 2^n - 1$ ; hence,  $d = (2^n - 1)/m$  and

Multiplication by constant Shift-adds  

$$\frac{z}{d} = \frac{zm}{2^{n}-1} = \frac{zm}{2^{n}(1-2^{-n})} = \frac{zm}{2^{n}} (1+2^{-n})(1+2^{-2n})(1+2^{-4n})\cdots$$

Number of shift-adds required is proportional to log k

May 2015



Computer Arithmetic, Division



#### Example Division by a Constant

**Example:** Dividing the number *z* by 5, assuming 24 bits of precision. We have d = 5, m = 3, n = 4;  $5 \times 3 = 2^4 - 1$ 

$$\frac{z}{d} = \frac{zm}{2^n - 1} = \frac{zm}{2^n (1 - 2^{-n})} = \frac{zm}{2^n} (1 + 2^{-n})(1 + 2^{-2n})(1 + 2^{-4n}) \cdots$$
$$\frac{z}{5} = \frac{3z}{2^4 - 1} = \frac{3z}{2^4 (1 - 2^{-4})} = \frac{3z}{16}(1 + 2^{-4})(1 + 2^{-8})(1 + 2^{-16}) \cdots$$

Instruction sequence for division by 5

 $q \leftarrow z + z$  shift-left 1{3z computed}4 adds $q \leftarrow q + q$  shift-right 4{ $3z(1+2^{-4})$  computed} $q \leftarrow q + q$  shift-right 8{ $3z(1+2^{-4})(1+2^{-8})$  computed} $q \leftarrow q + q$  shift-right 16{ $3z(1+2^{-4})(1+2^{-8})(1+2^{-16})$  computed} $q \leftarrow q$  shift-right 4{ $3z(1+2^{-4})(1+2^{-8})(1+2^{-16})/16$  computed}

May 2015



Computer Arithmetic, Division



5 shifts

## Numerical Examples for Division by 5

Instruction sequence for division by 5

 $\begin{array}{ll} q \ \leftarrow \ z \ + \ z \ \text{shift-left 1} & \{3z \ \text{computed}\} \\ q \ \leftarrow \ q \ + \ q \ \text{shift-right 4} & \{3z(1+2^{-4}) \ \text{computed}\} \\ q \ \leftarrow \ q \ + \ q \ \text{shift-right 8} & \{3z(1+2^{-4})(1+2^{-8}) \ \text{computed}\} \\ q \ \leftarrow \ q \ + \ q \ \text{shift-right 16} & \{3z(1+2^{-4})(1+2^{-8})(1+2^{-16}) \ \text{computed}\} \\ q \ \leftarrow \ q \ \text{shift-right 4} & \{3z(1+2^{-4})(1+2^{-8})(1+2^{-16}) \ \text{computed}\} \\ \end{array}$ 

Computing 
$$29 \div 5 (z = 29, d = 5)$$

Repeat the process for computing 30  $\div$  5 and comment on the outcome

May 2015



Computer Arithmetic, Division



# 13.6 Radix-2 SRT Division

SRT division takes its name from Sweeney, Robertson, and Tocher, who independently discovered the method



Fig. 13.11 The new partial remainder,  $s^{(j)}$ , as a function of the shifted old partial remainder,  $2s^{(j-1)}$ , in radix-2 nonrestoring division.

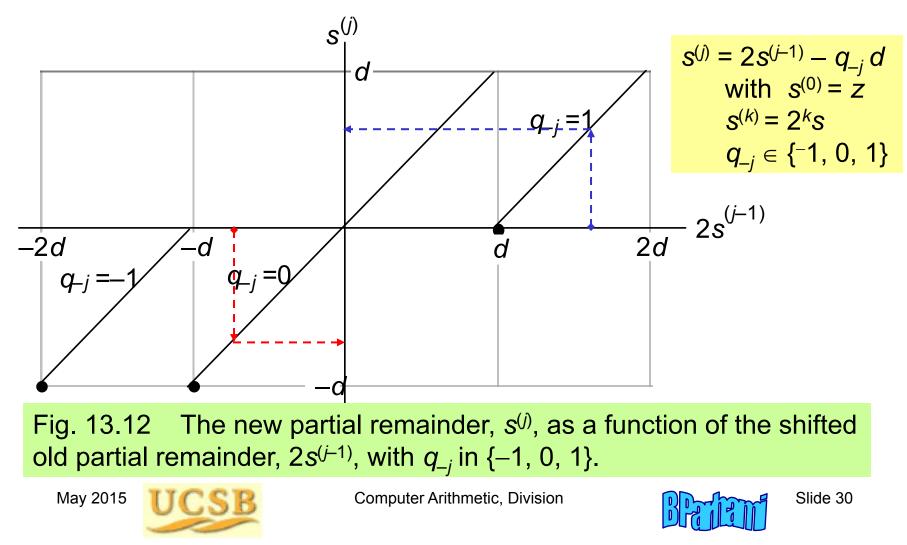
Computer Arithmetic, Division

May 2015



## Allowing 0 as a Quotient Digit in Nonrestoring Division

This method was useful in early computers, because the choice  $q_{-j} = 0$  requires shifting only, which was faster than shift-and-subtract



### The Radix-2 SRT Division Algorithm

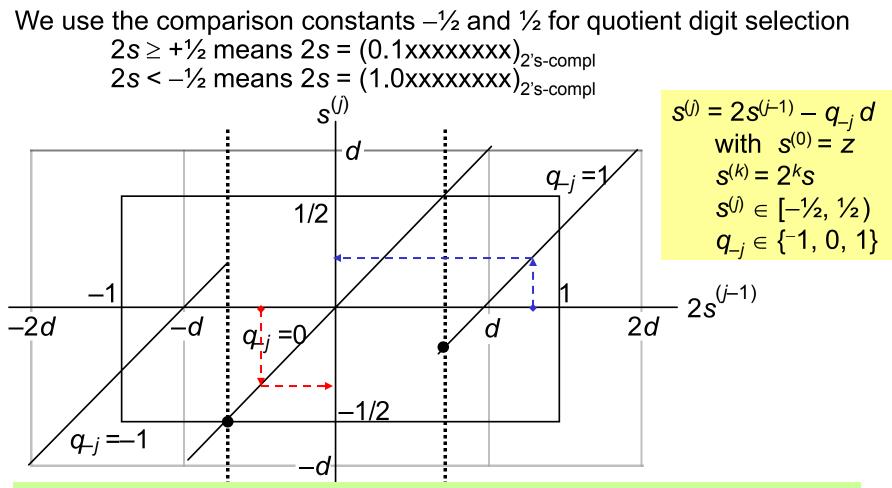


Fig. 13.13 The relationship between new and old partial remainders in radix-2 SRT division.

May 2015



Computer Arithmetic, Division



### Radix-2 SRT Division with Variable Shifts

We use the comparison constants  $-\frac{1}{2}$  and  $\frac{1}{2}$  for quotient digit selection For  $2s \ge +\frac{1}{2}$  or  $2s = (0.1 \times \times \times \times \times)_{2's\text{-compl}}$  choose  $q_{-j} = 1$ For  $2s < -\frac{1}{2}$  or  $2s = (1.0 \times \times \times \times)_{2's\text{-compl}}$  choose  $q_{-j} = -1$ 

Choose  $q_{-j} = 0$  in other cases, that is, for:  $0 \le 2s < +\frac{1}{2}$  or  $2s = (0.0xxxxxxx)_{2's-compl}$  $-\frac{1}{2} \le 2s < 0$  or  $2s = (1.1xxxxxx)_{2's-compl}$ 

Observation: What happens when the magnitude of 2s is fairly small?

 $2s = (1.1110xxxx)_{2's-compl}$ 

Generate 4 quotient digits 0 0 0<sup>-1</sup>

Use leading 0s or leading 1s detection circuit to determine how many quotient digits can be spewed out at once Statistically, the average skipping distance will be 2.67 bits

May 2015



Computer Arithmetic, Division



|                         | In [−½, ½), so okay ₊ |        |  |  |  |
|-------------------------|-----------------------|--------|--|--|--|
| =======                 | ==========            | ====== |  |  |  |
| Ζ                       | .0100                 | 0101   |  |  |  |
| d                       | 0.1010                |        |  |  |  |
| <u>-d</u>               | 1.0110                |        |  |  |  |
| <u> </u>                | 0.0100                | 0101   |  |  |  |
| 2s <sup>(0)</sup>       |                       | 101    |  |  |  |
| +(- <i>d</i> )          | 1.0110                |        |  |  |  |
|                         |                       | 4.0.4  |  |  |  |
| $S^{(1)}$               | 1.1110                | 101    |  |  |  |
| <u>2s<sup>(1)</sup></u> | 1.1101                | 0 1    |  |  |  |
| $s^{(2)}=2s^{(1)}$      | 1.1101                | 0 1    |  |  |  |
| 2s <sup>(2)</sup>       | 1.1010                | 1      |  |  |  |
| $s^{(3)}=2s^{(2)}$      | 0.1010                | 1      |  |  |  |
| 2s <sup>(3)</sup>       | 1.0101                |        |  |  |  |
| +d                      | 0.1010                |        |  |  |  |
| S <sup>(4)</sup>        | 1.1111                |        |  |  |  |
| +d                      | 0.1010                |        |  |  |  |
| S <sup>(4)</sup>        | 0.1001                |        |  |  |  |
| S                       | 0.0000                | 0101   |  |  |  |
| q                       | 0.100-1               |        |  |  |  |
| $\dot{q}$               | 0.0110                |        |  |  |  |
| =======                 | ==========            | ====== |  |  |  |

Example Unsigned Radix-2 SRT Division

 $\geq \frac{1}{2}$ , so set  $q_{-1} = 1$ and subtract 0.1 Choose 1 1.0 Choose -1 0.0/1.1 Choose 0

In  $[-\frac{1}{2}, \frac{1}{2}]$ , so set  $q_{-2} = 0$ 

In  $[-\frac{1}{2}, \frac{1}{2})$ , so set  $q_{-3} = 0$ 

 $< -\frac{1}{2}$ , so set  $q_{-4} = -1$ and add

Negative, so add to correct

Fig. 13.14 Example of unsigned radix-2 SRT division.

Uncorrected BSD quotient Convert and subtract *ulp* 

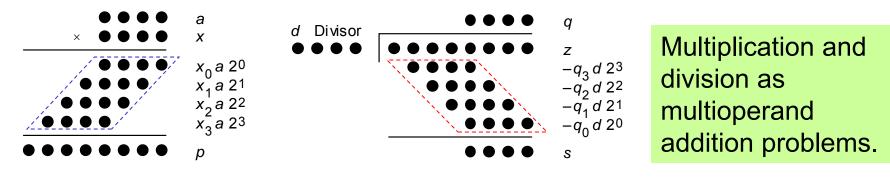
May 2015



Computer Arithmetic, Division



## **Preview of Fast Dividers**



(a)  $k \times k$  integer multiplication

(b) 2k / k integer division

Like multiplication, division is multioperand addition Thus, there are but two ways to speed it up:

- a. Reducing the number of operands (divide in a higher radix)
- b. Adding them faster (keep partial remainder in carry-save form)

There is one complication that makes division inherently more difficult: The terms to be subtracted from (added to) the dividend are not known a priori but become known as quotient digits are computed; quotient digits in turn depend on partial remainders

May 2015



Computer Arithmetic, Division



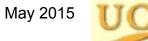
# 14 High-Radix Dividers

#### **Chapter Goals**

Study techniques that allow us to obtain more than one quotient bit in each cycle (two bits in radix 4, three in radix 8, . . .)

#### **Chapter Highlights**

Radix > 2  $\Rightarrow$  quotient digit selection harder Remedy: redundant quotient representation Carry-save addition reduces cycle time Quotient digit selection Implementation methods and tradeoffs



Computer Arithmetic, Division



## **High-Radix Dividers: Topics**

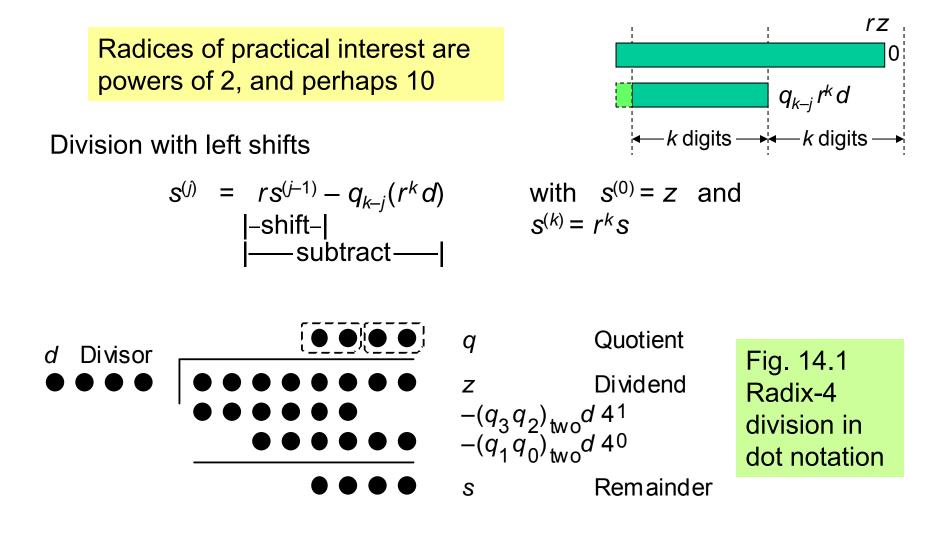
#### **Topics in This Chapter**

- 14.1 Basics of High-Radix Division
- 14.2 Using Carry-Save Adders
- 14.3 Radix-4 SRT Division
- 14.4 General High-Radix Dividers
- 14.5 Quotient Digit Selection
- 14.6 Using *p*-*d* Plots in Practice





## 14.1 Basics of High-Radix Division



Computer Arithmetic, Division

May 2015



### Difficulty of Quotient Digit Selection

What is the first quotient digit in the following radix-10 division?

| 2043   12257968 | 12 / 2 = 6       |
|-----------------|------------------|
|                 | 122 / 20 = 6     |
|                 | 1225 / 204 = 6   |
|                 | 12257 / 2043 = 5 |

The problem with the pencil-and-paper division algorithm is that there is no room for error in choosing the next quotient digit

In the worst case, all k digits of the divisor and k + 1 digits in the partial remainder are needed to make a correct choice

Suppose we used the redundant signed digit set [-9, 9] in radix 10

Then, we could choose 6 as the next quotient digit, knowing that we can recover from an incorrect choice by using negative digits:  $5 \ 9 = 6^{-1}$ 

May 2015





### **Examples of High-Radix Division**

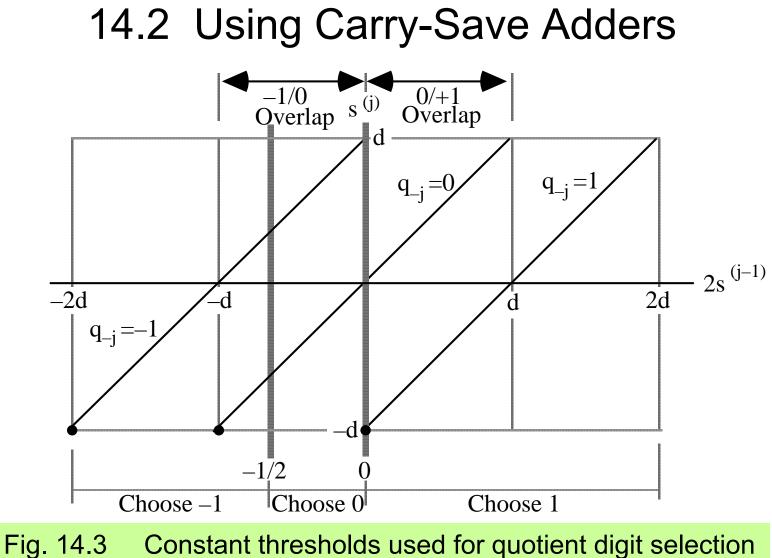
| Radix-4 integer division                   |        |             |             |   |             |        |        |            |               |       |
|--------------------------------------------|--------|-------------|-------------|---|-------------|--------|--------|------------|---------------|-------|
| z<br>4 <sup>4</sup> d                      |        |             | 1<br>2      |   |             | 1      | 1      | 2:         | 3             |       |
| $\frac{s^{(0)}}{4s^{(0)}} \\ -q_3 4^4 d$   | 0<br>0 |             | 2           | 3 | 1           |        |        |            | 3<br>3<br>3 = | 1}    |
| $S^{(1)} 4 S^{(1)} - q_2 4^4 d$            | 0<br>0 | 0           | 0<br>2<br>0 | 2 | 2<br>1<br>0 | 1<br>2 | 2<br>3 |            | 2 =           | 0}    |
| $s^{(2)} 4 s^{(2)} -q_1 4^4 d$             |        | 0<br>2<br>1 | 2           | 1 |             | 2<br>3 | 3      | {q         | 1 =           | 1}    |
| $ \frac{s^{(3)}}{4s^{(3)}} \\ -q_0 4^4 d $ | 1<br>0 |             | 0           | 3 |             | 3      |        | { <b>q</b> |               | 2}    |
| S <sup>(4)</sup><br>S<br>Q                 |        | 1           | 0           | 2 | 1           | 1      | C      | ) 2<br>) 1 | 1             |       |
| May 2015                                   | U      | C           | S           | E | 3           |        |        |            | Com           | puter |

| Radix-10 fractional division                                     |                                                                                            |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|
| Z <sub>frac</sub><br>d <sub>frac</sub>                           | .7003                                                                                      |  |  |  |
| $ \frac{s^{(0)}}{10s^{(0)}} \\ -q_{-1}d $                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                       |  |  |  |
| $\frac{s^{(1)}}{10s^{(1)}}$<br>$-q_{-2}d$                        | $\begin{array}{cccc} . & 0 & 7 & 3 \\ 0 & 7 & 3 \\ 0 & 0 & 0 & \{q_{-2} = 0\} \end{array}$ |  |  |  |
| S <sup>(2)</sup><br>S <sub>frac</sub><br><u>Q<sub>frac</sub></u> | .73<br>.0073<br>.70                                                                        |  |  |  |

Fig. 14.2 Examples of high-radix division with integer and fractional operands.

Computer Arithmetic, Division





in radix-2 division with  $q_{k-j}$  in {-1, 0, 1}.

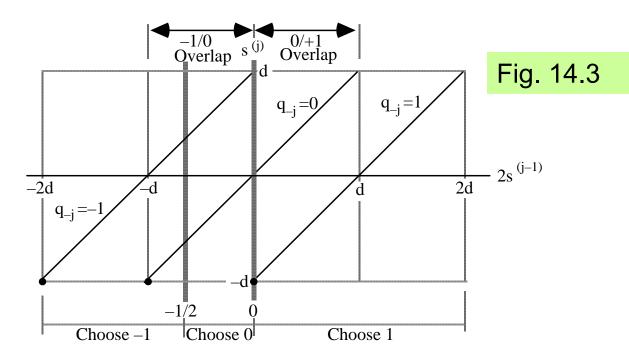
May 2015



Computer Arithmetic, Division



#### Quotient Digit Selection Based on Truncated PR



$$\begin{array}{l} t := u_{[-2,1]} + v_{[-2,1]} \\ \text{if } t < -\frac{1}{2} \\ \text{then } q_{-j} = -1 \\ \text{else if } t \geq 0 \\ & \text{then } q_{-j} = 1 \\ & \text{else } q_{-j} = 0 \\ & \text{endif} \\ \text{endif} \end{array}$$

Sum part of  $2s^{(j-1)}$ :  $u = (u_1u_0 \cdot u_{-1}u_{-2} \cdot \cdot \cdot)_{2's-compl}$ Carry part of  $2s^{(j-1)}$ :  $v = (v_1v_0 \cdot v_{-1}v_{-2} \cdot \cdot \cdot)_{2's-compl}$ 

Approximation to the partial remainder:

 $t = u_{[-2,1]} + v_{[-2,1]}$ 

{Add the 4 MSBs of *u* and *v*}

May 2015



Computer Arithmetic, Division

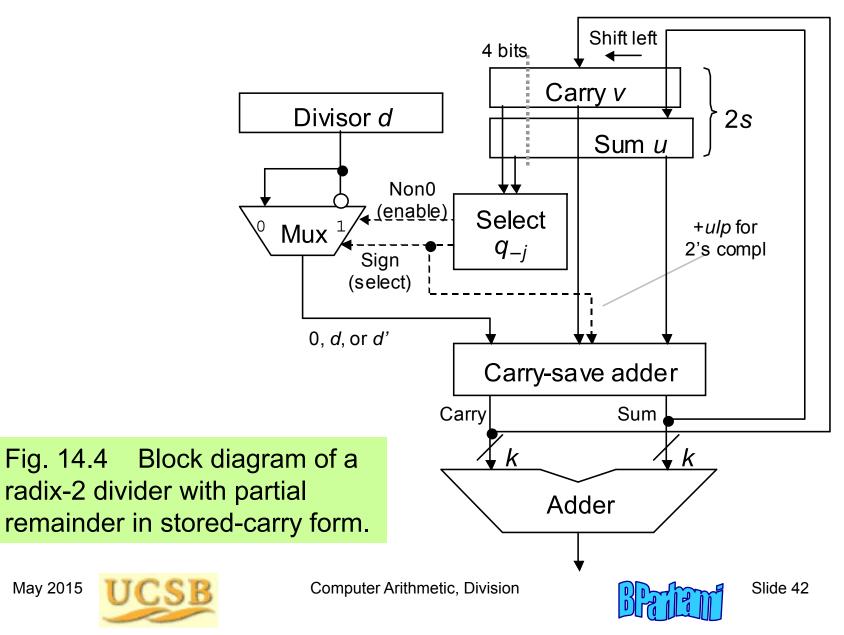
 $< \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ Error in [0,  $\frac{1}{2}$ )

approximation

Max error in



#### Divider with Partial Remainder in Carry-Save Form



#### Why We Cannot Use Carry-Save PR with SRT Division

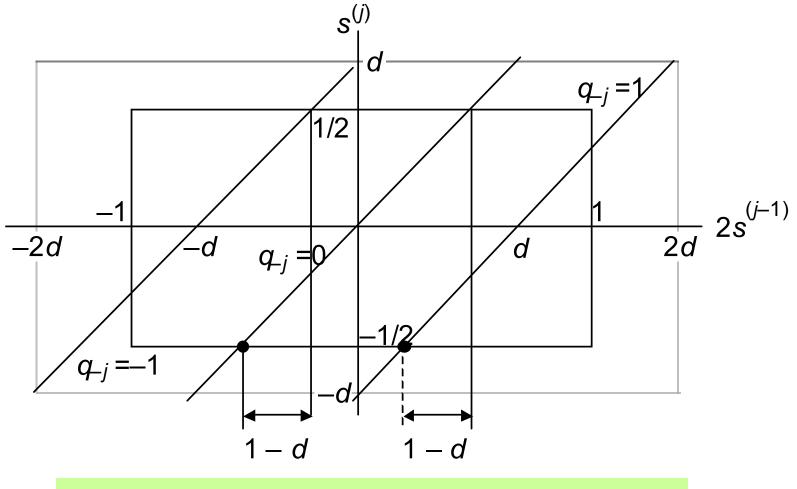


Fig. 14.5 Overlap regions in radix-2 SRT division.

May 2015



Computer Arithmetic, Division



## 14.4 Choosing the Quotient Digits

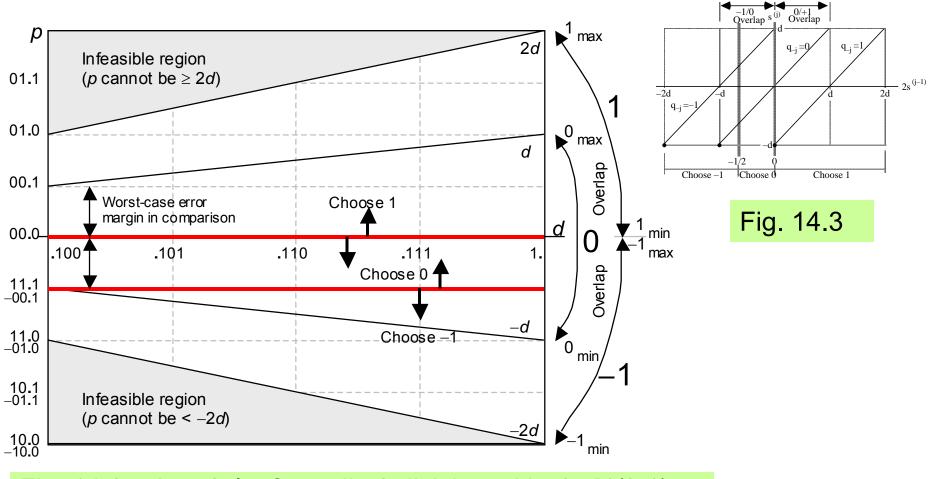


Fig. 14.6 A *p*-*d* plot for radix-2 division with  $d \in [1/2, 1)$ , partial remainder in [-d, d], and quotient digits in [-1, 1].

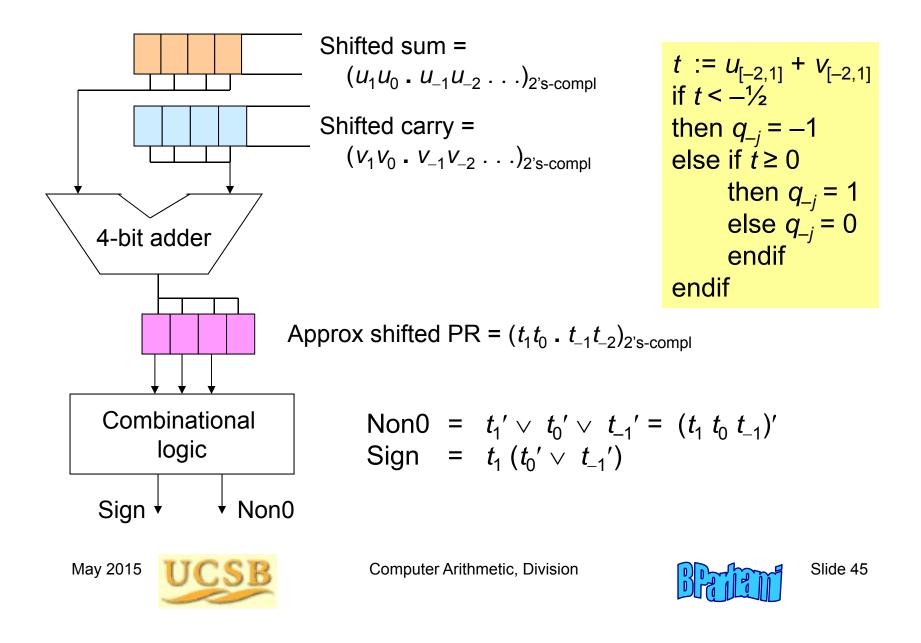
May 2015



Computer Arithmetic, Division

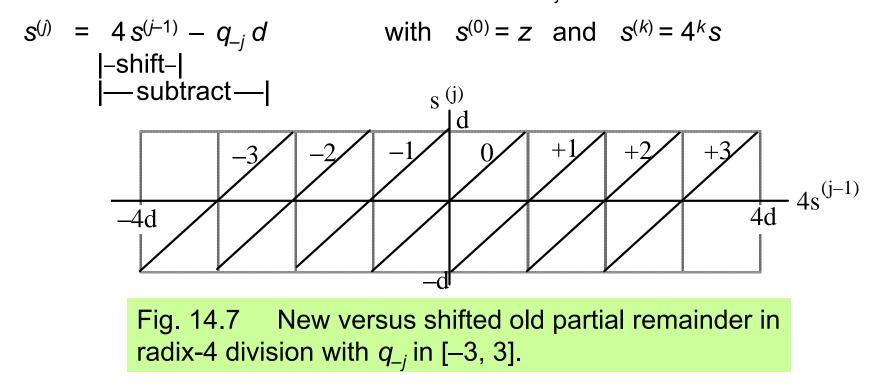


#### Design of the Quotient Digit Selection Logic



## 14.3 Radix-4 SRT Division

Radix-4 fractional division with left shifts and  $q_{-i} \in [-3, 3]$ 



Two difficulties:

How do you choose from among the 7 possible values for  $q_{-j}$ ? If the choice is +3 or -3, how do you form 3d?

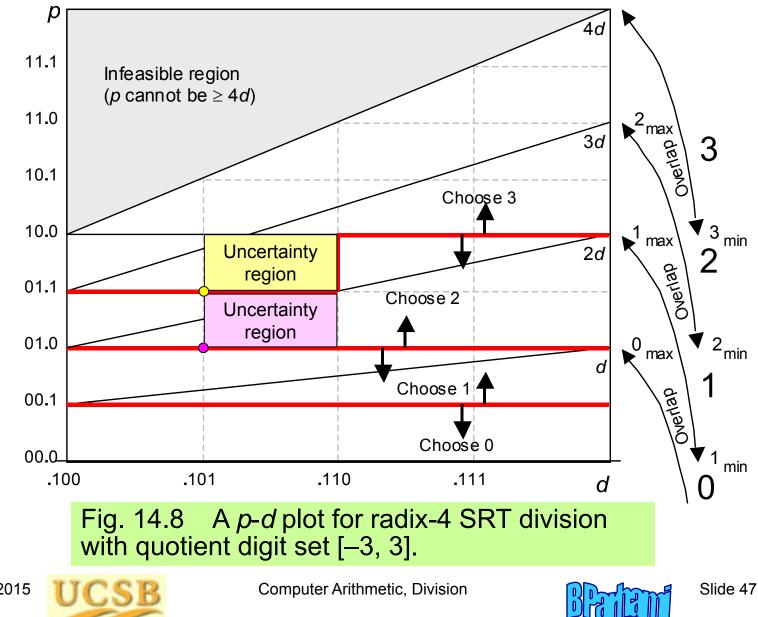
May 2015



Computer Arithmetic, Division



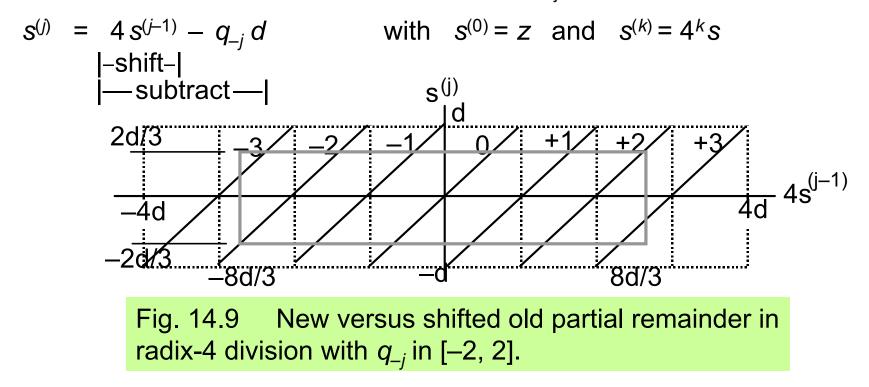
### Building the *p*-*d* Plot for Radix-4 Division



May 2015

#### Restricting the Quotient Digit Set in Radix 4

Radix-4 fractional division with left shifts and  $q_{-i} \in [-2, 2]$ 



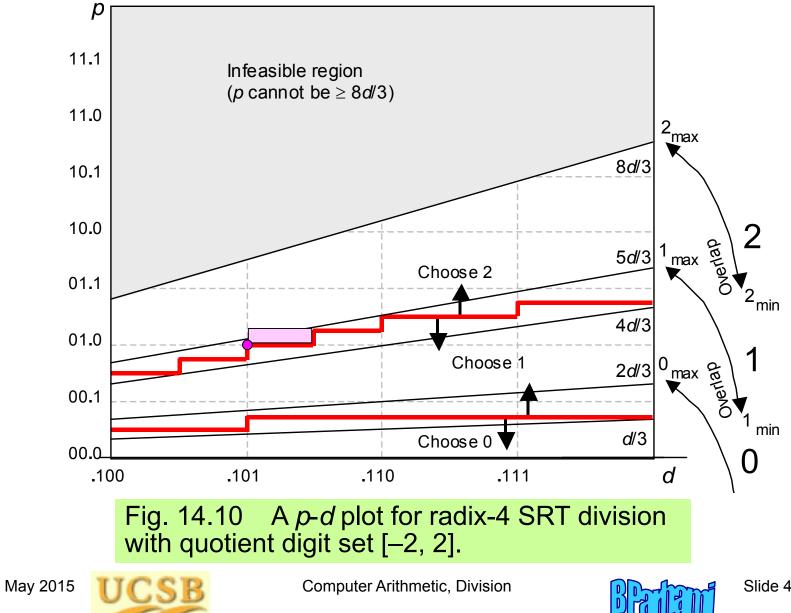
For this restriction to be feasible, we must have:  $s \in [-hd, hd]$  for some h < 1, and  $4hd - 2d \le hd$ This yields  $h \le 2/3$  (choose h = 2/3 to minimize the restriction)

May 2015

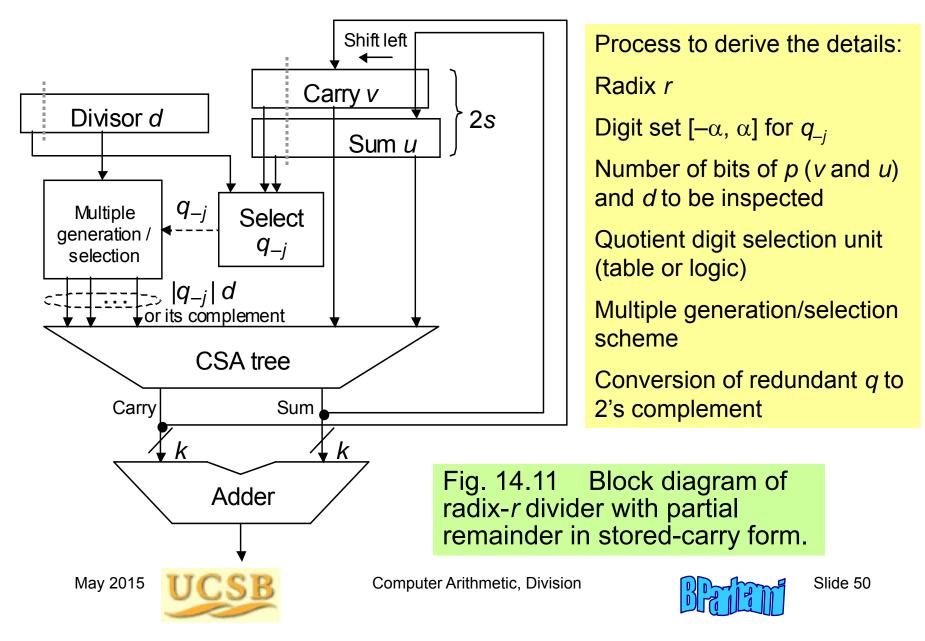




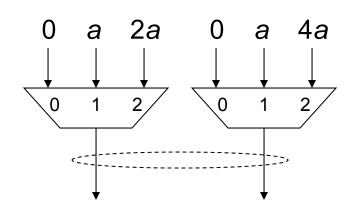
### Building the *p*-*d* Plot with Restricted Radix-4 Digit Set



# 14.4 General High-Radix Dividers



#### Multiple Generation for High-Radix Division



Example: Digit set [-6, 6] for r = 8

Option 1: precompute 3a and 5a

Option 2: generate a multiple  $|q_{j}|a$  as a set of two numbers, one chosen from {0, *a*, 2*a*} and another from {0, *a*, 4*a*}

May 2015





## 14.5 Quotient Digit Selection

Radix-*r* division with quotient digit set [ $-\alpha$ ,  $\alpha$ ],  $\alpha < r - 1$ Restrict the partial remainder range, say to [-hd, hd) From the solid rectangle in Fig. 15.1, we get  $rhd - \alpha d \le hd$  or  $h \le \alpha/(r-1)$ To minimize the range restriction, we choose  $h = \alpha/(r-1)$ 

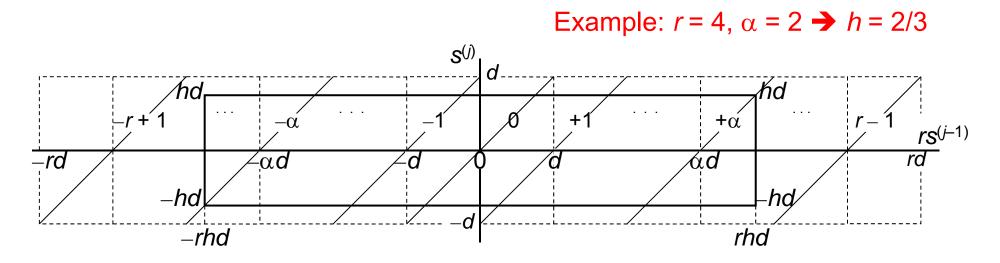


Fig. 14.12 The relationship between new and shifted old partial remainders in radix-*r* division with quotient digits in  $[-\alpha, +\alpha]$ .

May 2015



Computer Arithmetic, Division



#### Why Using Truncated *p* and *d* Values Is Acceptable

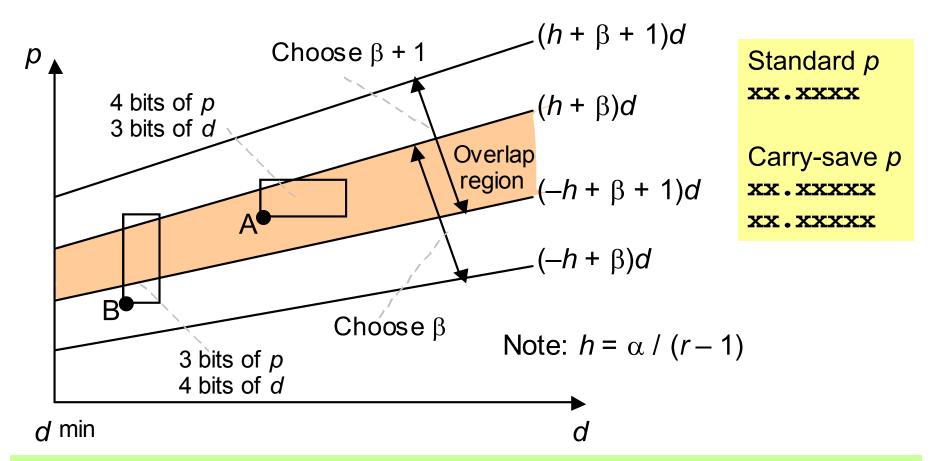


Fig. 14.13 A part of *p*-*d* plot showing the overlap region for choosing the quotient digit value  $\beta$  or  $\beta$ +1 in radix-*r* division with quotient digit set [- $\alpha$ ,  $\alpha$ ].

May 2015





#### Table Entries in the Quotient Digit Selection Logic

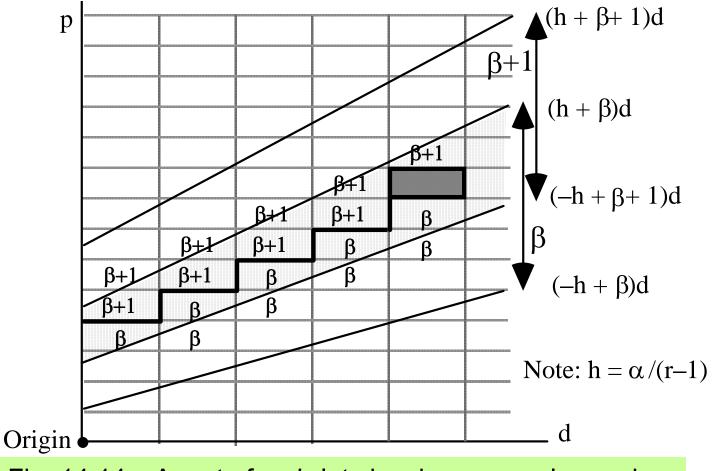


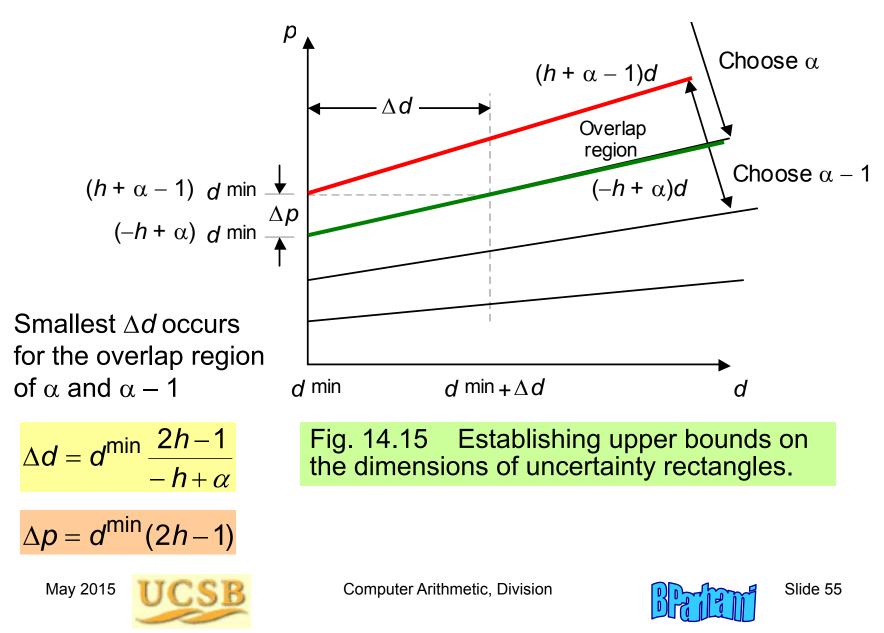
Fig. 14.14 A part of *p*-*d* plot showing an overlap region and its staircase-like selection boundary.

May 2015





## 14.6 Using *p*-*d* Plots in Practice



### **Example: Lower Bounds on Precision**



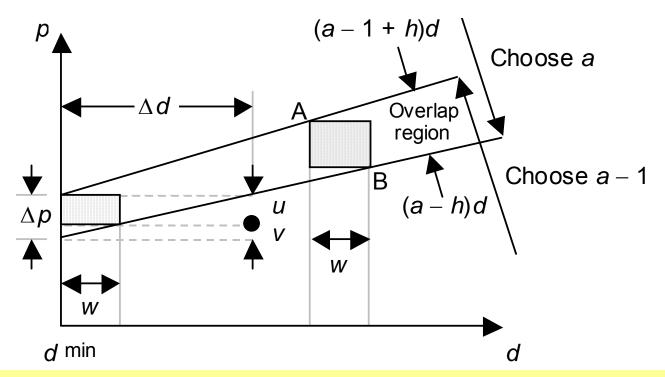
Because  $1/8 = 2^{-3}$  and  $2^{-3} \le 1/6 < 2^{-2}$ , we must inspect at least 3 bits of *d* (2, given its leading 1) and 3 bits of *p* These are lower bounds and may prove inadequate In fact, 3 bits of *p* and 4 (3) bits of *d* are required With *p* in carry-save form, 4 bits of each component must be inspected

May 2015





#### **Upper Bounds for Precision**



Theorem: Once lower bounds on precision are determined based on  $\Delta d$  and  $\Delta p$ , one more bit of precision in each direction is always adequate

Proof: Let w be the spacing of vertical grid lines $w \le \Delta d/2$  $\Rightarrow$  $v \le \Delta p/2$  $\Rightarrow$  $u \ge \Delta p/2$ 

May 2015





### Some Implementation Details

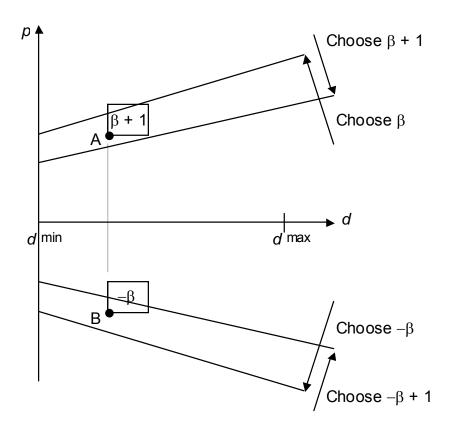


Fig. 14.16 The asymmetry of quotient digit selection process.

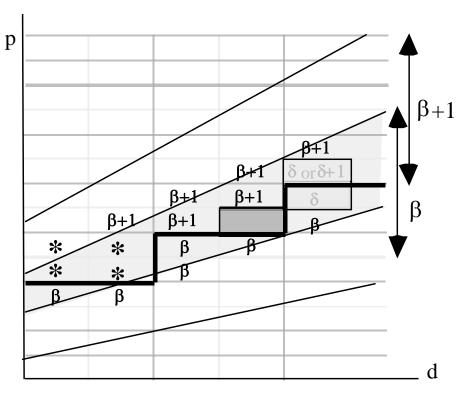


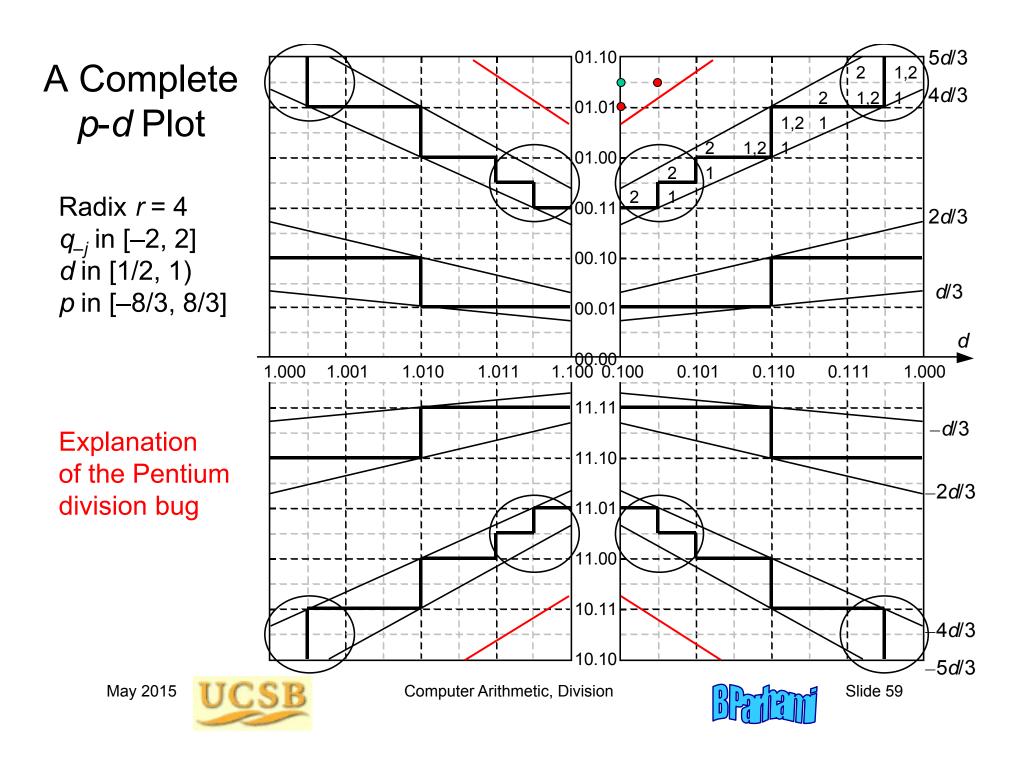
Fig. 14.17 Example of *p*-*d* plot allowing larger uncertainty rectangles, if the 4 cases marked with asterisks are handled as exceptions.

May 2015



Computer Arithmetic, Division





# 15 Variations in Dividers

#### **Chapter Goals**

Discuss some variations in implementing division schemes and cover combinational, modular, and merged hardware dividers

#### **Chapter Highlights**

Prescaling simplifies *q* digit selection Overlapped *q* digit selection Parallel hardware (array) dividers Shared hardware in multipliers/dividers Square-rooting not special case of division





Computer Arithmetic, Division



## Variations in Dividers: Topics

#### **Topics in This Chapter**

- 15.1 Division with Prescaling
- 15.2 Overlapped Quotient Digit Selection
- 15.3 Combinational and Array Dividers
- 15.4 Modular Dividers and Reducers
- 15.5 The Special Case of Reciprocation
- 15.6 Combined Multiply/Divide Units





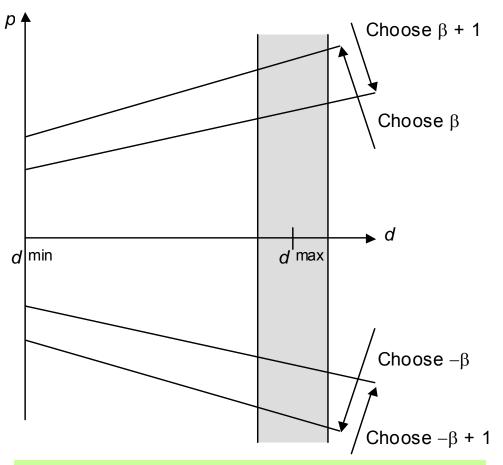
# 15.1 Division with Prescaling

Overlap regions of a *p*-*d* plot are wider toward the high end of the divisor range

If we can restrict the magnitude of the divisor to an interval close to  $d^{\max}$  (say  $1 - \varepsilon < d < 1 + \delta$ , when  $d^{\text{max}} = 1$ ), quotient digit selection may become simpler

Thus, we perform the division (zm)/(dm) for a suitably chosen scale factor m(m > 1)

*Prescaling* (multiplying *z* and *d* by *m*) should be done without real multiplications



Restricting the divisor to the shaded area simplifies quotient digit selection.



#### **Examples of Prescaling**

```
Example 1: Unsigned divisor d in [1/2, 1)
When d \in [1/2, 3/4), multiply by 1\frac{1}{2} [d begins 0.10...]
The prescaled divisor will be in [1 - 1/4, 1 + 1/8)
```

```
Example 2: Unsigned divisor d in [1/2, 1)

Case d \in

[1/2, 9/16), it begins with 0.1000..., multiply by 2

[9/16, 5/8), it begins with 0.1001..., multiply by 1 + 1/2

[5/8, 3/4), it begins with 0.101..., multiply by 1 + 1/2

[3/4, 1), it begins with 0.11..., multiply by 1 + 1/8
```

 $[1/2, 9/16) \times 2 = [1, 1 + 1/8)$   $[9/16, 5/8) \times (1 + 1/2) = [1 - 5/32, 1 - 1/16)$   $[5/8, 3/4) \times (1 + 1/2) = [1 - 1/16, 1 + 1/8)$   $[3/4, 1) \times (1 + 1/8) = [1 - 5/32, 1 + 1/8)$ The prescaled divisor will be in [1 - 5/32, 1 + 1/8)

May 2015





# 15.2 Overlapped Quotient Digit Selection

Alternative to high-radix design when *q* digit selection is too complex

Compute the next partial remainder and resulting *q* digit for all possible choices of the current *q* digit

This is the same idea as carry-select addition

Speculative computation (throw transistors at the delay problem) is common in modern systems

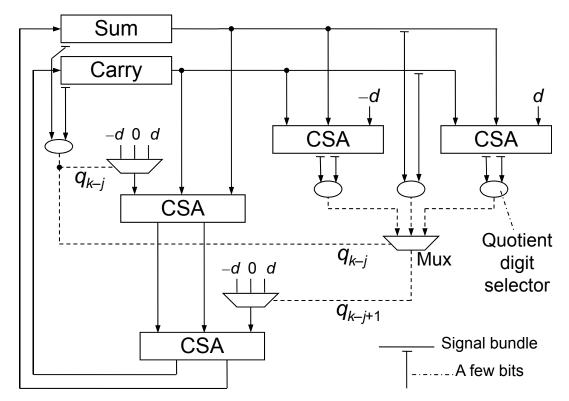


Fig. 15.1 Overlapped radix-2 quotient digit selection for radix-4 division. A dashed line represents a signal pair that denotes a quotient digit value in [-1, 1].

Computer Arithmetic, Division



Slide 64

May 2015



## 15.3 Combinational and Array Dividers

Can take the notion of overlapped q digit selection to the extreme of selecting all q digits at once  $\rightarrow$  Exponential complexity

By contrast, a fully combinational tree multiplier has  $O(\log k)$  latency and  $O(k^2)$  cost  $O(k \log k)$  conjectured

Can we do as well as multipliers, or at least better than exponential cost, for logarithmic-time dividers?

Complexity theory results: It is possible to design dividerswith $O(\log k)$  latencyand $O(k^4)$  costwith $O(\log k \log \log k)$  latencyand $O(k^2)$  cost

These theoretical constructions have not led to practical designs

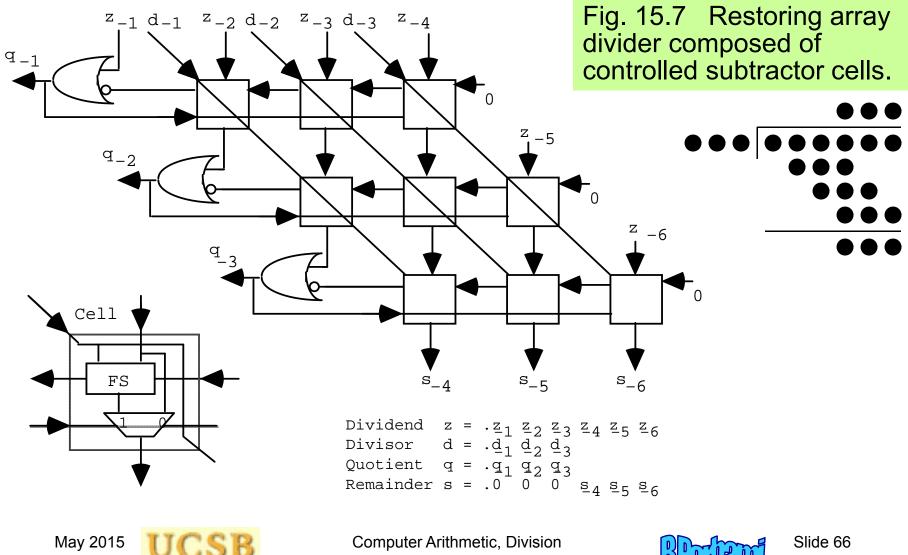
May 2015



Computer Arithmetic, Division

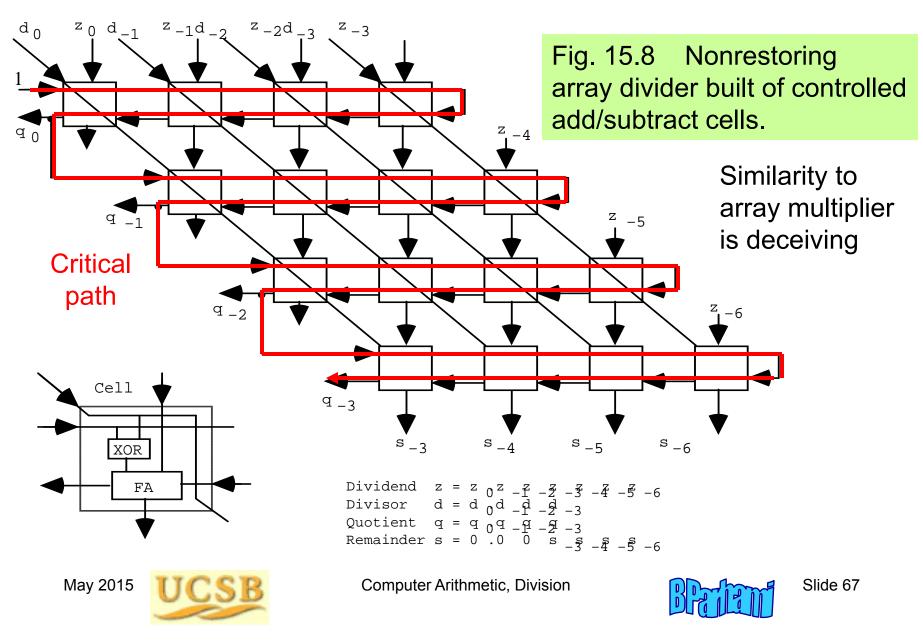


#### **Restoring Array Divider**

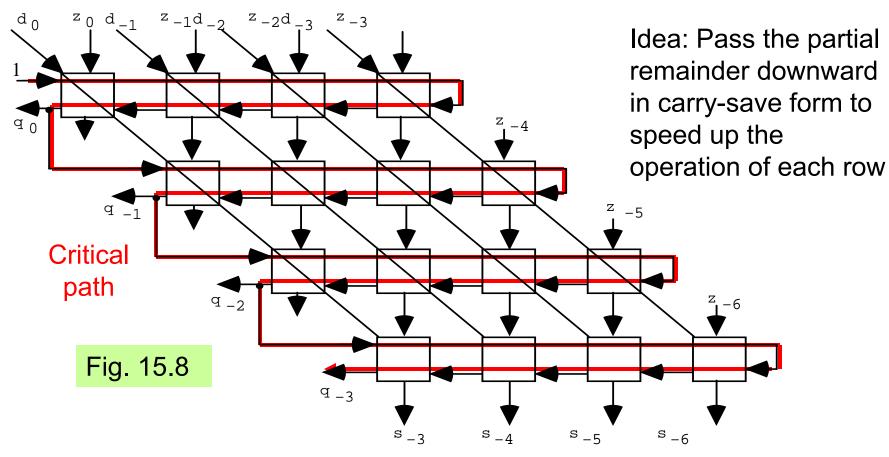




#### Nonrestoring Array Divider



#### Speedup Methods for Array Dividers



However, we still need to know the carry/borrow-out from each row Solution: Insert a carry-lookahead circuit between successive rows Not very cost-effective; thus not used in practice

May 2015



Computer Arithmetic, Division



### 15.4 Modular Dividers and Reducers

Given dividend *z* and divisor *d*, with  $d \ge 0$ , a modular divider computes

$$q = \lfloor z / d \rfloor$$
 and  $s = z \mod d = \langle z \rangle_d$ 

The quotient q is, by definition, an integer but the inputs z and d do not have to be integers; the modular remainder is always positive

Example:

$$\lfloor -3.76 / 1.23 \rfloor = -4$$
 and  $\langle -3.76 \rangle_{1.23} = 1.16$ 

The quotient and remainder of ordinary division are -3 and -0.07

A modular reducer computes only the modular remainder and is in many cases simpler than a full-blown divider

May 2015





### Montgomery Modular Reduction

Very efficient for reducing large numbers (100s of bits wide) The radix-2 version below is suitable for low-cost hardware realization Software versions are based on radix  $2^{32}$  or  $2^{64}$  (1 word = 1 digit)

#### Problem: Compute $q = ax \mod m$ , where $m < 2^k$

Straightforward solution: Compute *ax* as usual; then reduce mod *m* Incremental reduction after adding each partial product is more efficient

Assume *a*, *x*, *q*, and other values are *k*-bit pseudoresidues (can be > *m*)

Pick *R* such that  $R = 1 \mod m$ Montgomery multiplication computes  $axR^{-1} \mod m$ , instead of  $ax \mod m$ Represent any number *y* as *yR* mod *m* (known as the M-code for *y*)  $R = 1 \mod m$  ensures that numbers in [0, m - 1] have distinct M-codes

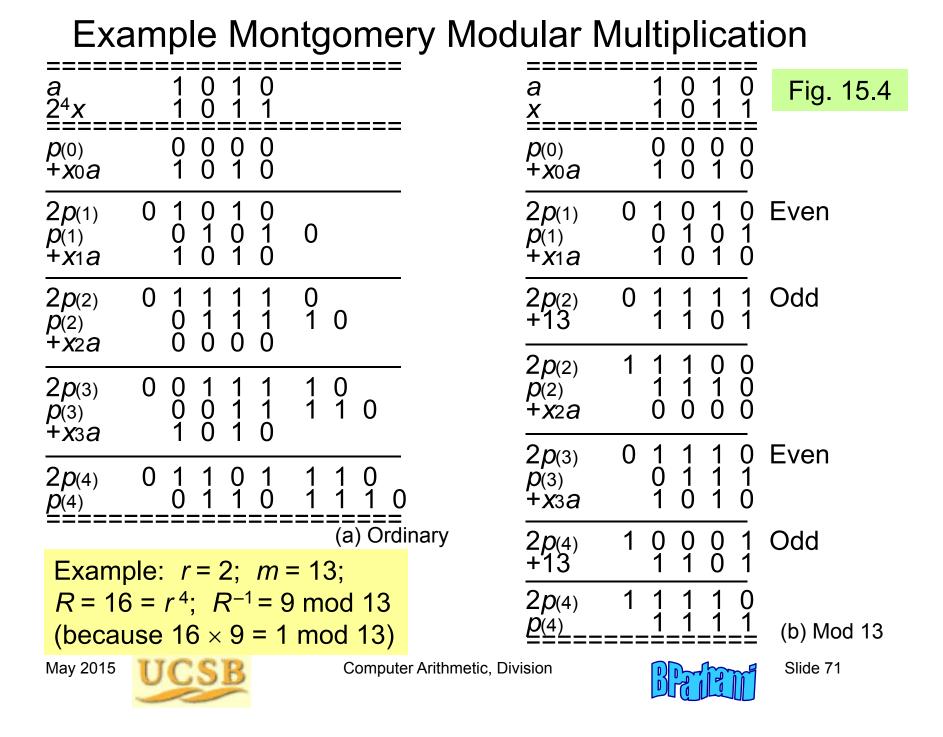
Multiplication:  $t = (aR)(xR)R^{-1} \mod m = (ax)R \mod m = M$ -code for axInitial conversion: Find yR by applying Montgomery's method to y and  $R^2$ Final reconversion: Find y from t = yR by M-multiplying 1 and t

May 2015



Computer Arithmetic, Division





#### Advantages of Montgomery's Method

Standard reduction is based on subtracting a multiple of *m* from the result depending on the most significant bit(s)

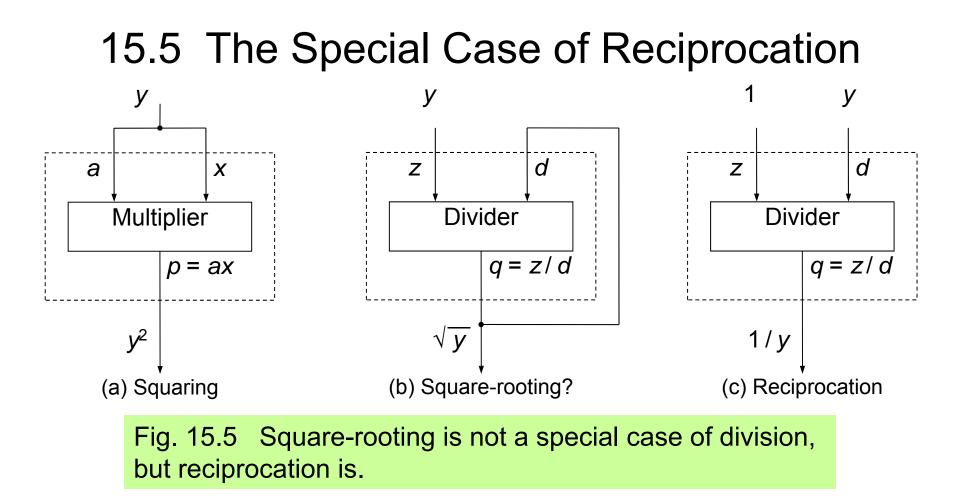
However, MSBs are not readily known if we use carry-save numbers

In Montgomery reduction, the decision is based on LSB(s), thus allowing the use of carry-save arithmetic as well as parallel processing

May 2015







Key question: Is reciprocation any faster than division? Answer: Not if a conventional digit recurrence algorithm is used

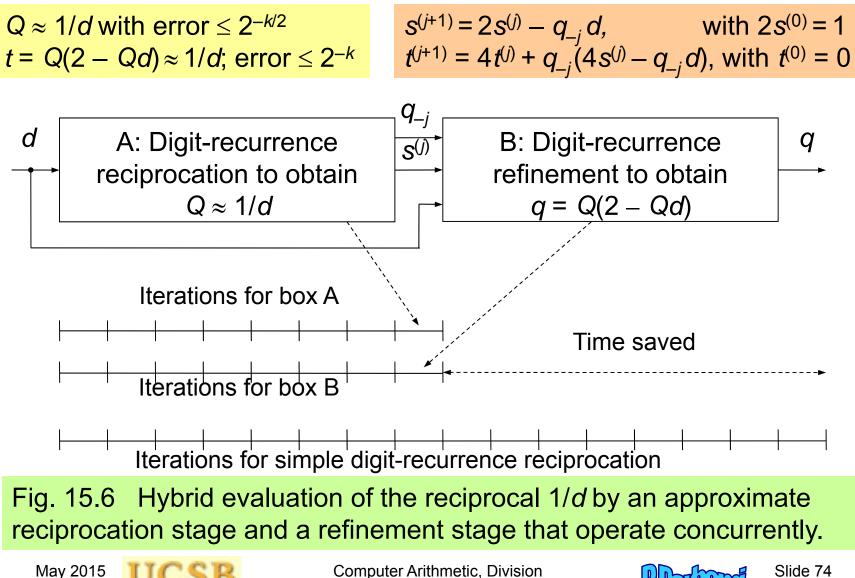
May 2015



Computer Arithmetic, Division

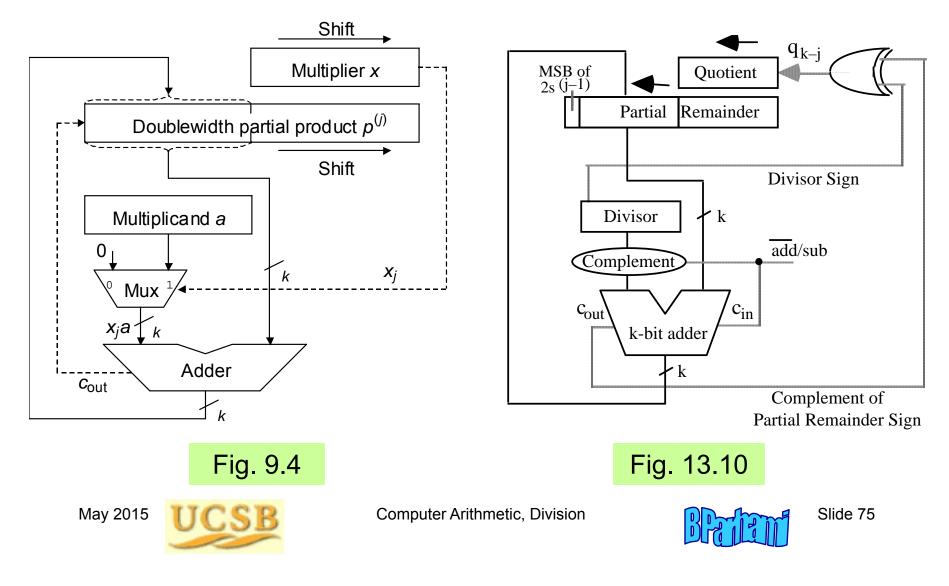


### Doubling the Speed of Reciprocation



### 15.6 Combined Multiply/Divide Units

Similarity of blocks in multipliers and dividers (only shift direction is different)



### Single Unit for Sequential Multiplication and Division

The control unit proceeds through necessary steps for multiplication or division (including using the appropriate shift direction)

The slight speed penalty owing to a more complex control unit is insignificant

May 2015



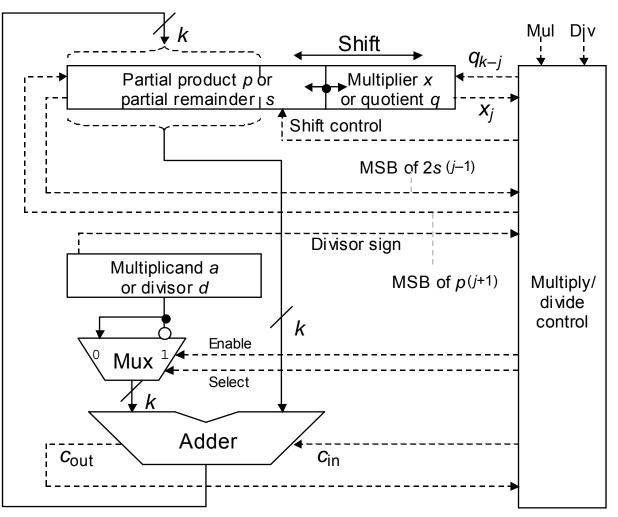
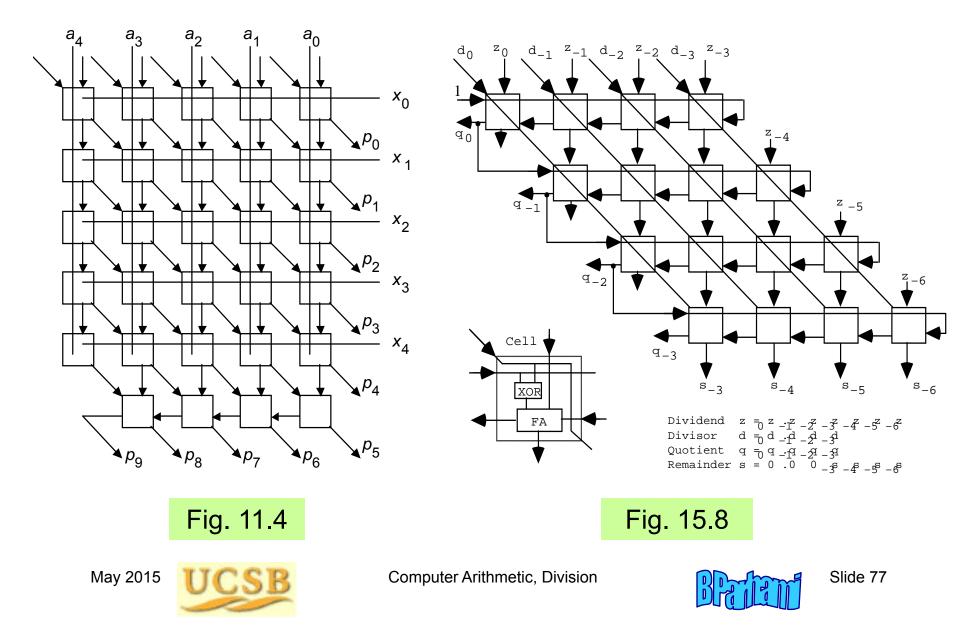


Fig. 15.9 Sequential radix-2 multiply/divide unit.

Computer Arithmetic, Division



#### Similarities of Array Multipliers and Array Dividers



#### Single Unit for Array Multiplication and Division

Mul/Div ......

Additive input

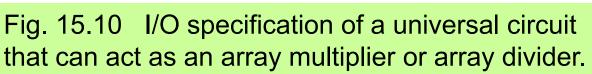
or dividend,

Each cell within the array can act as a modified adder or modified subtractor based on control input values

Input values Quotient In some designs, squaring and square-rooting functions are also included within the same array Fig. 15.10

May 2015





Product or remainder

Computer Arithmetic, Division



Multiplicand

or divisor

**Multiplier** 

# 16 Division by Convergence

#### **Chapter Goals**

Show how by using multiplication as the basic operation in each division step, the number of iterations can be reduced

#### **Chapter Highlights**

Digit-recurrence as convergence method Convergence by Newton-Raphson iteration Computing the reciprocal of a number Hardware implementation and fine tuning





Computer Arithmetic, Division



## Division by Convergence: Topics

#### **Topics in This Chapter**

16.1 General Convergence Methods

16.2 Division by Repeated Multiplications

16.3 Division by Reciprocation

16.4 Speedup of Convergence Division

16.5 Hardware Implementation

16.6 Analysis of Lookup Table Size



Computer Arithmetic, Division

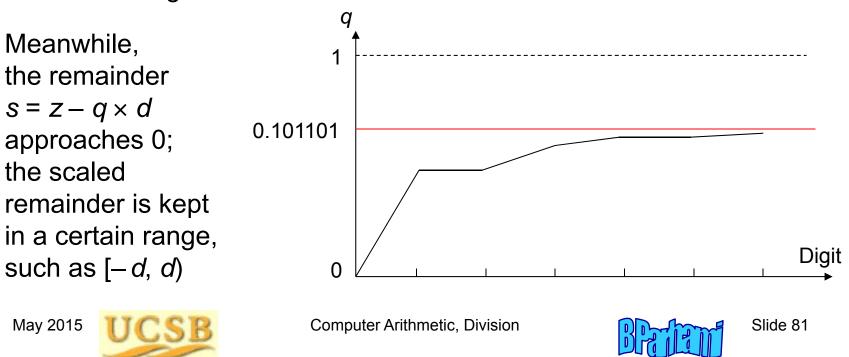


## 16.1 General Convergence Methods

Sequential digit-at-a-time (binary or high-radix) division can be viewed as a convergence scheme

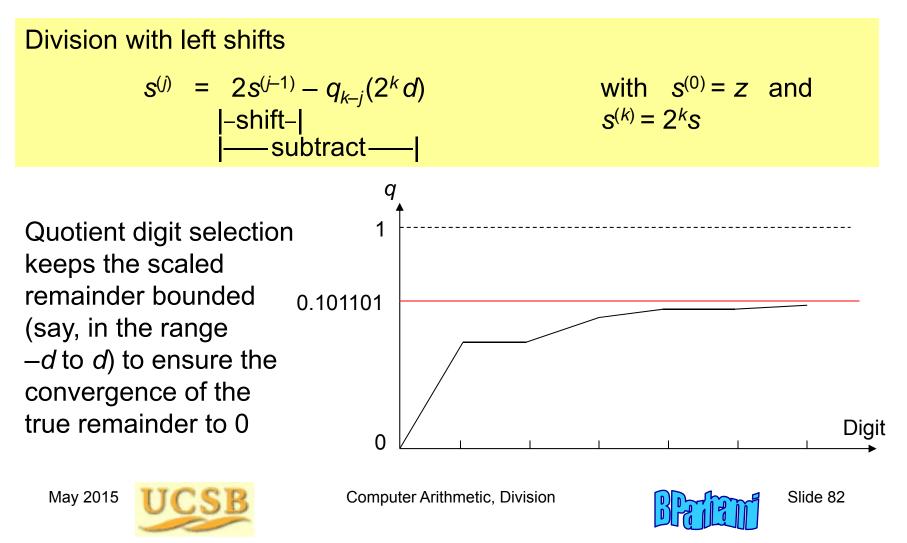
As each new digit of q = z / d is determined, the quotient value is refined, until it reaches the final correct value

Convergence is from below in restoring division and oscillating in nonrestoring division



## Elaboration on Scaled Remainder in Division

The partial remainder  $s^{(j)}$  in division recurrence isn't the true remainder but a version scaled by  $2^{j}$ 



#### **Recurrence Formulas for Convergence Methods**

$$u^{(i+1)} = f(u^{(i)}, v^{(i)}) \longrightarrow \text{Constant} \longleftarrow u^{(i+1)} = f(u^{(i)}, v^{(i)}, w^{(i)})$$
  
$$v^{(i+1)} = g(u^{(i)}, v^{(i)}) \longrightarrow \text{Desired}_{\text{function}} \longleftarrow u^{(i+1)} = g(u^{(i)}, v^{(i)}, w^{(i)})$$

Guide the iteration such that one of the values converges to a constant (usually 0 or 1)

The other value then converges to the desired function

The complexity of this method depends on two factors:

- a. Ease of evaluating f and g (and h)
- b. Rate of convergence (number of iterations needed)

May 2015



Computer Arithmetic, Division



## 16.2 Division by Repeated Multiplications

**Motivation:** Suppose add takes 1 clock and multiply 3 clocks; 64-bit divide takes 64 clocks in radix 2, 32 in radix 4

 $\rightarrow$  Divide via multiplications faster if 10 or fewer needed

$$q = \frac{z}{d} = \frac{zx^{(0)}x^{(1)} \cdots x^{(m-1)}}{dx^{(0)}x^{(1)} \cdots x^{(m-1)}} \xrightarrow{\longrightarrow} \text{Converges to } q$$
Force to 1

Remainder often not needed, but can be obtained by another multiplication if desired: s = z - qd

To turn the identity into a division algorithm, we face three questions:

- 1. How to select the multipliers  $x^{(i)}$ ?
- 2. How many iterations (pairs of multiplications)?
- 3. How to implement in hardware?

May 2015



Computer Arithmetic, Division



#### Formulation as a Convergence Computation

Idea:  

$$q = \frac{z}{d} = \frac{zx^{(0)}x^{(1)} \cdots x^{(m-1)}}{dx^{(0)}x^{(1)} \cdots x^{(m-1)}} \longrightarrow \text{ Converges to } q$$
Force to 1

 $d^{(i+1)} = d^{(i)} x^{(i)}$  Set  $d^{(0)} = d$ ; make  $d^{(m)}$  converge to 1  $z^{(i+1)} = z^{(i)} x^{(i)}$  Set  $z^{(0)} = z$ ; obtain  $z/d = q \cong z^{(m)}$ 

Question 1: How to select the multipliers  $x^{(i)}$ ?  $x^{(i)} = 2 - d^{(i)}$ 

This choice transforms the recurrence equations into:

 $\begin{array}{ll} d^{(i+1)} = d^{(i)}(2 - d^{(i)}) & \text{Set } d^{(0)} = d \text{; iterate until } d^{(m)} \cong 1 \\ z^{(i+1)} = z^{(i)}(2 - d^{(i)}) & \text{Set } z^{(0)} = z \text{; obtain } z/d = q \cong z^{(m)} \end{array}$ 

 $u^{(i+1)} = f(u^{(i)}, v^{(i)})$  $v^{(i+1)} = g(u^{(i)}, v^{(i)})$  Fits

Fits the general form

May 2015



Computer Arithmetic, Division



#### Determining the Rate of Convergence

 $\begin{array}{ll} d^{(i+1)} = \ d^{(i)} \left(2 - d^{(i)}\right) & \text{Set } d^{(0)} = d \text{; make } d^{(m)} \text{ converge to 1} \\ z^{(i+1)} = \ z^{(i)} \left(2 - d^{(i)}\right) & \text{Set } z^{(0)} = z \text{; obtain } z/d = q \cong z^{(m)} \end{array}$ 

Question 2: How quickly does  $d^{(i)}$  converge to 1?

We can relate the error in step i + 1 to the error in step i:

$$d^{(i+1)} = d^{(i)}(2 - d^{(i)}) = 1 - (1 - d^{(i)})^2$$

$$1 - d^{(i+1)} = (1 - d^{(i)})^2$$

For  $1 - d^{(i)} \le \varepsilon$ , we get  $1 - d^{(i+1)} \le \varepsilon^2$ : Quadratic convergence In general, for *k*-bit operands, we need

2m - 1 multiplications and *m* 2's complementations where  $m = \lceil \log_2 k \rceil$ 

May 2015





### Quadratic Convergence

Table 16.1 Quadratic convergence in computing z/d by repeated multiplications, where  $1/2 \le d = 1 - y < 1$ 

| i | $d^{(i)} = d^{(i-1)} x^{(i-1)}$ , with $d^{(0)} = d$          | $x^{(i)} = 2 - d^{(i)}$ |
|---|---------------------------------------------------------------|-------------------------|
| 0 | $1 - y = (.1xxx xxxx xxxx xxxx)_{two} \ge 1/2$                | 1 + <i>y</i>            |
| 1 | $1 - y^2$ = (.11xx xxxx xxxx xxxx) <sub>two</sub> $\ge 3/4$   | 1 + y <sup>2</sup>      |
| 2 | $1 - y^4$ = (.1111 xxxx xxxx xxxx) <sub>two</sub> $\ge 15/16$ | $1 + y^4$               |
| 3 | $1 - y^8 = (.1111 \ 1111 \ xxxx \ xxxx)_{two} \ge 255/256$    | 1 + y <sup>8</sup>      |
| 4 | $1 - y^{16} = (.1111 \ 1111 \ 1111 \ 1111)_{two} = 1 - ulp$   |                         |

Each iteration doubles the number of guaranteed leading 1s (convergence to 1 is from below)

Beginning with a single 1 ( $d \ge \frac{1}{2}$ ), after  $\log_2 k$  iterations we get as close to 1 as is possible in a fractional representation

May 2015





#### Graphical Depiction of Convergence to q



## 16.3 Division by Reciprocation

The Newton-Raphson method can be used for finding a root of f(x) = 0

Start with an initial estimate  $x^{(0)}$  for the root

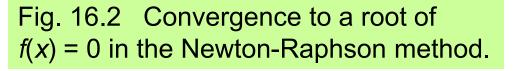
Iteratively refine the estimate via the recurrence

 $x^{(i+1)} = x^{(i)} - f(x^{(i)}) / f'(x^{(i)})$ 

f(x) $\tan \alpha^{(i)} = f'(\mathbf{x}^{(i)}) = \frac{f(\mathbf{x}^{(i)})}{\mathbf{x}^{(i)} - \mathbf{x}^{(i+1)}}$ Tangent at x<sup>(i)</sup> f(x<sup>(i)</sup>)  $\alpha^{(i)}$ Root Х  $x^{(i+2)}$ **x**(i)  $x^{(i+1)}$ 

Justification:

 $\tan \alpha^{(i)} = f'(\mathbf{x}^{(i)})$  $= f(x^{(i)}) / (x^{(i)} - x^{(i+1)})$ 



Computer Arithmetic, Division



Slide 89

May 2015



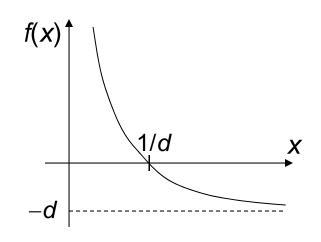
#### Computing 1/d by Convergence

1/d is the root of f(x) = 1/x - d

 $f'(x) = -1/x^2$ 

Substitute in the Newton-Raphson recurrence  $x^{(i+1)} = x^{(i)} - f(x^{(i)})/f'(x^{(i)})$  to get:

$$x^{(i+1)} = x^{(i)} (2 - x^{(i)} d)$$



One iteration = Two multiplications + One 2's complementation

Error analysis: Let  $\delta^{(i)} = 1/d - x(i)$  be the error at the *i*th iteration

$$\delta^{(i+1)} = 1/d - x^{(i+1)} = 1/d - x^{(i)}(2 - x^{(i)}d) = d(1/d - x^{(i)})^2 = d(\delta^{(i)})^2$$

Because d < 1, we have  $\delta^{(i+1)} < (\delta^{(i)})^2$ 

May 2015



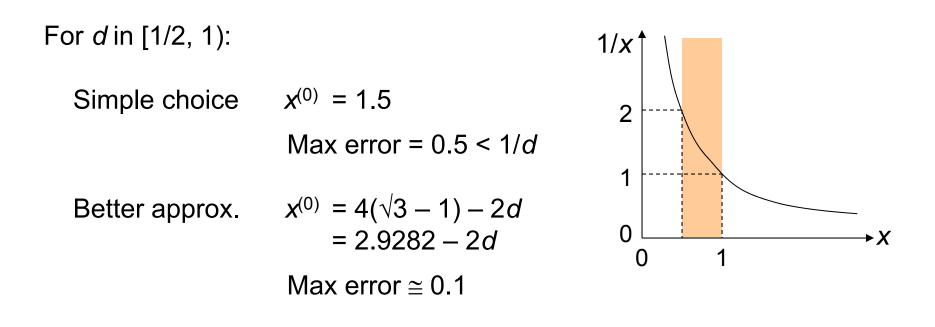
Computer Arithmetic, Division



#### Choosing the Initial Approximation to 1/d

With  $x^{(0)}$  in the range  $0 < x^{(0)} < 2/d$ , convergence is guaranteed

Justification:  $|\delta^{(0)}| = |x^{(0)} - 1/d| < 1/d$  $\delta^{(1)} = |x^{(1)} - 1/d| = d(\delta^{(0)})^2 = (d\delta^{(0)})\delta^{(0)} < \delta^{(0)}$ 







## 16.4 Speedup of Convergence Division

$$q = \frac{z}{d} = \frac{zx^{(0)}x^{(1)}\cdots x^{(m-1)}}{dx^{(0)}x^{(1)}\cdots x^{(m-1)}}$$

Compute y = 1/dDo the multiplication yz

Division can be performed via  $2\lceil \log_2 k \rceil - 1$  multiplications

This is not yet very impressive 64-bit numbers, 3-ns multiplier  $\Rightarrow$  33-ns division

Three types of speedup are possible:

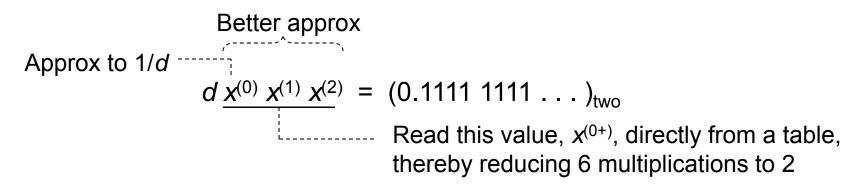
Fewer multiplications (reduce m) Narrower multiplications (reduce the width of some  $x^{(i)}s$ ) Faster multiplications





### Initial Approximation via Table Lookup

Convergence is slow in the beginning: it takes 6 multiplications to get 8 bits of convergence and another 5 to go from 8 bits to 64 bits



A  $2^{w} \times w$  lookup table is necessary and sufficient for w bits of convergence after 2 multiplications

**Example with 4-bit lookup:**  $d = 0.1011 \text{ xxxx} \dots (11/16 \le d < 12/16)$ Inverses of the two extremes are  $16/11 \cong 1.0111$  and  $16/12 \cong 1.0101$ So, 1.0110 is a good estimate for 1/d $1.0110 \times 0.1011 = (11/8) \times (11/16) = 121/128 = 0.1111001$  $1.0110 \times 0.1100 = (11/8) \times (3/4) = 33/32 = 1.000010$ 

May 2015



Computer Arithmetic, Division



#### Visualizing the Convergence with Table Lookup

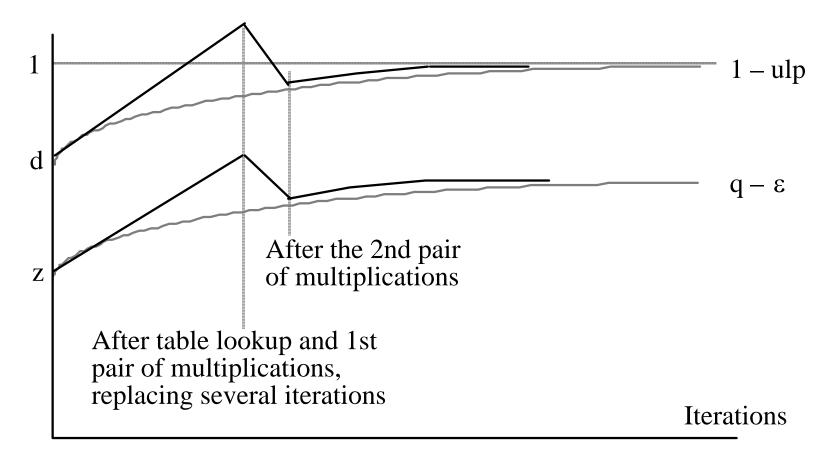


Fig. 16.3 Convergence in division by repeated multiplications with initial table lookup.

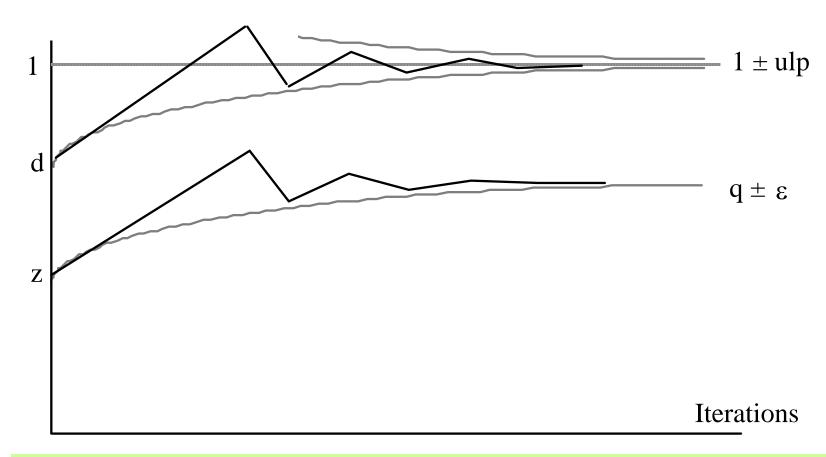
May 2015



Computer Arithmetic, Division



#### Convergence Does Not Have to Be from Below



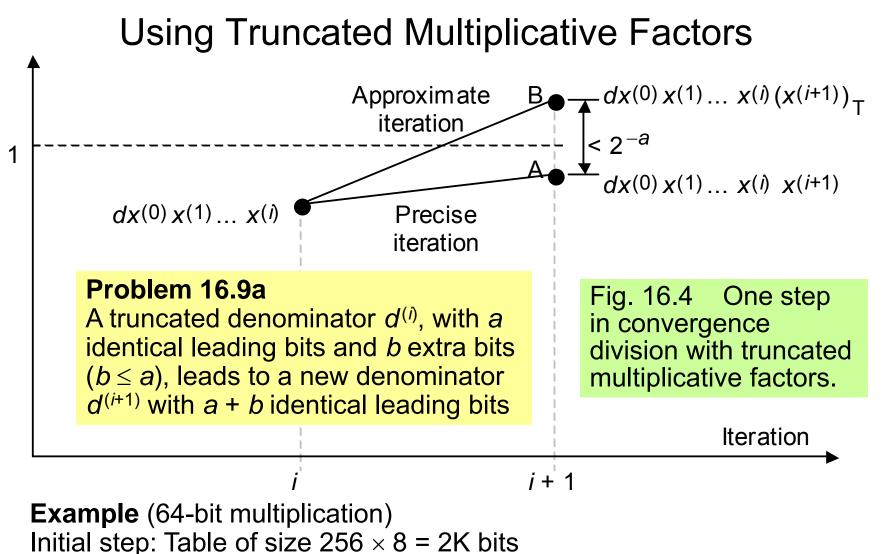
Convergence in division by repeated multiplications with Fig. 16.4 initial table lookup and the use of truncated multiplicative factors.

May 2015



Computer Arithmetic, Division





Middle steps: Multiplication pairs, with 9-, 17-, and 33-bit multipliers Final step: Full  $64 \times 64$  multiplication

May 2015





### 16.5 Hardware Implementation

Repeated multiplications: Each pair of ops involves the same multiplier

 $d^{(i+1)} = d^{(i)}(2 - d^{(i)})$  Set  $d^{(0)} = d$ ; iterate until  $d^{(m)} \cong 1$  $z^{(i+1)} = z^{(i)}(2 - d^{(i)})$  Set  $z^{(0)} = z$ ; obtain  $z/d = q \cong z^{(m)}$ 2's Comp]  $z^{(i)}$ z<sup>(i+1)</sup>  $x^{(i+1)}$  $\mathbf{x}^{(i)}$ d<sup>(i+1)</sup> x<sup>(i+1)</sup>  $d^{(i+1)}x^{(i+1)}$  $z^{(i+1)}x^{(i+1)}$  $z^{(i)}x^{(i)}$  $d^{(i+1)}x^{(i+1)}$  $d^{(i)}x^{(i)}$  $z^{(i)}x^{(i)}$  $d^{(i+2)}$  $d^{(i+1)}$ -(i+1) Fig. 16.6 Two multiplications fully overlapped in a 2-stage pipelined multiplier. May 2015 Computer Arithmetic, Division Slide 97

### Implementing Division with Reciprocation

Reciprocation: Multiplication pairs are data-dependent, so they cannot be pipelined or performed in parallel

 $x^{(i+1)} = x^{(i)} (2 - x^{(i)} d)$ 

Options for speedup via a better initial approximation

Consult a larger table Resort to a bipartite or multipartite table (see Chapter 24) Use table lookup, followed with interpolation Compute the approximation via multioperand addition

Unless several multiplications by the same multiplier are needed, division by repeated multiplications is more efficient

However, given a fast method for reciprocation (see Section 24.6), using a reciprocation unit with a standard multiplier is often preferred

May 2015





### 16.6 Analysis of Lookup Table Size

Table 16.2Sample entries in the lookup table replacing thefirst four multiplications in division by repeated multiplications

| Address | d = 0.1  xxxx  xxxx | $x^{(0+)} = 1. xxxx xxxx$ |
|---------|---------------------|---------------------------|
| 55      | 0011 0111           | 1010 0101                 |
| 64      | 0100 0000           | 1001 1001                 |

**Example:** Table entry at address 55 ( $311/512 \le d \le 312/512$ )

For 8 bits of convergence, the table entry *f* must satisfy

 $(311/512)(1 + .f) \ge 1 - 2^{-8} \qquad (312/512)(1 + .f) \le 1 + 2^{-8}$  $199/311 \le .f \le 101/156$  $163.81 \le f = 256 \times .f \le 165.74$ 

Two choices:  $164 = (1010\ 0100)_{two}$  or  $165 = (1010\ 0101)_{two}$ 

Computer Arithmetic, Division



Slide 99

May 2015



#### A General Result for Table Size

**Theorem 16.1:** To get  $w \ge 5$  bits of convergence after the first iteration of division by repeated multiplications, w bits of d (beyond the mandatory 1) must be inspected. The factor  $x^{(0+)}$  read out from table is of the form  $(1.xxx...xx)_{two}$ , with w bits after the radix point

**Proof strategy for sufficiency:** Represent the table entry 1.*f* as the integer  $v = 2^{w} \times .f$  and derive upper/lower bound expressions for it. Then, show that at least one integer exists between  $v_{lb}$  and  $v_{ub}$ 

**Proof strategy for necessity:** Show that derived conditions cannot be met if the table is of size  $2^{k-1}$  (no matter how wide) or if it is of width k - 1 (no matter how large)

Excluded cases, w < 5: Practically uninteresting (allow smaller table)

**General radix** *r*: Same analysis method, and results, apply

May 2015



