Part IV

Computer Arithmetic

Division

	Parts	Chapters
	I. Number Representation	1. Numbers and Arithmetic 2. Representing Signed Numbers 3. Redundant Number Systems 4. Residue Number Systems
	II. Addition / Subtraction	5. Basic Addition and Counting 6. Carry-Look ahead Adders 7. Variations in Fast Adders 8. Multioperand Addition
	III. Multiplication	9. Basic Multiplication Schemes 10. High-Radix Multipliers 11. Tree and Array Multipliers 12. Variations in Multipliers
	IV. Division	13. Basic Division Schemes 14. High-Radix Dividers 15. Variations in Dividers 16. Division by Convergence
	V. Real Arithmetic	17. Floating-Point Reperesentations 18. Floating-Point Operations 19. Errors and Error Control 20. Precise and Certifiable Arithmetic
	VI. Function Evaluation	21. Square-Rooting Methods 22. The CORDIC Algorithms 23. Variations in Function Evaluation 24. Arithmetic by Table Lookup
	VII. Implementation Topics	25. High-Throughput Arithmetic 26. Low-Power Arithmetic 27. Fault-Tolerant Arithmetic 28. Reconfigurable Arithmetic

Appendix: Past, Present, and Future

Slide 1

About This Presentation

This presentation is intended to support the use of the textbook Computer Arithmetic: Algorithms and Hardware Designs (Oxford U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated regularly by the author as part of his teaching of the graduate course ECE 252B, Computer Arithmetic, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes.
Unauthorized uses are strictly prohibited. ©Behrooz Parhami

Edition	Released	Revised	Revised	Revised	Revised
First	Jan. 2000	Sep. 2001	Sep. 2003	Oct. 2005	May 2007
		May 2008	May 2009		
Second	May 2010	Apr. 2011	May 2012	May 2015	

IV Division

Review Division schemes and various speedup methods

- Hardest basic operation (fortunately, also the rarest)
- Division speedup methods: high-radix, array, . . .
- Combined multiplication/division hardware
- Digit-recurrence vs convergence division schemes

Topics in This Part

Chapter 13 Basic Division Schemes
Chapter 14 High-Radix Dividers
Chapter 15 Variations in Dividers
Chapter 16 Division by Convergence

I'MAPPALLED AT WHAT THEYZL PUT ON TELEVISION NOWADAYS ... IT'S NOTHING BUT SENSELESS VIRUSES AND GRATUITOUS DIVIDING!

13 Basic Division Schemes

Chapter Goals

Study shift/subtract or bit-at-a-time dividers and set the stage for faster methods and variations to be covered in Chapters 14-16

Chapter Highlights

Shift/subtract divide vs shift/add multiply Hardware, firmware, software algorithms
Dividing 2's-complement numbers
The special case of a constant divisor

Basic Division Schemes: Topics

Topics in This Chapter
13.1 Shift/Subtract Division Algorithms
13.2 Programmed Division
13.3 Restoring Hardware Dividers
13.4 Nonrestoring and Signed Division
13.5 Division by Constants
13.6 Radix-2 SRT Division

13.1 Shift/Subtract Division Algorithms

Notation for our discussion of division algorithms:

z	Dividend	$z_{2 k-1} z_{2 k-2}$.	$d_{k-1} d_{k-2} \ldots d_{1} z_{2} z_{1} z_{0}$
d	Divisor		d_{0}	
q	Quotient		$q_{k-1} q_{k-2} \ldots q_{1} q_{0}$	
s	Remainder, $z-(d \times q)$		$s_{k-1} s_{k-2} \ldots s_{1} s_{0}$	

Initially, we assume unsigned operands

Fig. 13.1 Division of an 8 -bit number by a 4 -bit number in dot notation.

Division versus Multiplication

Division is more complex than multiplication: Need for quotient digit selection or estimation

Overflow possibility: the high-order k bits of z must be strictly less than d; this overflow check
 also detects the divide-by-zero condition.

Pentium III Iatencies

Instruction	Latency	Cycles/	
Load / Store	3	1	The ratios haven't changed much in
Integer Multiply	4	1	
Integer Divide	36	36	
Double/Single FP Multiply	y	2	or AMD products*
Double/Single FP Add	3	1	orAMD products
Double/Single FP Divide	38	38	*Source: T. Granlund, "Instruction Latencies and Throughput for AMD

Division Recurrence

Division with left shifts (There is no corresponding right-shift algorithm)

$$
\begin{array}{ll}
s^{(0)}=2 s^{(j-1)}-q_{k-j}\left(2^{k} d\right) & \text { with } s^{(0)}=z \text { and } \\
s^{(k)}=2^{k} s
\end{array}
$$

Integer division is characterized by $z=d \times q+s$

$$
\begin{aligned}
& 2^{-2 k} z=\left(2^{-k} d\right) \times\left(2^{-k} q\right)+2^{-2 k} s \\
& z_{\text {frac }}=d_{\text {frac }} \times q_{\text {frac }}+2^{-k} s_{\text {frac }}
\end{aligned}
$$

Divide fractions like integers; adjust the remainder

No-overflow condition for fractions is:

$$
z_{\text {frac }}<d_{\text {frac }}
$$

Examples of Basic Division

Decimal
Integer division

117	01110101
$2^{4} d \quad 10$	1010
$s^{(0)}$	01110101
$2 s^{(0)}$	01110101
$-q_{3} 2^{4} d$	$1010 \quad\left\{q_{3}=1\right.$
$s^{(1)}$	0100101
$2 s^{(1)}$	0100101
$-q_{2} 2^{4} d$	$0000 \quad\left\{q_{2}=0\right\}$
$s^{(2)}$	100101
$2 s^{(2)}$	100101
$-q_{1} 2^{4} d$	$1010 \quad\left\{q_{1}=1\right.$
$s^{(3)}$	10001
$2 s^{(3)}$	10001
$-q_{0} 2^{4} d$	$1010 \quad\left\{q_{0}=1\right\}$
$s^{(4)}$	0111
$\begin{array}{ll}\text { s } & 7\end{array}$	0111
11	1011

Fractional division
===================== Fig. 13.2

$\begin{aligned} & z_{\text {frac }} \\ & d_{\text {frac }} \end{aligned}$	$\begin{array}{llll} 01 & 1 \\ 1 & 0 & 1 & 0 \\ \hline \end{array}$	0101	Examples o
$s^{(0)}$	0111	0101	division with
$2 s^{(0)}$	0.1110	101	
$-_{-1} d$. 1010	$\left\{q_{-1}=1\right\}$	id
$s^{(1)}$	0100	101	fractional
$2 s^{(1)}$	0.1001	01	operands.

13.2 Programmed Division

Fig. 13.3 Register usage for programmed division.

Assembly Language Program for Division

Time Complexity of Programmed Division

Assume k-bit words
k iterations of the main loop
6-8 instructions per iteration, depending on the quotient bit

Thus, $6 k+3$ to $8 k+3$ machine instructions, ignoring operand loads and result store
$k=32$ implies 220^{+}instructions on average

This is too slow for many modern applications!

Microprogrammed division would be somewhat better

13.3 Restoring Hardware Dividers

Fig. 13.5 Shift/subtract sequential restoring divider.

z	0111	0101
$2^{4} d$	01010	
$-2^{4} d$	10110	
$s^{(0)}$	00111	0101
$2 s^{(0)}$	01110	101
$+\left(-2^{4} d\right)$	10110	
$s^{(1)}$	00100	101
$2 s^{(1)}$	01001	01
$+\left(-2^{4} d\right)$	10110	
$s^{(2)}$	11111	01
$s^{(2)}=2 s^{(1)}$	01001	01
$2 s^{(2)}$	10010	1
$+\left(-2^{4} d\right)$	10110	
$s^{(3)}$	01000	1
$2 s^{(3)}$	10001	
$+\left(-2^{4} d\right)$	10110	
$s^{(4)}$	00111	
s		0111
q		1011

Example of Restoring Unsigned Division

No overflow, because $(0111)_{\mathrm{two}}<(1010)_{\mathrm{two}}$

Positive, so set $q_{3}=1$

Negative, so set $q_{2}=0$ and restore

Positive, so set $q_{1}=1$

Positive, so set $q_{0}=1$
Fig. 13.6 Example of restoring unsigned division.

Indirect Signed Division

In division with signed operands, q and s are defined by

$$
z=d \times q+s \quad \operatorname{sign}(s)=\operatorname{sign}(z) \quad|s|<|d|
$$

Examples of division with signed operands

$$
\begin{array}{lllll}
z=5 & d=3 & \Rightarrow & q=1 & s=2 \\
z=5 & d=-3 & \Rightarrow & q=-1 & s=2 \\
z=-5 & d=3 & \Rightarrow & q=-1 & s=-2 \\
z=-5 & d=-3 & \Rightarrow & q=1 & s=-2
\end{array} \quad(\operatorname{not} q=-2, s=-1)
$$

Magnitudes of q and s are unaffected by input signs Signs of q and s are derivable from signs of z and d

Will discuss direct signed division later

13.4 Nonrestoring and Signed Division

The cycle time in restoring division must accommodate:
Shifting the registers
Allowing signals to propagate through the adder Determining and storing the next quotient digit
Storing the trial difference, if required
Later events depend on earlier ones in the same cycle, causing a lengthening of the clock cycle

Nonrestoring division to the rescue!
Assume $q_{k-j}=1$ and subtract Store the result as the new PR (the partial remainder can become incorrect, hence the name "nonrestoring")

Justification for Nonrestoring Division

Why it is acceptable to store an incorrect value in the partial-remainder register?

Shifted partial remainder at start of the cycle is u
Suppose subtraction yields the negative result $u-2^{k} d$
Option 1: Restore the partial remainder to correct value u, shift left, and subtract to get $2 u-2^{k} d$

Option 2: Keep the incorrect partial remainder $u-2^{k} d$, shift left, and add to get $2\left(u-2^{k} d\right)+2^{k} d=2 u-2^{k} d$

Decimal Example of Nonrestoring

z	0111	0101117
$2^{4} d$	01010	10×16

No overflow: $(0111)_{\text {two }}<(1010)_{\text {two }}$

$s^{(0)}$	0	0	1	1	1	0	1	0	1
$2 s^{(0)}$	0	1	1	1	0	1	0	1	
$+\left(-2^{4} d\right)$	1	0	1	1	0				
$s^{(1)}$	0	0	1	0	0	1	0	1	
$2 s^{(1)}$	0	1	0	0	1	0	1		
$+\left(-2^{4} d\right)$	1	0	1	1	0				
$s^{(2)}$	1	1	1	1	1	0	1		
$2 s^{(2)}$	1	1	1	1	0	1			
$+2^{4} d$	0	1	0	1	0				
$s^{(3)}$	0	1	0	0	0	1			
$2 s^{(3)}$	1	0	0	0	1				
$+\left(-2^{4} d\right)$	1	0	1	1	0				
$s^{(4)}$	0	0	1	1	1				

Positive,
so subtract
Positive, so set $q_{3}=1$ and subtract

Negative, so set $q_{2}=0$ and add

Positive, so set $q_{1}=1$ and subtract
Positive, so set $q_{0}=1$

Fig. 13.7 Example of nonrestoring unsigned division.

Graphical Depiction of Nonrestoring Division

Example

$(01110101)_{\text {two }} /\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)_{\text {two }}$

(a) Restoring

(b) Nonrestoring

Fig. 13.8 Partial remainder variations for restoring and nonrestoring division.

Convergence of the Partial Quotient to q

Example

$\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 1\end{array} 01\right)_{\text {two }} /\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)_{\text {two }}$
$(117)_{\text {ten }} /(10)_{\text {ten }}=(11)_{\text {ten }}=(1011)_{\text {two }}$

In restoring division, the partial quotient converges to q from below

In nonrestoring division, the partial quotient may overshoot q, but converges to it after some oscillations

Nonrestoring Division with Signed Operands

Restoring division

$q_{k-j}=0$ means no subtraction (or subtraction of 0)
$q_{k-j}=1$ means subtraction of d
Example: $q=$
Nonrestoring division
We always subtract or add
It is as if quotient digits are selected from the set $\{1,-1\}$:
1 corresponds to subtraction -1 corresponds to addition
Our goal is to end up with a remainder that matches the sign of the dividend

This idea of trying to match the sign of s with the sign of z, leads to a direct signed division algorithm

$$
\text { if } \operatorname{sign}(s)=\operatorname{sign}(d) \text { then } q_{k-j}=1 \text { else } q_{k-j}=-1
$$

Quotient Conversion and Final Correction

Partial remainder variation and selected quotient digits during nonrestoring division with $d>0$

Replace-1s with 0s
Shift left, complement MSB, and set LSB to 1 to get the 2 's-complement quotient

Check: $-32+16-8-4+2+1=-25=-64+32+4+2+1$

1	1	0	1	0	0	0

Final correction step if sign(s) $\neq \operatorname{sign}(z)$:
Add d to, or subtract d from, s; subtract 1 from, or add 1 to, q

Nonrestoring Hardware Divider

Fig. 13.10 Shift-subtract sequential nonrestoring divider.

13.5 Division by Constants

Software and hardware aspects:
As was the case for multiplications by constants, optimizing compilers may replace some divisions by shifts/adds/subs; likewise, in custom VLSI circuits, hardware dividers may be replaced by simpler adders

Method 1: Find the reciprocal of the constant and multiply (particularly efficient if several numbers must be divided by the same divisor)

Method 2: Use the property that for each odd integer d, there exists an odd integer m such that $d \times m=2^{n}-1$; hence, $d=\left(2^{n}-1\right) / m$ and

$$
\begin{aligned}
& \frac{z}{d}=\frac{z m}{2^{n}-1}=\frac{\text { Multiplication by constant }}{2^{n}\left(1-2^{-n}\right)}=\frac{z m}{2^{n}}\left(1+2^{-n}\right)\left(1+2^{-2 n}\right)\left(1+2^{-4 n}\right) \ldots
\end{aligned}
$$

Number of shift-adds required is proportional to $\log k$

Example Division by a Constant

Example: Dividing the number z by 5 , assuming 24 bits of precision.
We have $d=5, m=3, n=4 ; 5 \times 3=2^{4}-1$

$$
\begin{aligned}
& \frac{z}{d}=\frac{z m}{2^{n}-1}=\frac{z m}{2^{n}\left(1-2^{-n}\right)}=\frac{z m}{2^{n}}\left(1+2^{-n}\right)\left(1+2^{-2 n}\right)\left(1+2^{-4 n}\right) \cdots \\
& \frac{z}{5}=\frac{3 z}{2^{4}-1}=\frac{3 z}{2^{4}\left(1-2^{-4}\right)}=\frac{3 z}{16}\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right) \cdots
\end{aligned}
$$

Instruction sequence for division by 5

5 shifts

$q \leftarrow z+z$ shift-left $1 \quad\{3 z$ computed $\}$
4 adds
$q \leftarrow q+q$ shift-right $4 \quad\left\{3 z\left(1+2^{-4}\right)\right.$ computed $\}$
$q \leftarrow q+q$ shift-right $8 \quad\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\right.$ computed $\}$
$q \leftarrow q+q$ shift-right 16 $\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right)\right.$ computed $\}$
$q \leftarrow q$ shift-right $4 \quad\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right) / 16\right.$ computed $\}$

Numerical Examples for Division by 5

Instruction sequence for division by 5
$q \leftarrow z+z$ shift-left $1 \quad\{3 z$ computed $\}$
$q \leftarrow q+q$ shift-right $4 \quad\left\{3 z\left(1+2^{-4}\right)\right.$ computed $\}$
$q \leftarrow q+q$ shift-right $8 \quad\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\right.$ computed $\}$
$q \leftarrow q+q$ shift-right $16 \quad\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right)\right.$ computed $\}$
$q \leftarrow q$ shift-right $4 \quad\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right) / 16\right.$ computed $\}$

Computing $29 \div 5(z=29, d=5)$
$87 \leftarrow 29+29$ shift-left $1 \quad\{3 z$ computed\}
$92 \leftarrow 87+87$ shift-right $4 \quad\left\{3 z\left(1+2^{-4}\right)\right.$ computed $\}$
$92 \leftarrow 92+92$ shift-right $8 \quad\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\right.$ computed $\}$
$92 \leftarrow 92+92$ shift-right $16\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right)\right.$ computed $\}$
$5 \leftarrow 92$ shift-right $4 \quad\left\{3 z\left(1+2^{-4}\right)\left(1+2^{-8}\right)\left(1+2^{-16}\right) / 16\right.$ computed $\}$
Repeat the process for computing $30 \div 5$ and comment on the outcome

13.6 Radix-2 SRT Division

SRT division takes its name from Sweeney, Robertson, and Tocher, who independently discovered the method

Fig. 13.11 The new partial remainder, $s^{(j)}$, as a function of the shifted old partial remainder, $2 s^{(j-1)}$, in radix-2 nonrestoring division.

Allowing 0 as a Quotient Digit in Nonrestoring Division

This method was useful in early computers, because the choice $q_{-j}=0$ requires shifting only, which was faster than shift-and-subtract

Fig. 13.12 The new partial remainder, $s^{(j)}$, as a function of the shifted old partial remainder, $2 s^{(j-1)}$, with q_{-j} in $\{-1,0,1\}$.

The Radix-2 SRT Division Algorithm

We use the comparison constants $-1 / 2$ and $1 / 2$ for quotient digit selection $2 s \geq+1 / 2$ means $2 s=(0.1 \times x x x x x x x)_{2 s-c o m p l}$ $2 s<-1 / 2$ means $2 s=(1.0 x x x x x x x x)_{2}^{2 s-c o m p l}$

Fig. 13.13 The relationship between new and old partial remainders in radix-2 SRT division.

Slide 31

Radix-2 SRT Division with Variable Shifts

We use the comparison constants $-1 / 2$ and $1 / 2$ for quotient digit selection For $2 s \geq+1 / 2$ or $2 s=(0.1 \mathrm{xxxxxxxx})_{2 s-c o m p l} \quad \begin{aligned} & \text { choose } q_{-j}=1 \\ & \text { For } 2 s<-1 / 2 \text { or } 2 s=(1.0 \mathrm{xxxxxxxx})_{2}{ }_{2} s-\text { compl } \\ & \text { choose } \\ & q_{-j}=-1\end{aligned}$

Choose $q_{-j}=0$ in other cases, that is, for:

$$
\begin{aligned}
& 0 \leq 2 s<+1 / 2 \text { or } 2 s=(0.0 x x x x x x x x)_{2}{ }_{2} s-c o m p l \\
& -1 / 2 \leq 2 s<0 \text { or } 2 s=(1.1 \times x \times x \times x \times x)_{2 \text { 's-compl }}
\end{aligned}
$$

Observation: What happens when the magnitude of $2 s$ is fairly small?

$$
2 s=(0.00001 \mathrm{xxxx})_{2 \text { 's-compl }}
$$

Choosing $q_{-j}=0$ would lead to the same condition in the next step; generate 5 quotient digits 00001

$$
2 s=(1.1110 x x x x x)_{2}^{2 s-c o m p l}
$$

Generate 4 quotient digits 000 -1
Use leading 0s or leading 1s detection circuit to determine how many quotient digits can be spewed out at once
Statistically, the average skipping distance will be 2.67 bits

In $[-1 / 2,1 / 2)$, so okay		
	0100	0101
d	0.1010	
-d	1.0110	
${ }^{(0)}$	0.0100	0101
$2 s^{(0)}$	0.1000	101
+(-d)	1.0110	
$s^{(1)}$	1.1110	101
$2 s^{(1)}$	1.1101	
$s^{(2)}=2 s^{(1)}$	1.1101	01
$2 s^{(2)}$	1.1010	1
$s^{(3)}=2 s^{(2)}$	0.1010	1
$2 s^{(3)}$	1.0101	
+d	0.1010	
$s^{(4)}$	1.1111	
+d	0.1010	
$s^{(4)}$	0.1001	
s	0.0000	0101
q	$0.100-1$	
q	0.0110	
May 2015	UCSB	

Example Unsigned Radix-2 SRT Division

0.1 Choose 1
$\geq 1 / 2$, so set $q_{-1}=1$ and subtract
1.0 Choose-1
0.0/1.1 Choose 0

$\ln [-1 / 2,1 / 2)$, so set $q_{-2}=0$
$\ln [-1 / 2,1 / 2)$, so set $q_{-3}=0$
$<-1 / 2$, so set $q_{-4}=-1$
and add
Negative,
so add to correct
Fig. 13.14 Example of unsigned radix-2 SRT division.

Uncorrected BSD quotient
Convert and subtract ulp

Preview of Fast Dividers

(a) $k \times k$ integer multiplication

(b) $2 k / k$ integer division

Multiplication and division as multioperand addition problems.

Like multiplication, division is multioperand addition
Thus, there are but two ways to speed it up:
a. Reducing the number of operands (divide in a higher radix)
b. Adding them faster (keep partial remainder in carry-save form)

There is one complication that makes division inherently more difficult: The terms to be subtracted from (added to) the dividend are not known a priori but become known as quotient digits are computed; quotient digits in turn depend on partial remainders

14 High-Radix Dividers

Chapter Goals

Study techniques that allow us to obtain more than one quotient bit in each cycle (two bits in radix 4, three in radix $8, \ldots$.

Chapter Highlights

Radix $>2 \Rightarrow$ quotient digit selection harder Remedy: redundant quotient representation Carry-save addition reduces cycle time Quotient digit selection Implementation methods and tradeoffs

High-Radix Dividers: Topics

Topics in This Chapter
14.1 Basics of High-Radix Division
14.2 Using Carry-Save Adders
14.3 Radix-4 SRT Division
14.4 General High-Radix Dividers
14.5 Quotient Digit Selection
14.6 Using $p-d$ Plots in Practice

14.1 Basics of High-Radix Division

Radices of practical interest are powers of 2, and perhaps 10

Division with left shifts

$$
\begin{aligned}
s^{(j)}= & r s^{(j-1)}-q_{k-j}\left(r^{k} d\right) & & \text { with } s^{(0)}=z \quad \text { and } \\
& \mid- \text { shift- } & & s^{(k)}=r^{k} s
\end{aligned}
$$

Quotient
Dividend
$z \quad\left(q_{3} q_{2}\right)_{\mathrm{two}} d^{d 1}$
$-\left(q_{1} q_{0}\right)_{\mathrm{two}} \mathrm{d}^{20}$
$\mathrm{~s} \quad$ Remainder
Fig. 14.1
Radix-4 division in dot notation

Difficulty of Quotient Digit Selection

What is the first quotient digit in the following radix-10 division?

The problem with the pencil-and-paper division algorithm is that there is no room for error in choosing the next quotient digit
In the worst case, all k digits of the divisor and $k+1$ digits in the partial remainder are needed to make a correct choice

Suppose we used the redundant signed digit set [-9, 9] in radix 10
Then, we could choose 6 as the next quotient digit, knowing that we can recover from an incorrect choice by using negative digits: $59=6-1$

Examples of High-Radix Division

Radix-4 integer division

${ }_{4}^{4} d$	$\begin{array}{llll} 0 & 123 & 1123 \\ 1203 & \end{array}$
$s^{(0)}$	01231123
$4 S^{(0)}$	01231123
$-q_{3} 4^{4} d$	$01203 \quad\left\{q_{3}=1\right\}$
$s^{(1)}$	0022123
$4 s^{(1)}$	0022123
$-q_{2} 4^{4} d$	$00000 \quad\left\{q_{2}=0\right\}$
$s^{(2)}$	022123
$4 s^{(2)}$	022123
$-q_{1} 4^{4} d$	$01203 \quad\left\{q_{1}=1\right\}$
$s^{(3)}$	10033
$4 s^{(3)}$	10033
$-q_{0} 4^{4} d$	$03012 \quad\left\{q_{0}=2\right\}$
$s^{(4)}$	1021
S	1021
\underline{q}	11012

14.2 Using Carry-Save Adders

Fig. 14.3 Constant thresholds used for quotient digit selection in radix-2 division with q_{k-j} in $\{-1,0,1\}$.

Quotient Digit Selection Based on Truncated PR

Sum part of $2 s^{(j-1)}: \quad u=\left(u_{1} u_{0} \cdot u_{-1} u_{-2} \ldots\right)_{2 \text { s-compl }}$ Carry part of $2 s^{(j-1)}: \quad v=\left(v_{1} v_{0} \cdot v_{-1} v_{-2} \ldots\right)_{2 \text { 's-compl }}$

Approximation to the partial remainder:

$$
t=u_{[-2,1]}+v_{[-2,1]} \quad\{\text { Add the } 4 \mathrm{MSBs} \text { of } u \text { and } v\}
$$

$$
\begin{aligned}
& t:=u_{[-2,1]}+v_{[-2,1]} \\
& \text { if } t<-1 / 2 \\
& \text { then } q_{-j}=-1 \\
& \text { else if } t \geq 0 \\
& \quad \text { then } q_{-j}=1 \\
& \quad \text { else } q_{-j}=0 \\
& \quad \text { endif } \\
& \text { endif }
\end{aligned}
$$

Max error in approximation

$$
<1 / 4+1 / 4=1 / 2
$$

Error in [0, $1 / 2$)

Divider with Partial Remainder in Carry-Save Form

Fig. 14.4 Block diagram of a radix-2 divider with partial remainder in stored-carry form.

Why We Cannot Use Carry-Save PR with SRT Division

Fig. 14.5 Overlap regions in radix-2 SRT division.

14.4 Choosing the Quotient Digits

Fig. 14.3

Fig. 14.6 A $p-d$ plot for radix-2 division with $d \in[1 / 2,1)$, partial remainder in $[-d, d)$, and quotient digits in $[-1,1]$.

Design of the Quotient Digit Selection Logic

Shifted sum =

Shifted carry $=$ $\left(v_{1} v_{0} \cdot v_{-1} v_{-2} \cdots\right)_{2^{\prime} \text { s-compl }}$

Approx shifted PR $=\left(t_{1} t_{0} \cdot t_{-1} t_{-2}\right)_{2 \text { 's-compl }}$

Non0 $=t_{1}{ }^{\prime} \vee t_{0}{ }^{\prime} \vee t_{-1}{ }^{\prime}=\left(t_{1} t_{0} t_{-1}\right)^{\prime}$
Sign $=t_{1}\left(t_{0}{ }^{\prime} \vee t_{-1}{ }^{\prime}\right)$

14.3 Radix-4 SRT Division

Radix-4 fractional division with left shifts and $q_{-j} \in[-3,3]$

$$
s^{(j)}=\begin{aligned}
& 4 s^{(j-1)}-q_{-j} d \\
& \text { |-shift- } \\
& \\
& - \text { subtract--| }
\end{aligned} \quad \text { with } s^{(0)}=z \text { and } s^{(k)}=4^{k} s
$$

Fig. 14.7 New versus shifted old partial remainder in radix-4 division with q_{-j} in $[-3,3]$.

Two difficulties:
How do you choose from among the 7 possible values for q_{-j} ? If the choice is +3 or -3 , how do you form $3 d$?

Building the $p-d$ Plot for Radix-4 Division

Fig. 14.8 A p-d plot for radix-4 SRT division with quotient digit set $[-3,3]$.

Restricting the Quotient Digit Set in Radix 4

Radix-4 fractional division with left shifts and $q_{-j} \in[-2,2]$

$$
s^{(j)}=\underset{\text { l_shift_」 }}{4 s^{(j-1)}-q_{-j} d}
$$

$$
\text { with } s^{(0)}=z \text { and } s^{(k)}=4^{k} s
$$

|-subtract-|

$$
s^{(j)}
$$

Fig. 14.9 New versus shifted old partial remainder in radix-4 division with q_{-j} in $[-2,2]$.

For this restriction to be feasible, we must have:
$s \in[-h d, h d)$ for some $h<1$, and $4 h d-2 d \leq h d$
This yields $h \leq 2 / 3$ (choose $h=2 / 3$ to minimize the restriction)

Building the $p-d$ Plot with Restricted Radix-4 Digit Set

Fig. 14.10 A p-d plot for radix-4 SRT division with quotient digit set $[-2,2]$.

14.4 General High-Radix Dividers

Process to derive the details:
Radix r
Digit set $[-\alpha, \alpha]$ for q_{-j}
Number of bits of p (v and u) and d to be inspected
Quotient digit selection unit (table or logic)
Multiple generation/selection scheme

Conversion of redundant q to 2's complement

Fig. 14.11 Block diagram of radix-r divider with partial remainder in stored-carry form.

Multiple Generation for High-Radix Division

Example: Digit set $[-6,6]$ for $r=8$

Option 1: precompute 3a and 5a
Option 2: generate a multiple $\left|q_{-j}\right| a$ as a set of two numbers, one chosen from $\{0, a, 2 a\}$ and another from $\{0, a, 4 a\}$

14.5 Quotient Digit Selection

Radix- r division with quotient digit set $[-\alpha, \alpha], \alpha<r-1$ Restrict the partial remainder range, say to [-hd, hd) From the solid rectangle in Fig. 15.1, we get $r h d-\alpha d \leq h d$ or $h \leq \alpha /(r-1)$
To minimize the range restriction, we choose $h=\alpha /(r-1)$
Example: $r=4, \alpha=2 \rightarrow h=2 / 3$

Fig. 14.12 The relationship between new and shifted old partial remainders in radix- r division with quotient digits in $[-\alpha,+\alpha]$.

Why Using Truncated p and d Values Is Acceptable

Fig. 14.13 A part of $p-d$ plot showing the overlap region for choosing the quotient digit value β or $\beta+1$ in radix- r division with quotient digit set $[-\alpha, \alpha]$.

Table Entries in the Quotient Digit Selection Logic

Fig. 14.14 A part of $p-d$ plot showing an overlap region and its staircase-like selection boundary.

14.6 Using p-d Plots in Practice

Smallest Δd occurs for the overlap region of α and $\alpha-1$

$$
\Delta d=d^{\min } \frac{2 h-1}{-h+\alpha}
$$

Fig. 14.15 Establishing upper bounds on the dimensions of uncertainty rectangles.

$$
\Delta p=d^{\min }(2 h-1)
$$

Example: Lower Bounds on Precision

$\Delta d=d^{\min } \frac{2 h-1}{-h+\alpha}$
$\Delta p=d^{\min }(2 h-1)$

For $r=4$, divisor range $[0.5,1$), digit set [$-2,2$], we have $\alpha=2$, $d^{\text {min }}=1 / 2, h=\alpha /(r-1)=2 / 3$

$$
\Delta d=(1 / 2) \frac{4 / 3-1}{-2 / 3+2}=1 / 8
$$

$$
\Delta p=(1 / 2)(4 / 3-1)=1 / 6
$$

Because $1 / 8=2^{-3}$ and $2^{-3} \leq 1 / 6<2^{-2}$, we must inspect at least 3 bits of $d(2$, given its leading 1$)$ and 3 bits of p
These are lower bounds and may prove inadequate In fact, 3 bits of p and 4 (3) bits of d are required
With p in carry-save form, 4 bits of each component must be inspected

Upper Bounds for Precision

Theorem: Once lower bounds on precision are determined based on Δd and Δp, one more bit of precision in each direction is always adequate

Proof: Let w be the spacing of vertical grid lines
$w \leq \Delta d / 2$
$\Rightarrow \quad v \leq \Delta p / 2$
\Rightarrow
$u \geq \Delta p / 2$

Some Implementation Details

Fig. 14.16 The asymmetry of quotient digit selection process.

Fig. 14.17 Example of $p-d$ plot allowing larger uncertainty rectangles, if the 4 cases marked with asterisks are handled as exceptions.

A Complete $p-d$ Plot

Radix $r=4$
q_{-j} in $[-2,2]$
d in $[1 / 2,1)$
p in $[-8 / 3,8 / 3]$

Explanation of the Pentium division bug

15 Variations in Dividers

Chapter Goals

Discuss some variations in implementing division schemes and cover combinational, modular, and merged hardware dividers

Chapter Highlights

Prescaling simplifies q digit selection Overlapped q digit selection
Parallel hardware (array) dividers Shared hardware in multipliers/dividers Square-rooting not special case of division

Variations in Dividers: Topics

Topics in This Chapter
15.1 Division with Prescaling
15.2 Overlapped Quotient Digit Selection
15.3 Combinational and Array Dividers
15.4 Modular Dividers and Reducers
15.5 The Special Case of Reciprocation
15.6 Combined Multiply/Divide Units

15.1 Division with Prescaling

Overlap regions of a $p-d$ plot are wider toward the high end of the divisor range

If we can restrict the magnitude of the divisor to an interval close to $d^{\text {max }}$ (say $1-\varepsilon<d<1+\delta$, when $d^{\text {max }}=1$), quotient digit selection may become simpler Thus, we perform the division (zm)/(dm) for a suitably chosen scale factor $m(m>1)$

Prescaling (multiplying z and d by m) should be done without real multiplications

Restricting the divisor to the shaded area simplifies quotient digit selection.

Examples of Prescaling

Example 1: Unsigned divisor d in $[1 / 2,1)$ When $d \in[1 / 2,3 / 4)$, multiply by $11 / 2[d$ begins $0.10 \ldots]$ The prescaled divisor will be in $[1-1 / 4,1+1 / 8)$

Example 2: Unsigned divisor d in $[1 / 2,1)$
Case $d \in$
[1/2, $9 / 16$), it begins with $0.1000 \ldots$, multiply by 2
$[9 / 16,5 / 8)$, it begins with $0.1001 \ldots$, multiply by $1+1 / 2$
$[5 / 8,3 / 4)$, it begins with $0.101 \ldots$, multiply by $1+1 / 2$
$[3 / 4,1)$, it begins with $0.11 \ldots$, multiply by $1+1 / 8$

$$
\begin{aligned}
& {[1 / 2,9 / 16) \times 2=[1,1+1 / 8)} \\
& {[9 / 16,5 / 8) \times(1+1 / 2)=[1-5 / 32,1-1 / 16)} \\
& {[5 / 8,3 / 4) \times(1+1 / 2)=[1-1 / 16,1+1 / 8)} \\
& {[3 / 4,1) \times(1+1 / 8)=[1-5 / 32,1+1 / 8)}
\end{aligned}
$$

The prescaled divisor will be in $[1-5 / 32,1+1 / 8)$

15.2 Overlapped Quotient Digit Selection

Alternative to high-radix design when q digit selection is too complex

Compute the next partial remainder and resulting q digit for all possible choices of the current q digit

This is the same idea as carry-select addition

Speculative computation (throw transistors at the delay problem) is common in modern systems

Fig. 15.1 Overlapped radix-2 quotient digit selection for radix-4 division. A dashed line represents a signal pair that denotes a quotient digit value in $[-1,1]$.

15.3 Combinational and Array Dividers

Can take the notion of overlapped q digit selection to the extreme of selecting all q digits at once \rightarrow Exponential complexity

By contrast, a fully combinational tree multiplier has $O(\log k)$ latency and $O\left(k^{2}\right)$ cost $O(k \log k)$ conjectured

Can we do as well as multipliers, or at least better than exponential cost, for logarithmic-time dividers?

Complexity theory results: It is possible to design dividers

with	$O(\log k)$ latency	and	$O\left(k^{4}\right) \operatorname{cost}$
with	$O(\log k \log \log k)$ latency	and	$O\left(k^{2}\right) \operatorname{cost}$

These theoretical constructions have not led to practical designs

Restoring Array Divider

Fig. 15.7 Restoring array divider composed of controlled subtractor cells.

Divisor
Quotient $\mathrm{q}=. \mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3}$
Remainder $s=.0{ }_{0}^{1} \underline{S}_{4} \underline{s}_{5} \underline{s}_{6}$

Slide 66

Nonrestoring Array Divider

Fig. 15.8 Nonrestoring array divider built of controlled add/subtract cells.

Dividend
Divisor
Quotien
Remainder $\mathrm{s}=0.0 \mathrm{O}_{\mathrm{o}} \mathrm{s}-\S-\$-5-6$

Speedup Methods for Array Dividers

However, we still need to know the carry/borrow-out from each row Solution: Insert a carry-lookahead circuit between successive rows Not very cost-effective; thus not used in practice

15.4 Modular Dividers and Reducers

Given dividend z and divisor d, with $d \geq 0$, a modular divider computes

$$
q=\lfloor z / d\rfloor \quad \text { and } \quad s=z \bmod d=\langle z\rangle_{d}
$$

The quotient q is, by definition, an integer but the inputs z and d do not have to be integers; the modular remainder is always positive

Example:

$$
\lfloor-3.76 / 1.23\rfloor=-4 \quad \text { and } \quad\langle-3.76\rangle_{1.23}=1.16
$$

The quotient and remainder of ordinary division are -3 and -0.07
A modular reducer computes only the modular remainder and is in many cases simpler than a full-blown divider

Montgomery Modular Reduction

Very efficient for reducing large numbers (100s of bits wide)
The radix-2 version below is suitable for low-cost hardware realization Software versions are based on radix 2^{32} or 2^{64} (1 word $=1$ digit)

Problem: Compute $q=\operatorname{ax} \bmod m$, where $m<2^{k}$

Straightforward solution: Compute ax as usual; then reduce $\bmod m$ Incremental reduction after adding each partial product is more efficient

Assume a, x, q, and other values are k-bit pseudoresidues (can be $>m$)
Pick R such that $R=1 \bmod m$
Montgomery multiplication computes $\operatorname{axR^{-1}} \bmod m$, instead of $a x \bmod m$ Represent any number y as $y R$ mod m (known as the M-code for y) $R=1$ mod m ensures that numbers in $[0, m-1]$ have distinct M-codes Multiplication: $t=(a R)(x R) R^{-1} \bmod m=(a x) R \bmod m=M$-code for ax Initial conversion: Find $y R$ by applying Montgomery's method to y and R^{2} Final reconversion: Find y from $t=y R$ by M-multiplying 1 and t

Example Montgomery Modular Multiplication

$\begin{array}{lllll}a^{4} x & 1 & 0 & 1 & 0 \\ \underline{2}^{4} \times & 1 & 1 & 1\end{array}$		$\begin{array}{llll}1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1\end{array}$	Fig. 15.4
$p_{(0)} \quad 0000$	p (0)	0000	
+ $\times 0 \mathrm{a}$ (1010	+ $\times 0 \mathrm{a}$	1010	
$2 p(1) \quad 010010$	$2 p(1)$	01010	Even
	$p(1)$	0101	
+x1a 1010	+ $\times 1 \mathrm{a}$	1010	
$2 p_{(2)} \quad 0 \begin{array}{lllllll} & 1 & 1 & 1 & 1 & 0\end{array}$	$2 p(2)$	01111	Odd
$\begin{array}{llllllllll}p(2) & 0 & 1 & 1 & 1 & 1 & 0\end{array}$	+13	1101	
+x2a 0000			
$2 p_{(3)} \quad 00001111010$	${ }_{p(2)}^{2 p(2)}$	$\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ & 1 & 1 & 1 & 0\end{array}$	
$\begin{array}{llllllllll}p(3) & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}$	+ +2	0000	
+хза 1010			
	$2 p$ (3)	01110	Even
$\begin{array}{lllllllllll}2 p(4) & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ p(4)\end{array}$	$p(3)$ $+\chi 3$	$\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0\end{array}$	
(a) Ordinary	$2 p(4)$	1000	Odd
Example: $r=2 ; m=13$;	+13	110	
$R=16=r^{4} ; R^{-1}=9 \mathrm{mod} 13$	$2 p(4)$	1110	
(because $16 \times 9=1 \bmod 13$)	$\underline{p}(\underline{4})$	$=-===1$ =	(b) Mod 13

Advantages of Montgomery's Method

Standard reduction is based on subtracting a multiple of m from the result depending on the most significant bit(s)

However, MSBs are not readily known if we use carry-save numbers
In Montgomery reduction, the decision is based on LSB(s), thus allowing the use of carry-save arithmetic as well as parallel processing

15.5 The Special Case of Reciprocation

(a) Squaring

(b) Square-rooting?

(c) Reciprocation

Fig. 15.5 Square-rooting is not a special case of division, but reciprocation is.

Key question: Is reciprocation any faster than division?
Answer: Not if a conventional digit recurrence algorithm is used

Doubling the Speed of Reciprocation

$Q \approx 1 / d$ with error $\leq 2^{-k / 2}$
$t=Q(2-Q d) \approx 1 / d ;$ error $\leq 2^{-k}$

$$
\begin{array}{lrl}
s^{(j+1)} & =2 s^{(0)}-q_{-j} d, \quad \text { with } 2 s^{(0)}=1 \\
t^{(j+1)} & =4 t^{(j)}+q_{-j}\left(4 s^{(j)}-q_{-j} d\right), \text { with } t^{(0)}=0
\end{array}
$$

Fig. 15.6 Hybrid evaluation of the reciprocal $1 / d$ by an approximate reciprocation stage and a refinement stage that operate concurrently.

15.6 Combined Multiply/Divide Units

Similarity of blocks in multipliers and dividers (only shift direction is different)

Fig. 9.4
Fig. 13.10

Single Unit for Sequential Multiplication and Division

The control unit proceeds through necessary steps for multiplication or division (including using the appropriate shift direction)

The slight speed penalty owing to a more complex control unit is insignificant

Fig. 15.9 Sequential radix-2 multiply/divide unit.

Similarities of Array Multipliers and Array Dividers

Fig. 11.4

Fig. 15.8

Single Unit for Array Multiplication and Division

Each cell within the array can act as a modified adder or modified subtractor based on control input values

In some designs, squaring and square-rooting functions are also included within the same array

Fig. 15.10 I/O specification of a universal circuit that can act as an array multiplier or array divider.

16 Division by Convergence

Chapter Goals

Show how by using multiplication as the basic operation in each division step, the number of iterations can be reduced

Chapter Highlights

Digit-recurrence as convergence method Convergence by Newton-Raphson iteration Computing the reciprocal of a number Hardware implementation and fine tuning

Division by Convergence: Topics

Topics in This Chapter
16.1 General Convergence Methods
16.2 Division by Repeated Multiplications
16.3 Division by Reciprocation
16.4 Speedup of Convergence Division
16.5 Hardware Implementation
16.6 Analysis of Lookup Table Size

16.1 General Convergence Methods

Sequential digit-at-a-time (binary or high-radix) division can be viewed as a convergence scheme

As each new digit of $q=z / d$ is determined, the quotient value is refined, until it reaches the final correct value

Convergence is from below in restoring division and oscillating in nonrestoring division

Meanwhile, the remainder
$s=z-q \times d$ approaches 0 ; the scaled remainder is kept in a certain range, such as [-d, d)

Elaboration on Scaled Remainder in Division

The partial remainder $s^{(i)}$ in division recurrence isn't the true remainder but a version scaled by 2^{j}

Division with left shifts

$$
\begin{array}{ll}
s^{(0)}=\underset{|-s h i f t-|}{2 s^{(j-1)}-q_{k-j}}\left(2^{k} d\right) & \begin{array}{l}
\text { with } s^{(0)}=z \text { and } \\
s^{(k)}=2^{k} s
\end{array}
\end{array}
$$

Quotient digit selection keeps the scaled remainder bounded (say, in the range $-d$ to d) to ensure the convergence of the true remainder to 0

Slide 82

Recurrence Formulas for Convergence Methods

$$
\begin{aligned}
& u^{(i+1)}=f\left(u^{(i)}, v^{(i)}\right) \longrightarrow \text { Constant } \longleftarrow u^{(i+1)}=f\left(u^{(i)}, v^{(i)}, w^{(i)}\right) \\
& v^{(i+1)}=g\left(u^{(i)}, v^{(i)} \longrightarrow \begin{array}{c}
\text { Desired } \longleftarrow v^{(i+1)}
\end{array}=g\left(u^{(i)}, v^{(i)}, w^{(i)}\right)\right. \\
& \text { function } \longleftarrow w^{(i+1)}=h\left(u^{(i)}, v^{(i)}, w^{(i)}\right)
\end{aligned}
$$

Guide the iteration such that one of the values converges to a constant (usually 0 or 1)

The other value then converges to the desired function

The complexity of this method depends on two factors:
a. Ease of evaluating f and g (and h)
b. Rate of convergence (number of iterations needed)

16.2 Division by Repeated Multiplications

Motivation: Suppose add takes 1 clock and multiply 3 clocks; 64 -bit divide takes 64 clocks in radix 2,32 in radix 4
\rightarrow Divide via multiplications faster if 10 or fewer needed
Idea:

$$
q=\frac{z}{d}=\frac{z x^{(0)} x^{(1)} \cdots x^{(m-1)}}{d x^{(0)} x^{(1)} \cdots x^{(m-1)}} \longrightarrow \text { Converges to } q
$$

Remainder often not needed, but can be obtained by another multiplication if desired: $s=z-q d$

To turn the identity into a division algorithm, we face three questions:

1. How to select the multipliers $x^{(i)}$?
2. How many iterations (pairs of multiplications)?
3. How to implement in hardware?

Formulation as a Convergence Computation

$$
\begin{aligned}
& \text { Idea: } \\
& q=\frac{z}{d}=\frac{z x^{(0)} x^{(1)} \cdots x^{(m-1)}}{d x^{(0)} x^{(1)} \cdots x^{(m-1)}} \longrightarrow \text { Converges to } q \\
& d^{(i+1)}=d^{(i)} x^{(i)} \quad \text { Set } d^{(0)}=d \text {; make } d^{(m)} \text { converge to } 1 \\
& z^{(i+1)}=z^{(i)} x^{(i)} \quad \text { Set } z^{(0)}=z \text {; obtain } z / d=q \cong z^{(m)} \\
& \text { Question 1: How to select the multipliers } x^{(i)} \text { ? } \quad x^{(i)}=2-d^{(i)}
\end{aligned}
$$

This choice transforms the recurrence equations into:

$$
\begin{array}{ll}
d^{(i+1)}=d^{(i)}\left(2-d^{(i)}\right) & \text { Set } d^{(0)}=d \text {; iterate until } d^{(m)} \cong 1 \\
z^{(i+1)}=z^{(i)}\left(2-d^{(i)}\right) & \text { Set } z^{(0)}=z ; \text { obtain } z / d=q \cong z^{(m)} \\
u^{(i+1)}=f\left(u^{(i)}, v^{(i)}\right. & \\
v^{(i+1)}=g\left(u^{(i)}, v^{(i)}\right) & \text { Fits the general form }
\end{array}
$$

Determining the Rate of Convergence

$d^{(i+1)}=d^{(i)}\left(2-d^{(i)}\right) \quad$ Set $d^{(0)}=d$; make $d^{(m)}$ converge to 1
$z^{(i+1)}=z^{(i)}\left(2-d^{(i)}\right) \quad$ Set $z^{(0)}=z$; obtain $z / d=q \cong z^{(m)}$
Question 2: How quickly does $d^{(i)}$ converge to 1 ?
We can relate the error in step $i+1$ to the error in step i :
$d^{(i+1)}=d^{(i)}\left(2-d^{(i)}\right)=1-\left(1-d^{(i)}\right)^{2}$
$1-d^{(i+1)}=\left(1-d^{(i)}\right)^{2}$
For $1-d^{(i)} \leq \varepsilon$, we get $1-d^{(i+1)} \leq \varepsilon^{2}$: Quadratic convergence
In general, for k-bit operands, we need
$2 m-1$ multiplications and m 2's complementations
where $m=\left\lceil\log _{2} k\right\rceil$

Quadratic Convergence

Table 16.1 Quadratic convergence in computing z/d by repeated multiplications, where $1 / 2 \leq d=1-y<1$

i	$d^{(i)}=d^{(i-1)} X^{(i-1)}$, with $d^{(0)}=d$						$x^{(i)}=$	$2-$
0	$1-y$	= (.1 xxx	xxxx	xxxx	xxxx)	vo $\geq 1 / 2$		$1+y$
1	$1-y^{2}$	= (.11xx	xxxx	xxxx	xxxx $)_{\text {tw }}$, $\geq 3 / 4$		+ ${ }^{2}$
2	$1-y^{4}$	= (. 1111	xxxx	xxxx	xxxx) ${ }_{\text {two }}$	o $\geq 15 / 16$		+ ${ }^{\text {¢ }}$
3	$1-y^{8}$	= (. 1111	1111	xxxx	xxxx) two	$\geq 255 / 2$		+ ${ }^{\text {l }}$
4	$1-y^{16}$	= (. 1111	1111	111	111) $)_{\text {two }}=$	= $1-u / p$		

Each iteration doubles the number of guaranteed leading 1 s (convergence to 1 is from below)

Beginning with a single $1(d \geq 1 / 2)$, after $\log _{2} k$ iterations we get as close to 1 as is possible in a fractional representation

Graphical Depiction of Convergence to q

Fig. 16.1 Graphical representation of convergence in division by repeated multiplications.

16.3 Division by Reciprocation

The Newton-Raphson method can be used for finding a root of $f(x)=0$

Start with an initial estimate $x^{(0)}$ for the root

Iteratively refine the estimate via the recurrence
$x^{(i+1)}=x^{(i)}-f\left(x^{(i)}\right) / f^{\prime}\left(x^{(i)}\right)$

Fig. 16.2 Convergence to a root of $f(x)=0$ in the Newton-Raphson method.

Computing $1 / d$ by Convergence

$1 / d$ is the root of $f(x)=1 / x-d$
$f^{\prime}(x)=-1 / x^{2}$
Substitute in the Newton-Raphson recurrence $x^{(i+1)}=x^{(i)}-f\left(x^{(i)}\right) / f^{\prime}\left(x^{(i)}\right)$ to get:
$x^{(i+1)}=x^{(i)}\left(2-x^{(i)} d\right)$

One iteration = Two multiplications + One 2's complementation
Error analysis: Let $\delta^{(i)}=1 / d-x(i)$ be the error at the i th iteration
$\delta^{(i+1)}=1 / d-x^{(i+1)}=1 / d-x^{(i)}\left(2-x^{(i)} d\right)=d\left(1 / d-x^{(i)}\right)^{2}=d\left(\delta^{(i)}\right)^{2}$
Because $d<1$, we have $\delta^{(i+1)}<\left(\delta^{(i)}\right)^{2}$

Choosing the Initial Approximation to $1 / d$

With $x^{(0)}$ in the range $0<x^{(0)}<2 / d$, convergence is guaranteed
Justification:

$$
\begin{aligned}
& \left|\delta^{(0)}\right|=\left|x^{(0)}-1 / d\right|<1 / d \\
& \delta^{(1)}=\left|x^{(1)}-1 / d\right|=d\left(\delta^{(0)}\right)^{2}=\left(d \delta^{(0)}\right) \delta^{(0)}<\delta^{(0)}
\end{aligned}
$$

For d in $[1 / 2,1)$:
Simple choice $\quad x^{(0)}=1.5$
Max error $=0.5<1 / d$
Better approx. $\quad x^{(0)}=4(\sqrt{3}-1)-2 d$

$$
=2.9282-2 d
$$

Max error $\cong 0.1$

16.4 Speedup of Convergence Division

$$
q=\frac{z}{d}=\frac{z x^{(0)} x^{(1)} \cdots x^{(m-1)}}{d x^{(0)} x^{(1)} \cdots x^{(m-1)}} \quad \begin{aligned}
& \text { Compute } y=1 / d \\
& \text { Do the multiplication } y z
\end{aligned}
$$

Division can be performed via $2\left\lceil\log _{2} k\right\rceil-1$ multiplications
This is not yet very impressive
64 -bit numbers, 3 -ns multiplier $\Rightarrow 33$-ns division
Three types of speedup are possible:
Fewer multiplications (reduce m)
Narrower multiplications (reduce the width of some $x^{(i)}$ s)
Faster multiplications

Initial Approximation via Table Lookup

Convergence is slow in the beginning: it takes 6 multiplications to get 8 bits of convergence and another 5 to go from 8 bits to 64 bits

Better approx

Approx to $1 / d$

$$
\begin{aligned}
d \underline{x^{(0)} x^{(1)} x^{(2)}=} & (0.11111111 \ldots)_{\text {two }} \\
\vdots & \\
& \text { Read this value, } x^{(0+)}, \text { directly from a table, }, \\
& \text { thereby reducing } 6 \text { multiplications to } 2
\end{aligned}
$$

A $2^{w} \times w$ lookup table is necessary and sufficient for w bits of convergence after 2 multiplications

Example with 4-bit lookup: $d=0.1011$ xxxx $\ldots \quad(11 / 16 \leq d<12 / 16)$ Inverses of the two extremes are $16 / 11 \cong 1.0111$ and $16 / 12 \cong 1.0101$ So, 1.0110 is a good estimate for $1 / d$ $1.0110 \times 0.1011=(11 / 8) \times(11 / 16)=121 / 128=0.1111001$ $1.0110 \times 0.1100=(11 / 8) \times(3 / 4)=33 / 32=1.000010$

Visualizing the Convergence with Table Lookup

Fig. 16.3 Convergence in division by repeated multiplications with initial table lookup.

Convergence Does Not Have to Be from Below

Fig. 16.4 Convergence in division by repeated multiplications with initial table lookup and the use of truncated multiplicative factors.

Using Truncated Multiplicative Factors

Example (64-bit multiplication)
Initial step: Table of size $256 \times 8=2 \mathrm{~K}$ bits Middle steps: Multiplication pairs, with 9 -, 17-, and 33 -bit multipliers Final step: Full 64×64 multiplication

16.5 Hardware Implementation

Repeated multiplications: Each pair of ops involves the same multiplier

$$
\begin{array}{ll}
d^{(i+1)}=d^{(i)}\left(2-d^{(i)}\right) & \text { Set } d^{(0)}=d \text {; iterate until } d^{(m)} \cong 1 \\
z^{(i+1)}=z^{(i)}\left(2-d^{(i)}\right) & \text { Set } z^{(0)}=z ; \text { obtain } z / d=q \cong z^{(m)}
\end{array}
$$

Fig. 16.6 Two multiplications fully overlapped in a 2-stage pipelined multiplier.

Implementing Division with Reciprocation

Reciprocation: Multiplication pairs are data-dependent, so they cannot be pipelined or performed in parallel

$$
x^{(i+1)}=x^{(i)}\left(2-x^{(i)} d\right)
$$

Options for speedup via a better initial approximation
Consult a larger table Resort to a bipartite or multipartite table (see Chapter 24) Use table lookup, followed with interpolation Compute the approximation via multioperand addition

Unless several multiplications by the same multiplier are needed, division by repeated multiplications is more efficient

However, given a fast method for reciprocation (see Section 24.6), using a reciprocation unit with a standard multiplier is often preferred

16.6 Analysis of Lookup Table Size

Table 16.2 Sample entries in the lookup table replacing the first four multiplications in division by repeated multiplications

Address	$d=0.1$ xxxx xxxx	$x^{(0+)}=1 . x_{x x x ~ x x x x}$
55	00110111	10100101
64	01000000	10011001

Example: Table entry at address $55 \quad(311 / 512 \leq d<312 / 512)$
For 8 bits of convergence, the table entry f must satisfy

$$
\begin{gathered}
(311 / 512)(1+. f) \geq 1-2^{-8} \quad(312 / 512)(1+. f) \leq 1+2^{-8} \\
199 / 311 \leq . f \leq 101 / 156 \\
163.81 \leq f=256 \times . f \leq 165.74
\end{gathered}
$$

Two choices: $164=(10100100)_{\text {two }}$ or $165=(10100101)_{\text {two }}$

A General Result for Table Size

Theorem 16.1: To get $w \geq 5$ bits of convergence after the first iteration of division by repeated multiplications, w bits of d (beyond the mandatory 1) must be inspected. The factor $x^{(0+)}$ read out from table is of the form $(1 . x x x \ldots x x x)_{\text {two }}$, with w bits after the radix point

Proof strategy for sufficiency: Represent the table entry $1 . f$ as the integer $v=2^{w} \times . f$ and derive upper/lower bound expressions for it. Then, show that at least one integer exists between v_{lb} and v_{ub}

Proof strategy for necessity: Show that derived conditions cannot be met if the table is of size 2^{k-1} (no matter how wide) or if it is of width $k-1$ (no matter how large)

Excluded cases, w < 5: Practically uninteresting (allow smaller table)
General radix r: Same analysis method, and results, apply

