
May 2015 Computer Arithmetic, Real Arithmetic Slide 1

Part V
Real Arithmetic

 Number Representation
 Numbers and Arithmetic
 Representing Signed Numbers
 Redundant Number Systems
 Residue Number Systems

 Addition / Subtraction
 Basic Addition and Counting
 Carry-Lookahead Adders
 Variations in Fast Adders
 Multioperand Addition

 Multiplication
 Basic Multiplication Schemes
 High-Radix Multipliers
 Tree and Array Multipliers
 Variations in Multipliers

 Division
 Basic Division Schemes
 High-Radix Dividers
 Variations in Dividers
 Division by Convergence

 Real Arithmetic
 Floating-Point Reperesentations
 Floating-Point Operations
 Errors and Error Control
 Precise and Certifiable Arithmetic

 Function Evaluation
 Square-Rooting Methods
 The CORDIC Algorithms
 Variations in Function Evaluation
 Arithmetic by Table Lookup

 Implementation Topics
 High-Throughput Arithmetic
 Low-Power Arithmetic
 Fault-Tolerant Arithmetic
 Past, Present, and Future

 Parts Chapters

I.

II.

III.

IV.

V.

VI.

VII.

 1.
 2.
 3.
 4.

5.
6.
7.
8.

9.
10.
11.
12.

25.
26.
27.
28.

21.
22.
23.
24.

17.
18.
19.
20.

13.
14.
15.
16.

E
le

m
en

ta
ry

 O
pe

ra
tio

ns

28. Reconfigurable Arithmetic

Appendix: Past, Present, and Future

May 2015 Computer Arithmetic, Real Arithmetic Slide 2

About This Presentation

Edition Released Revised Revised Revised Revised
First Jan. 2000 Sep. 2001 Sep. 2003 Oct. 2005 May 2007

May 2008 May 2009

Second May 2010 Apr. 2011 May 2012 May 2015

This presentation is intended to support the use of the textbook
Computer Arithmetic: Algorithms and Hardware Designs (Oxford
U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated
regularly by the author as part of his teaching of the graduate
course ECE 252B, Computer Arithmetic, at the University of
California, Santa Barbara. Instructors can use these slides freely
in classroom teaching and for other educational purposes.
Unauthorized uses are strictly prohibited. © Behrooz Parhami

May 2015 Computer Arithmetic, Real Arithmetic Slide 3

V Real Arithmetic

Topics in This Part
Chapter 17 Floating-Point Representations
Chapter 18 Floating-Point Operations
Chapter 19 Errors and Error Control
Chapter 20 Precise and Certifiable Arithmetic

Review floating-point numbers, arithmetic, and errors:
• How to combine wide range with high precision
• Format and arithmetic ops; the IEEE standard
• Causes and consequence of computation errors
• When can we trust computation results?

May 2015 Computer Arithmetic, Real Arithmetic Slide 4

“According to my calculation,
you should float now ... I think ...” “It’s an inexact science.”

May 2015 Computer Arithmetic, Real Arithmetic Slide 5

17 Floating-Point Representations

Chapter Goals
Study a representation method offering both
wide range (e.g., astronomical distances)
and high precision (e.g., atomic distances)

Chapter Highlights
Floating-point formats and related tradeoffs
The need for a floating-point standard
Finiteness of precision and range
Fixed-point and logarithmic representations

as special cases at the two extremes

May 2015 Computer Arithmetic, Real Arithmetic Slide 6

Floating-Point Representations: Topics

Topics in This Chapter

17.1 Floating-Point Numbers

17.2 The IEEE Floating-Point Standard

17.3 Basic Floating-Point Algorithms

17.4 Conversions and Exceptions

17.5 Rounding Schemes

17.6 Logarithmic Number Systems

May 2015 Computer Arithmetic, Real Arithmetic Slide 7

17.1 Floating-Point Numbers
No finite number system can represent all real numbers
Various systems can be used for a subset of real numbers

Fixed-point w . f
Rational p /q
Floating-point sbe

Logarithmic  logbx

Fixed-point numbers
x = (0000 0000 .0000 1001)two Small number
y = (1001 0000 .0000 0000)two Large number

Low precision and/or range
Difficult arithmetic
Most common scheme
Limiting case of floating-point

Floating-point numbers
x =  s  be or  significand  baseexponent

A floating-point number comes with two signs:
Number sign, usually appears as a separate bit
Exponent sign, usually embedded in the biased exponent

Square of
neither number
representable

x = 1.001  2–5

y = 1.001  2+7

May 2015 Computer Arithmetic, Real Arithmetic Slide 8

Floating-Point Number Format and Distribution

Fig. 17.2 Subranges
and special values in
floating-point number
representations.

E x p o n e n t :
Signed integer,
often represented
as unsigned value
by adding a bias

Range with h bits:
[–bias, 2 –1–bias]h

S i g n i f i c a n d :
Represented as a fixed-point number

Usually normalized by shifting,
so that the MSB becomes nonzero.
In radix 2, the fixed leading 1
can be removed to save one bit;
this bit is known as "hidden 1".

Sign

0 : +
1 : –

± e sFig. 17.1 Typical
floating-point
number format.

Denser Denser Sparser Sparser

Negative numbers
FLP FLP 0 +

–

Overflow
region

Overflow
region

Underflow
regions

Positive numbers

Underflow
example

Overflow
example

Midway
example

Typical
example

min max min max + + – – – +

1.001  2–5

1.001  2+7

May 2015 Computer Arithmetic, Real Arithmetic Slide 9

Floating-Point Before the IEEE Standard
Computer manufacturers tended to have their own hardware-level formats

This created many problems, as floating-point computations could produce
vastly different results (not just differing in the last few significant bits)

In computer arithmetic, we talked about IBM, CDC, DEC, Cray, … formats
and discussed their relative merits

First IEEE standard for binary floating-point arithmetic was adopted in 1985
after years of discussion

The 1985 standard was continuously discussed, criticized, and clarified for
a couple of decades

In 2008, after several years of discussion, a revised standard was issued

To get a sense for the wide variations in floating-point formats, visit:

http://www.mrob.com/pub/math/floatformats.html

May 2015 Computer Arithmetic, Real Arithmetic Slide 10

17.2 The IEEE Floating-Point Standard

Short (32-bit) format

Long (64-bit) format

Sign Exponent Significand

 8 bits,
 bias = 127,
 –126 to 127

 11 bits,
 bias = 1023,
 –1022 to 1023

52 bits for fractional part
(plus hidden 1 in integer part)

23 bits for fractional part
(plus hidden 1 in integer part)

Fig. 17.3 The IEEE standard floating-point
number representation formats.

IEEE 754-2008 Standard
(supersedes IEEE 754-1985)

Also includes half- &
quad-word binary, plus
some decimal formats

May 2015 Computer Arithmetic, Real Arithmetic Slide 11

Overview of IEEE 754-2008 Standard Formats

––
Feature Single /Short Double /Long
––
Word width (bits) 32 64
Significand bits 23 + 1 hidden 52 + 1 hidden
Significand range [1, 2 – 2–23] [1, 2 – 2–52]
Exponent bits 8 11
Exponent bias 127 1023
Zero (0) e + bias = 0, f = 0 e + bias = 0, f = 0
Denormal e + bias = 0, f  0 e + bias = 0, f  0

represents 0.f2–126 represents0.f2–1022

Infinity () e + bias = 255, f = 0 e + bias = 2047, f = 0
Not-a-number (NaN) e + bias = 255, f  0 e + bias = 2047, f  0
Ordinary number e + bias  [1, 254] e + bias  [1, 2046]

e  [–126, 127] e  [–1022, 1023]
represents 1.f  2e represents 1.f  2e

min 2–126  1.2  10–38 2–1022  2.2  10–308

max  2128  3.4  1038  21024  1.8  10308
––

Table 17.1 Some features of the IEEE 754-2008 standard floating-point number representation formats

May 2015 Computer Arithmetic, Real Arithmetic Slide 12

Exponent Encoding

00 01 7F FE FF7E 80
0 1 127 254 255126 128

–126 0 +127–1 +1

Decimal code
Hex code

Exponent value

f = 0: Representation of 0
f  0: Representation of subnormals,

0.f  2–126

f = 0: Representation of 
f  0: Representation of NaNs

Exponent encoding in 8 bits for the single/short (32-bit) IEEE 754 format

Exponent encoding in
11 bits for the double/long
(64-bit) format is similar

Denser Denser Sparser Sparser

Negative numbers
FLP FLP 0 +

–

Overflow
region

Overflow
region

Underflow
regions

Positive numbers

Underflow
example

Overflow
example

Midway
example

Typical
example

min max min max + + – – – +

1.f  2e

May 2015 Computer Arithmetic, Real Arithmetic Slide 13

Special Operands and Subnormals

Operations on special operands:
Ordinary number  (+) = 0
(+)  Ordinary number = 
NaN + Ordinary number = NaN

Biased value
0 1 2 . . . 253 254 255

126 125 . . . 126 127

Ordinary FLP numbers

, NaN0, Subnormal
( 0.f  2–126)

(1.f  2e)

(1.00…01 – 1.00…00)2–126 = 2–149

0 2
–126Denormals 2

–125

.

min

. . .

Fig. 17.4 Subnormals in the IEEE single-precision format.

Subnormals

May 2015 Computer Arithmetic, Real Arithmetic Slide 14

Extended Formats

Short (32-bit) format

Long (64-bit) format

Sign Exponent Significand

 8 bits,
 bias = 127,
 –126 to 127

 11 bits,
 bias = 1023,
 –1022 to 1023

52 bits for fractional part
(plus hidden 1 in integer part)

23 bits for fractional part
(plus hidden 1 in integer part)

 11 bits  32 bits

 15 bits  64 bits

Double extended
[16 382, 16 383]

Single extended
[1022, 1023]

Bias is unspecified,
but exponent range
must include:

Single extended

Double extended

May 2015 Computer Arithmetic, Real Arithmetic Slide 15

Requirements for Arithmetic

Results of the 4 basic arithmetic operations (+, , , )
as well as square-rooting must match those obtained
if all intermediate computations were infinitely precise
That is, a floating-point arithmetic operation should introduce no
more imprecision than the error attributable to the final rounding of
a result that has no exact representation (this is the best possible)

Example:
(1 + 21)  (1 + 223)

Chopped result 1 + 21 + 223 Error = ½ ulp

Exact result 1 + 21 + 223 + 224

Rounded result 1 + 21 + 222 Error = +½ ulp

May 2015 Computer Arithmetic, Real Arithmetic Slide 16

17.3 Basic Floating-Point Algorithms

( s1  be1) + ( s2  be2) = ( s1  be1) + ( s2 /be1–e2)  be1

= ( s1  s2 /be1–e2)  be1 =  s  be

Assume e1  e2; alignment shift (preshift) is needed if e1 > e2

Operands after alignment shift:
 x = 2 1.00101101
 y = 2 0.000111101101

Numbers to be added:
 x = 2 1.00101101
 y = 2 1.11101101

5 


5



Extra bits to be
rounded off

Operand with
smaller exponent
to be preshifted

Result of addition:
 s = 2 1.010010111101
 s = 2 1.01001100 Rounded sum




5

1

5
5

Example:

Addition

Rounding,
overflow,
and
underflow
issues
discussed
later

May 2015 Computer Arithmetic, Real Arithmetic Slide 17

Floating-Point Multiplication and Division

Because s1  s2  [1, 4), postshifting may be needed for normalization

( s1  be1)  ( s2  be2) = ( s1  s2)be1+e2

Multiplication

Overflow or underflow can occur during multiplication or normalization

Because s1 /s2  (0.5, 2), postshifting may be needed for normalization

( s1  be1) / ( s2  be2) = ( s1 /s2)be1e2

Division

Overflow or underflow can occur during division or normalization

May 2015 Computer Arithmetic, Real Arithmetic Slide 18

Floating-Point Square-Rooting

Overflow or underflow is impossible; no postnormalization needed

For e even: s  be = s  be

For e odd: bs  be1 = bs b (e–1) /2

After the adjustment of s to bs and e to e – 1, if needed, we have:

s*  be* = s*  be*

In [1, 4)
for IEEE 754

In [1, 2)
for IEEE 754

Even

May 2015 Computer Arithmetic, Real Arithmetic Slide 19

17.4 Conversions and Exceptions

Conversions from fixed- to floating-point
Conversions between floating-point formats
Conversion from high to lower precision: Rounding

The IEEE 754-2008 standard includes five rounding modes:
Round to nearest, ties away from 0 (rtna)
Round to nearest, ties to even (rtne) [default rounding mode]
Round toward zero (inward)
Round toward + (upward)
Round toward – (downward)

May 2015 Computer Arithmetic, Real Arithmetic Slide 20

Exceptions in Floating-Point Arithmetic

Divide by zero
Overflow
Underflow

Inexact result: Rounded value not the same as original

Invalid operation: examples include
Addition (+) + (–)
Multiplication 0  
Division 0 0 or  
Square-rooting operand < 0

Produce
NaN
as their
results

May 2015 Computer Arithmetic, Real Arithmetic Slide 21

17.5 Rounding Schemes

The simplest possible rounding scheme: chopping or truncation

Fractional partWhole part

xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l yk–1yk–2 . . . y1y0Round

ulp

xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l xk–1xk–2 . . . x1x0Chop

ulp

May 2015 Computer Arithmetic, Real Arithmetic Slide 22

Truncation or Chopping

Fig. 17.5 Truncation or chopping
of a signed-magnitude number
(same as round toward 0).

chop(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.6 Truncation or chopping
of a 2’s-complement number (same
as downward-directed rounding).

chop(x) = down(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

May 2015 Computer Arithmetic, Real Arithmetic Slide 23

Round to Nearest Number

Fig. 17.7 Rounding of a signed-magnitude
value to the nearest number.

Rounding has a slight upward bias.
Consider rounding
(xk–1xk–2 ... x1x0 .x–1x–2)two
to an integer (yk–1yk–2 ... y1y0 .)two

The four possible cases, and their
representation errors are:

x–1x–2 Round Error
00 down 0
01 down –0.25
10 up 0.5
11 up 0.25

With equal prob., mean = 0.125

For certain calculations,
the probability of getting
a midpoint value can be
much higher than 2–l

rtn(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

rtna(x)

May 2015 Computer Arithmetic, Real Arithmetic Slide 24

Round to Nearest Even Number

Fig. 17.8 Rounding to the
nearest even number.

rtne(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Fig. 17.9 R* rounding or rounding
to the nearest odd number.

R*(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

May 2015 Computer Arithmetic, Real Arithmetic Slide 25

A Simple Symmetric Rounding Scheme

Fig. 17.10 Jamming or
von Neumann rounding.

jam(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Chop and force the LSB
of the result to 1

Simplicity of chopping,
with the near-symmetry
or ordinary rounding

Max error is comparable
to chopping (double that
of rounding)

May 2015 Computer Arithmetic, Real Arithmetic Slide 26

ROM Rounding
Fig. 17.11 ROM rounding
with an 8  2 table.

Example: Rounding with a
32  4 table

ROM(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

Rounding result is the same
as that of the round to nearest
scheme in 31 of the 32
possible cases, but a larger
error is introduced when

x3 = x2 = x1 = x0 = x–1 = 1

xk–1 . . . x4x3x2x1x0 . x–1x–2 . . . x–l xk–1 . . . x4y3y2y1y0ROM
ROM dataROM address

May 2015 Computer Arithmetic, Real Arithmetic Slide 27

Directed Rounding: Motivation

We may need result errors to be in a known direction

Example: in computing upper bounds,
larger results are acceptable,
but results that are smaller than correct values
could invalidate the upper bound

This leads to the definition of directed rounding modes
upward-directed rounding (round toward +) and
downward-directed rounding (round toward –)
(required features of IEEE floating-point standard)

May 2015 Computer Arithmetic, Real Arithmetic Slide 28

Directed Rounding: Visualization

Fig. 17.12 Upward-directed
rounding or rounding toward +.

Fig. 17.6 Truncation or chopping
of a 2’s-complement number (same
as downward-directed rounding).

up(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

chop(x) = down(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

May 2015 Computer Arithmetic, Real Arithmetic Slide 29

17.6 Logarithmic Number Systems
Sign-and-logarithm number system: Limiting case of FLP representation

x = ± be  1 e = logb |x|

We usually call b the logarithm base, not exponent base

Using an integer-valued e wouldn’t be very useful, so we consider e to
be a fixed-point number

Sign

Implied radix point

e±
Fixed-point exponent

Fig. 17.13 Logarithmic number representation with
sign and fixed-point exponent.

May 2015 Computer Arithmetic, Real Arithmetic Slide 30

Properties of Logarithmic Representation

The logarithm is often represented as a 2’s-complement number

(Sx, Lx) = (sign(x), log2|x|)

Simple multiplication and division; harder add and subtract

L(xy) = Lx + Ly L(x/y) = Lx – Ly

Example: 12-bit, base-2, logarithmic number system

1 1 0 1 1 0 0 0 1 0 1 1


Sign Radix point

The bit string above represents –2–9.828125  –(0.0011)ten

Number range  (–216, 216); min = 2–16

May 2015 Computer Arithmetic, Real Arithmetic Slide 31

Advantages of Logarithmic Representation

Fig. 1.2 Some of the possible ways of assigning
16 distinct codes to represent numbers.

0 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Unsigned integers

Signed-magnitude

3 + 1 fixed-point, xxx.x

Signed fraction, .xxx

2’s-compl. fraction, x.xxx

2 + 2 floating-point, s  2
 e in [2, 1], s in [0, 3]

2 + 2 logarithmic (log = xx.xx)





Number
format

log x

s e e

May 2015 Computer Arithmetic, Real Arithmetic Slide 32

18 Floating-Point Operations

Chapter Goals
See how adders, multipliers, and dividers
are designed for floating-point operands
(square-rooting postponed to Chapter 21)

Chapter Highlights
Floating-point operation = preprocessing +

exponent and significand arithmetic +
postprocessing (+ exception handling)

Adders need preshift, postshift, rounding
Multipliers and dividers are easy to design

May 2015 Computer Arithmetic, Real Arithmetic Slide 33

Floating-Point Operations: Topics

Topics in This Chapter

18.1 Floating-Point Adders /Subtractors

18.2 Pre- and Postshifting

18.3 Rounding and Exceptions

18.4 Floating-Point Multipliers and Dividers

18.5 Fused-Multiply-Add Units

18.6 Logarithmic Arithmetic Units

May 2015 Computer Arithmetic, Real Arithmetic Slide 34

18.1 Floating-Point Adders/Subtractors

-

( s1  be1) + ( s2  be2) = ( s1  be1) + ( s2 /be1–e2)  be1

= ( s1  s2 /be1–e2)  be1 =  s  be

Assume e1  e2; alignment shift (preshift) is needed if e1 > e2

Operands after alignment shift:
 x = 2 1.00101101
 y = 2 0.000111101101

Numbers to be added:
 x = 2 1.00101101
 y = 2 1.11101101

5 


5



Extra bits to be
rounded off

Operand with
smaller exponent
to be preshifted

Result of addition:
 s = 2 1.010010111101
 s = 2 1.01001100 Rounded sum




5

1

5
5

Example:

Floating-Point Addition Algorithm

Like signs:
Possible 1-position
normalizing right shift
Different signs:
Left shift, possibly
by many positions
Overflow/underflow
during addition or
normalization

May 2015 Computer Arithmetic, Real Arithmetic Slide 35

FLP Addition Hardware

Fig. 18.1 Block diagram of a
floating-point adder/subtractor.

Normalize

Add

Align significands

Unpack

Control
& sign
logic

Add/
Sub

Pack

Operands

Sum/Difference

Significands Exponents Signs

Significand Exponent Sign

x y

s

Sub

Add

Mux

c out c in

Selective complement
and possible swap

 Round and
selective complement

Normalize

Other key parts of the adder:
Significand aligner (preshifter): Sec. 18.2
Result normalizer (postshifter), including

leading 0s detector/predictor: Sec. 18.2
Rounding unit: Sec. 18.3
Sign logic: Problem 18.2

Converting internal to external
representation, if required, must
be done at the rounding stage

Isolate the sign, exponent, significand
Reinstate the hidden 1
Convert operands to internal format
Identify special operands, exceptions

Combine sign, exponent, significand
Hide (remove) the leading 1
Identify special outcomes, exceptions

May 2015 Computer Arithmetic, Real Arithmetic Slide 36

Types of Post-Normalization

Magnitude in [0, 4)

( s1  be1) + ( s2  be2) = ( s1  be1) + ( s2 /be1–e2)  be1

= ( s1  s2 /be1–e2)  be1 =  s  be

In [0, 1) In [1, 2) In [2, 4)

None 1-bit
right shift

Arbitrary
left shift

May 2015 Computer Arithmetic, Real Arithmetic Slide 37

18.2 Pre- and Postshifting

Fig. 18.2 One bit-slice of
a single-stage pre-shifter.

xixi+2 xi+1xi+4 xi+3xi+6 xi+5xi+8 xi+7

yiyi+2 yi+1yi+4 yi+3yi+6 yi+5yi+8 yi+7

LSB

MSB

 4-Bit
 Shift
Amount

y i

x ix i+2 x i+1x i+30x i+31

5
Shift amount 31 30 2 1 0

. . .

32-to-1 Mux
Enable

Fig. 18.3
Four-stage
combinational
shifter for
preshifting
an operand
by 0 to 15 bits.

May 2015 Computer Arithmetic, Real Arithmetic Slide 38

Leading Zeros /Ones Detection or Prediction

Leading zeros prediction, with adder inputs
(0x0.x–1x–2 ...)2’s-compl and (0y0.y–1y–2 ...)2’s-compl

Ways in which leading 0s/1s are generated:

p p . . . p p g a a . . . a a g . . .
p p . . . p p g a a . . . a a p . . .
p p . . . p p a g g . . . g g a . . .
p p . . . p p a g g . . . g g p . . .

Prediction might be done in two stages:
 Coarse estimate, used for coarse shift
 Fine tuning of estimate, used for fine shift

In this way, prediction can be
partially overlapped with shifting

Shift amount
Post-Shifter

Significand
 Adder

 Adjust
Exponent

Count
Leading
0s/1s

Post-Shifter

Significand
 Adder

 Adjust
Exponent

Predict
Leading
0s/1s

Shift amount

Fig. 18.4 Leading zeros/ones
counting versus prediction.

May 2015 Computer Arithmetic, Real Arithmetic Slide 39

18.3 Rounding and Exceptions

Amount of alignment right-shift
One bit: G holds the bit that is shifted out, no precision is lost
Two bits or more: Shifted significand has a magnitude in [0, 1/2)

Unshifted significand has a magnitude in [1, 2)
Difference of aligned significands has a magnitude in (1/2, 2)
Normalization left-shift will be by at most one bit

If a normalization left-shift actually takes place:
R = 0, round down, discarded part < ulp/2
R = 1, round up, discarded part  ulp/2

The only remaining question is establishing whether the discarded part
is exactly ulp/2 (for round to nearest even); S provides this information

Round bit

Adder result = (coutz1z0 . z–1z–2 . . . z–l G R S)2’s-compl

Sticky bitGuard bit
OR of all bits
shifted past RWhy only 3 extra bits?

(1/2, 1)
Shift left

[1, 2)
No shift

May 2015 Computer Arithmetic, Real Arithmetic Slide 40

Floating-Point Adder with Dual Data Paths

Near path Far path

0 or 1 bit preshift
Arbitrary preshift

0 or 1 bit postshift
Arbitrary postshift

Add
Add

Control

Amount of alignment right-shift

One bit: Arbitrary left shift may be needed due to cancellation
Two bits or more: Normalization left-shift will be by at most one bit

Fig. 18.5 Conceptual
view of significand
handling in a dual-path
floating-point adder.

2 or more bits
preshift

May 2015 Computer Arithmetic, Real Arithmetic Slide 41

Implementation of Rounding for Addition

Round to nearest even:

Do nothing if Z–l–1 = 0 or Z–l = Z–l–2 = Z–l–3 = 0
Add ulp = 2–l otherwise

The effect of 1-bit normalization shifts on the rightmost few bits of
the significand adder output is as follows:

Before postshifting (z) . . . z–l+1 z–l | G R S
1-bit normalizing right-shift . . . z–l+2 z–l+1 | z–l G RS
1-bit normalizing left-shift . . . z–l G | R S 0
After normalization (Z) . . . Z–l+1 Z–l | Z–l–1 Z–l–2 Z–l–3

Note that no rounding is needed in case of multibit left-shift,
because full precision is preserved in this case

May 2015 Computer Arithmetic, Real Arithmetic Slide 42

Exceptions in Floating-Point Addition

Overflow/underflow detected by
exponent adjustment block in Fig. 18.1

Overflow can occur only for
normalizing right-shift

Underflow possible only with
normalizing left shifts

Exceptions involving NaNs and invalid
operations handled by unpacking and
packing blocks in Fig. 18.1

Zero detection: Special case of
leading 0s detection

Determining when “inexact” exception
must be signaled left as an exercise

Normalize

Add

Align significands

Unpack

Control
& sign
logic

Add/
Sub

Pack

Operands

Sum/Difference

Significands Exponents Signs

Significand Exponent Sign

x y

s

Sub

Add

Mux

c out c in

Selective complement
and possible swap

 Round and
selective complement

Normalize

May 2015 Computer Arithmetic, Real Arithmetic Slide 43

18.4 Floating-Point Multipliers and Dividers

Fig. 18.6 Block diagram of a
floating-point multiplier (divider).

Speed considerations
Many multipliers produce the lower half
of the product (rounding info) early

Need for normalizing right-shift is known
at or near the end

Hence, rounding can be integrated in
the generation of the upper half,
by producing two versions of these bits

s1  s2  [1, 4): may need postshifting

( s1  be1)  ( s2  be2) = ( s1  s2)be1+e2

XOR Add
Exponents

Unpack

Normalize
 Adjust
Exponent

Round

Normalize

Pack

 Multiply
Significands

Floating-point operands

Product

 Adjust
Exponent

Overflow or underflow can occur during
multiplication or normalization

May 2015 Computer Arithmetic, Real Arithmetic Slide 44

XOR Subtract
Exponents

Unpack

Normalize
 Adjust
Exponent

Round

Normalize

Pack

 Divide
Significands

Floating-point operands

Quotient

 Adjust
Exponent

Floating-Point Dividers

Rounding considerations
Quotient must be produced with two
extra bits (G and R), in case of the need
for a normalizing left shift

The remainder acts as the sticky bit

s1 /s2  (0.5, 2): may need postshifting

( s1  be1) / ( s2  be2) = ( s1 /s2)be1e2

Overflow or underflow can occur during
division or normalization

Note: Square-rooting never leads to
overflow or underflow

Fig. 18.6 Block diagram of a
floating-point multiplier (divider).

May 2015 Computer Arithmetic, Real Arithmetic Slide 45

18.5 Fused-Multiply-Add Units

Application 1: Polynomial evaluation
f(z) = c(n–1)zn–1 + c(n–2)zn–2 + . . . + c(1)z + c(0)

s := s z + c(j) for j from n – 1 downto 0; initialize s to 0

Multiply-add operation: p = ax + b
The most useful operation beyond the five basic ones

Application 2: Dot-product computation
u . v = u(0)v(0) + u(1)v(1) + . . . + u(n–1)v(n–1)

s := s + u(j)v(j) for j from 0 upto n – 1; initialize s to 0

Straightforward implementation: Use a multiplier that keeps its
entire double-width product, followed by a double-width adder

May 2015 Computer Arithmetic, Real Arithmetic Slide 46

Design of a Fast FMA Unit

Fig. 18.7 Block diagram
of a fast FMA unit.

Can act as a simple
adder (x = 1) or
multiplier (b = 0)

Multiply-add operation:
p = ax + b

. . .

Exponentssa

Alignment
preshift

ax in
stored-
carry
form

Carry-save
adder tree

Multiples formation

Adder

Normalization

To rounding

Leading
0s/1s

prediction

ea + ex – eb

Preshift
may be to
right or left

Carry-save adder

sx sbSignificands

Optimization 1

Optimization 2

Optimization 3

May 2015 Computer Arithmetic, Real Arithmetic Slide 47

18.6 Logarithmic Arithmetic Unit

Multiply/divide algorithm in LNS
log(x y) = log x + log y
log(x /y) = log x – log y

Add/subtract algorithm in LNS
(Sx, Lx)  (Sy, Ly) = (Sz, Lz)

Assume x > y > 0 (other cases are similar)

Lz = log z = log(x  y) = log(x(1  y/x)) = log x + log(1  y/x)

Given  = – (log x – log y), the term log(1  y/x) = log(1 ± log–1)
is obtained from a table (two tables + and – needed)

log(x + y) = log x + +()
log(x – y) = log x + –()

May 2015 Computer Arithmetic, Real Arithmetic Slide 48

Four-Function Logarithmic Arithmetic Unit

Fig. 18.8 Arithmetic unit for a logarithmic number system.

log(x + y) = log x + +()
log(x – y) = log x + –()

log(x y) = log x + log y
log(x / y) = log x – log y

Log of the scale factor m which allows values
in [0, 1] to be represented as unsigned log’s

Add/
Sub

Lx > Ly?

Add/
Sub

ROM for
+, –

Lm

Lx

Ly

Sx
Sy

Lz

Sz

Muxes

0
1

0
1

Control

Add/Sub1

Add/Sub2

Address Data

op

May 2015 Computer Arithmetic, Real Arithmetic Slide 49

LNS Arithmetic for Wider Words
log(x + y) = log x + +()
log(x – y) = log x + –()

+ is well-behaved; easy to interpolate
– causes difficulties in [–1, 0]

Use nonuniform
segmentation for
direct table lookup
or for a scheme
based on linear
interpolation

10xxx.xxxxxxx
110xx.xxxxxxx
1110x.xxxxxxx
11110.xxxxxxx
11111.0xxxxxx
. . .

May 2015 Computer Arithmetic, Real Arithmetic Slide 50

19 Errors and Error Control

Chapter Goals
Learn about sources of computation errors,
consequences of inexact arithmetic,
and methods for avoiding or limiting errors

Chapter Highlights
Representation and computation errors
Absolute versus relative error
Worst-case versus average error
Why 3 (1/3) does not necessarily yield 1
Error analysis and bounding

May 2015 Computer Arithmetic, Real Arithmetic Slide 51

Errors and Error Control: Topics

Topics in This Chapter

19.1 Sources of Computational Errors

19.2 Invalidated Laws of Algebra

19.3 Worst-Case Error Accumulation

19.4 Error Distribution and Expected Errors

19.5 Forward Error Analysis

19.6 Backward Error Analysis

May 2015 Computer Arithmetic, Real Arithmetic Slide 52

19.1 Sources of Computational Errors

FLP approximates exact computation with real numbers

Two sources of errors to understand and counteract:

Representation errors

e.g., no machine representation for 1/3, 2, or 

Arithmetic errors

e.g., (1 + 2–12)2 = 1 + 2–11 + 2–24

not representable in IEEE 754 short format

We saw early in the course that errors due to finite precision
can lead to disasters in life-critical applications

May 2015 Computer Arithmetic, Real Arithmetic Slide 53

Example Showing Representation and Arithmetic Errors

Precise result = 1/9900  1.010  10–4 (error  10–8 or 0.01%)

Example 19.1: Compute 1/99 – 1/100, using a decimal floating-point
format with 4-digit significand in [1, 10) and single-digit signed exponent

x = 1/99  1.010  10–2 Error  10–6 or 0.01%

y = 1/100 = 1.000  10–2 Error = 0

z = x –fp y = 1.010  10–2 – 1.000  10–2 = 1.000  10–4

Error  10–6 or 1%

Chopped to 3 decimals

May 2015 Computer Arithmetic, Real Arithmetic Slide 54

Notation for a General Floating-Point System

Number representation in FLP(r, p, A)
Radix r (assume to be the same as the exponent base b)
Precision p in terms of radix-r digits
Approximation scheme A  {chop, round, rtne, chop(g), . . .}

Let x = r es be an unsigned real number, normalized such that 1/r  s < 1,
and assume xfp is the representation of x in FLP(r, p, A)

xfp = r e sfp = (1 + )x  is the relative representation error
A = chop –ulp < sfp – s  0 –r  ulp <   0
A = round –ulp/2 < sfp – s  ulp/2     r  ulp/2

Arithmetic in FLP(r, p, A)
Obtain an infinite-precision result, then chop, round, . . .

Real machines approximate this process by keeping g > 0 guard digits,
thus doing arithmetic in FLP(r, p, chop(g))

May 2015 Computer Arithmetic, Real Arithmetic Slide 55

Error Analysis for Multiplication and Division

Errors in floating-point division
Again, consider positive operands xfp and yfp

xfp /fp yfp = (1 + ) xfp yfp
= (1 + )(1 + )x / [(1 + )y]
= (1 + )(1 + )(1 – )(1 + 2)(1 + 4)(. . .)xy
 (1 +  +  – )x /y

Errors in floating-point multiplication
Consider the positive operands xfp and yfp

xfp fp yfp = (1 + )xfpyfp
= (1 + )(1 + )(1 + )xy
= (1 +  +  +  +  +  +  + )xy
 (1 +  +  + )xy

May 2015 Computer Arithmetic, Real Arithmetic Slide 56

Error Analysis for Addition and Subtraction

Errors in floating-point addition
Consider the positive operands xfp and yfp

xfp +fp yfp = (1 + )(xfp+ yfp)
= (1 + )(x + x + y + y)

x + y
= (1 + )(1 +)(x + y)

x + y

Errors in floating-point subtraction
Again, consider positive operands xfp and yfp

xfp fp yfp = (1 + )(xfpyfp)
= (1 + )(x + x  y  y)

x  y
= (1 + )(1 +)(x  y)

x  y

Magnitude of this ratio
is upper-bounded by
max(| | |, |  |), so the
overall error is no more
than | | + max(| | |, |  |)

Magnitude of this ratio
can be very large if x and
y are both large but x – y
is relatively small (recall
that  can be negative)

This term also
unbounded
for subtraction

May 2015 Computer Arithmetic, Real Arithmetic Slide 57

Cancellation Error in Subtraction
x  y

xfp fp yfp = (1 + )(1 +)(x  y) Subtraction result
x  y

Example 19.2: Decimal FLP system, r = 10, p = 6, no guard digit

x = 0.100 000 000  103 y = –0.999 999 456  102

xfp = .100 000  103 yfp = – .999 999  102

x + y = 0.544  10–4 and xfp + yfp = 0.1  10–3

xfp +fp yfp = 0.100 000  103 fp 0.099 999  103 = 0.100 000  102

Relative error = (10–3 – 0.54410–4) / (0.54410–4)  17.38 = 1738%

Now, ignore representation errors, so as to focus on the effect of 
(measure relative error with respect to xfp + yfp, not x + y)

Relative error = (10–3 – 10–4) / 10–4 = 9 = 900%

May 2015 Computer Arithmetic, Real Arithmetic Slide 58

Bringing Cancellation Errors in Check
x  y

xfp fp yfp = (1 + )(1 +)(x  y) Subtraction result
x  y

Example 19.2 (cont.): Decimal FLP system, r = 10, p = 6, 1 guard digit

x = 0.100 000 000  103 y = –0.999 999 456  102

xfp = .100 000  103 yfp = – .999 999  102

x + y = 0.544  10–4 and xfp + yfp = 0.1  10–3

xfp +fp yfp = 0.100 000  103 fp 0.099 999 9  103 = 0.100 000  103

Relative error = (10–4 – 0.54410–4) / (0.54410–4)  0.838 = 83.8%

Now, ignore representation errors, so as to focus on the effect of 
(measure relative error with respect to xfp + yfp, not x + y)

Relative error = 0 Significantly better than 900%!

May 2015 Computer Arithmetic, Real Arithmetic Slide 59

How Many Guard Digits Do We Need?
x  y

xfp fp yfp = (1 + )(1 +)(x  y) Subtraction result
x  y

Theorem 19.1: In the floating-point system FLP(r, p, chop(g)) with g  1
and –x < y < 0 < x, we have:

xfp +fp yfp = (1 + )(xfp + yfp) with –r –p+1 <  < r–p–g+2

So, a single guard digit is sufficient to make the relative arithmetic
error in floating-point addition or subtraction comparable to relative
representation error with truncation

Corollary: In FLP(r, p, chop(1))

xfp +fp yfp = (1 + )(xfp + yfp) with    < –r –p+1

May 2015 Computer Arithmetic, Real Arithmetic Slide 60

19.2 Invalidated Laws of Algebra

Many laws of algebra do not hold for floating-point arithmetic
(some don’t even hold approximately)

This can be a source of confusion and incompatibility

Associative law of addition: a + (b + c) = (a + b) + c
a = 0.123 41  105 b = –0.123 40  105 c = 0.143 21  101

a +fp (b +fp c)
= 0.123 41  105 +fp (–0.123 40  105 +fp 0.143 21  101)
= 0.123 41  105 –fp 0.123 39  105

= 0.200 00  101

(a +fp b) +fp c
= (0.123 41  105 –fp 0.123 40  105) +fp 0.143 21  101

= 0.100 00  101 +fp 0.143 21  101

= 0.243 21  101

Results
differ
by more
than
20%!

May 2015 Computer Arithmetic, Real Arithmetic Slide 61

Elaboration on the Non-Associativity of Addition

Denser Denser Sparser Sparser

Negative numbers
FLP FLP 0 +

–

Overflow
region

Overflow
region

Underflow
regions

Positive numbers

Underflow
example

Overflow
example

Midway
example

Typical
example

min max min max + + – – – +

Associative law of addition: a + (b + c) = (a + b) + c

a = 0.123 41  105 b = –0.123 40  105 c = 0.143 21  101

acb

When we first compute s1 = b + c, the small value of c barely makes
a dent, yielding a value for a + s1 that is not much affected by c

When we first compute s2 = a + b, the result will be nearly 0, making
the effect of c on the final sum s2 + c more pronounced

s1 s2

May 2015 Computer Arithmetic, Real Arithmetic Slide 62

Do Guard Digits Help with Laws of Algebra?

Invalidated laws of algebra are intrinsic to FLP arithmetic;
problems are reduced, but don’t disappear, with guard digits

Let’s redo our example with 2 guard digits

Associative law of addition: a + (b + c) = (a + b) + c
a = 0.123 41  105 b = –0.123 40  105 c = 0.143 21  101

a +fp (b +fp c)
= 0.123 41  105 +fp (–0.123 40  105 +fp 0.143 21  101)
= 0.123 41  105 –fp 0.123 385 7  105

= 0.243 00  101

(a +fp b) +fp c
= (0.123 41  105 –fp 0.123 40  105) +fp 0.143 21  101

= 0.100 00  101 +fp 0.143 21  101

= 0.243 21  101

Difference
of about
0.1% is
better, but
still too high!

May 2015 Computer Arithmetic, Real Arithmetic Slide 63

Unnormalized Floating-Point Arithmetic

One way to reduce problems resulting from invalidated laws of
algebra is to avoid normalizing computed floating-point results

Let’s redo our example with unnormalized arithmetic

Associative law of addition: a + (b + c) = (a + b) + c
a = 0.123 41  105 b = –0.123 40  105 c = 0.143 21  101

a +fp (b +fp c)
= 0.123 41  105 +fp (–0.123 40  105 +fp 0.143 21  101)
= 0.123 41  105 –fp 0.123 39  105

= 0.000 02  105

(a +fp b) +fp c
= (0.123 41  105 –fp 0.123 40  105) +fp 0.143 21  101

= 0.000 01  105 +fp 0.143 21  101

= 0.000 02  105

Results
are the
same and
also carry
a kind of
warning

May 2015 Computer Arithmetic, Real Arithmetic Slide 64

Other Invalidated Laws of Algebra with FLP Arithmetic

Associative law of multiplication a  (b  c) = (a  b)  c

Cancellation law (for a > 0) a  b = a  c implies b = c

Distributive law a  (b + c) = (a  b) + (a  c)

Multiplication canceling division a  (b a) = b

Before the IEEE 754 floating-point standard became available and
widely adopted, these problems were exacerbated by the use of
many incompatible formats

May 2015 Computer Arithmetic, Real Arithmetic Slide 65

Effects of Algorithms on Result Precision

Example 19.3: The formula x = –b  d, with d = (b 2 – c)1/2,
yielding the roots of the quadratic equation x 2 + 2bx + c = 0,
can be rewritten as x = –c / (b  d)

When c is small compared with b 2, the root –b + d will have a large
error due to cancellation; in such a case, use –c / (b + d) for that root

Example 19.4: The area of a triangle with sides a, b, and c
(assume a  b  c) is given by the formula

A = [s(s – a)(s – b)(s – c)]1/2

where s = (a+b+c)/2. When the triangle is very flat (needlelike),
such that a  b + c, Kahan’s version returns accurate results:

A = ¼[(a + (b + c))(c – (a – b))(c + (a – b))(a + (b – c))]1/2

Confirmation that –b + d = –c / (b + d)  –c = d 2 – b 2

May 2015 Computer Arithmetic, Real Arithmetic Slide 66

19.3 Worst-Case Error Accumulation
In a sequence of operations, round-off errors might add up

The larger the number of cascaded computation steps (that depend
on results from previous steps), the greater the chance for, and the
magnitude of, accumulated errors

With rounding, errors of opposite signs tend to cancel each other
out in the long run, but one cannot count on such cancellations

Practical implications:
Perform intermediate computations with a higher precision than
what is required in the final result

Implement multiply-accumulate in hardware (DSP chips)

Reduce the number of cascaded arithmetic operations; So, using
computationally more efficient algorithms has the double benefit of
reducing the execution time as well as accumulated errors

May 2015 Computer Arithmetic, Real Arithmetic Slide 67

Example: Inner-Product Calculation

Consider the computation z =  x(i) y(i), for i  [0, 1023]

Max error per multiply-add step = ulp/2 + ulp/2 = ulp

Total worst-case absolute error = 1024 ulp
(equivalent to losing 10 bits of precision)

A possible cure: keep the double-width products in their entirety
and add them to compute a double-width result which is rounded
to single-width at the very last step

Multiplications do not introduce any round-off error
Max error per addition = ulp2/2
Total worst-case error = 1024  ulp2/2 + ulp/2

Therefore, provided that overflow is not a problem, a highly
accurate result is obtained

May 2015 Computer Arithmetic, Real Arithmetic Slide 68

Kahan’s Summation Algorithm

To compute s =  x(i), for i  [0, n – 1], more accurately:

s  x(0)

c  0 {c is a correction term}
for i = 1 to n – 1 do

y  x(i) – c {subtract correction term}
z  s + y
c  (z – s) – y {find next correction term}
s  z

endfor

May 2015 Computer Arithmetic, Real Arithmetic Slide 69

19.4 Error Distribution and Expected Errors

Fig. 19.1 Probability density function for the distribution
of normalized significands in FLP(r = 2, p, A).

Probability density function for the distribution of radix-r
floating-point significands is 1/(x ln r)

0

1

2

3

1/2 1 3/4
Significand x

1 / (x ln 2)

May 2015 Computer Arithmetic, Real Arithmetic Slide 70

Maximum Relative Representation Error

MRRE = maximum relative representation error

MRRE(FLP(r, p, chop)) = r –p+1

MRRE(FLP(r, p, round)) = r –p+1 /2

From a practical standpoint, the distribution of errors and their
expected values may be more important

Limiting ourselves to positive significands, we define:

ARRE(FLP(r, p, A)) =

1/(x ln r) is a probability density function

rx
dx

x
xx

r

fp

ln
||1

/1


May 2015 Computer Arithmetic, Real Arithmetic Slide 71

19.5 Forward Error Analysis

Consider the computation y = ax + b and its floating-point version

yfp = (afp fp xfp) +fp bfp = (1 + )y

Can we establish any useful bound on the magnitude of the relative
error , given the relative errors in the input operands afp, bfp, xfp?

The answer is “no”

Forward error analysis =

Finding out how far yfp can be from ax + b,
or at least from afpxfp + bfp, in the worst case

May 2015 Computer Arithmetic, Real Arithmetic Slide 72

Some Error Analysis Methods
Automatic error analysis
Run selected test cases with higher precision and observe differences
between the new, more precise, results and the original ones

Significance arithmetic
Roughly speaking, same as unnormalized arithmetic, although there
are fine distinctions. The result of the unnormalized decimal addition
.1234105 +fp .00001010 = .00001010 warns us about precision loss

Noisy-mode computation
Random digits, rather than 0s, are inserted during normalizing left shifts
If several runs of the computation in noisy mode yield comparable
results, then we are probably safe

Interval arithmetic
An interval [xlo, xhi] represents x, xlo  x  xhi. With xlo, xhi, ylo, yhi > 0,
to find z = x y, we compute [zlo, zhi] = [xlo fp yhi, xhi fp ylo]
Drawback: Intervals tend to widen after many computation steps

May 2015 Computer Arithmetic, Real Arithmetic Slide 73

19.6 Backward Error Analysis

Backward error analysis replaces the original question

How much does yfp = afp fp xfp + bfp deviate from y?

with another question:

What input changes produce the same deviation?

In other words, if the exact identity yfp = aalt xalt + balt
holds for alternate parameter values aalt, balt, and xalt,
we ask how far aalt, balt, xalt can be from afp, xfp, xfp

Thus, computation errors are converted or compared to
additional input errors

May 2015 Computer Arithmetic, Real Arithmetic Slide 74

Example of Backward Error Analysis

yfp = afp fp xfp +fp bfp
= (1 + )[afp fp xfp + bfp] with    < r–p+1 = rulp
= (1 + )[(1 + ) afp xfp + bfp] with    < r–p+1 = rulp
= (1 + ) afp (1 + ) xfp + (1 + ) bfp
= (1 + )(1 + )a (1 + )(1 + )x + (1 + )(1 + )b
 (1 +  + )a (1 +  + )x + (1 +  + )b

So the approximate solution of the original problem is the exact
solution of a problem close to the original one

The analysis assures us that the effect of arithmetic errors on the
result yfp is no more severe than that of r  ulp additional error in
each of the inputs a, b, and x

May 2015 Computer Arithmetic, Real Arithmetic Slide 75

20 Precise and Certifiable Arithmetic

Chapter Goals
Discuss methods for doing arithmetic
when results of high accuracy
or guaranteed correctness are required

Chapter Highlights
More precise computation through

multi- or variable-precision arithmetic
Result certification by means of

exact or error-bounded arithmetic
Precise /exact arithmetic with low overhead

May 2015 Computer Arithmetic, Real Arithmetic Slide 76

Precise and Certifiable Arithmetic: Topics

Topics in This Chapter

20.1 High Precision and Certifiability

20.2 Exact Arithmetic

20.3 Multiprecision Arithmetic

20.4 Variable-Precision Arithmetic

20.5 Error-Bounding via Interval Arithmetic

20.6 Adaptive and Lazy Arithmetic

May 2015 Computer Arithmetic, Real Arithmetic Slide 77

20.1 High Precision and Certifiability
There are two aspects of precision to discuss:

Results possessing adequate precision

Being able to provide assurance of the same

We consider 3 distinct approaches for coping with precision issues:

1. Obtaining completely trustworthy results via exact arithmetic

2. Making the arithmetic highly precise to raise our confidence
in the validity of the results: multi- or variable-precision arith

3. Doing ordinary or high-precision calculations, while tracking
potential error accumulation (can lead to fail-safe operation)

We take the hardware to be completely trustworthy
Hardware reliability issues dealt with in Chapter 27

May 2015 Computer Arithmetic, Real Arithmetic Slide 78

20.2 Exact Arithmetic

x 
p
q  a 0 

1

a1 
1

a 2 
1

 1

a m 1 
1

a m

Continued fractions
Any unsigned rational number x = p/q has a unique continued-fraction
expansion with a0  0, am  2, and ai  1 for 1  i  m – 1

277
642  0  1

2  1

3  1

6 
1

1  1
3  1

3

 [0/ 2/ 3/6 /1/ 3/3]
0
1/2

3/7
19/44

Example: Continued fraction representation of 277/642

Can get approximations for finite representation by limiting the number
of “digits” in the continued-fraction representation

May 2015 Computer Arithmetic, Real Arithmetic Slide 79

Fixed-Slash Number Systems

Rational number if p > 0 q > 0 “rounded” to nearest value
0 if p = 0 q odd
 if p odd q = 0
NaN (not a number) otherwise

Sign
Implied
slash
position

± p q

Inexact

k bits m bits

/
Fig. 20.1 Example fixed-slash
number representation format.

Waste due to multiple representations such as 3/5 = 6/10 = 9/15 = . . .
is no more than one bit, because:

limn {p/q  1  p,q  n, gcd(p, q) = 1}/n2 = 6/2 = 0.608

Represents p /q

May 2015 Computer Arithmetic, Real Arithmetic Slide 80

Floating-Slash Number Systems

Set of numbers represented:
{p/q  p,q  1, gcd(p, q) = 1, log2p + log2q  k – 2}

Fig. 20.2 Example floating-
slash representation format.

Again the following mathematical result, due to Dirichlet, shows that the
space waste is no more than one bit:

limn {p/q  pqn, gcd(p,q)=1} / {p/q  pqn, p,q1} = 6/2 = 0.608

Represents p /q
Sign

± p q

Inexact

m bitsh bits
m

Floating
slash
position

k – m bits

/

May 2015 Computer Arithmetic, Real Arithmetic Slide 81

20.3 Multiprecision Arithmetic

Fig. 20.3 Example
quadruple-precision
integer format.

Fig. 20.4 Example
quadruple-precision
floating-point format.

Sign ± MSB

LSB

x

x

x

x

(3)

(2)

(1)

(0)

Sign ± MSB x

x

x

x

(3)

(2)

(1)

(0)

Exponent

LSB

e

Signi-
ficand

May 2015 Computer Arithmetic, Real Arithmetic Slide 82

Multiprecision Floating-Point Addition

Fig. 20.5 Quadruple-precision significands
aligned for the floating-point addition z = x +fp y.

± x x x x(3) (2) (1) (0)

y y y y(3) (2) (1) (0)

z z z z(3) (2) (1) (0)

Use to derive guard,
round, & sticky bits?

Sign-extend ±

GRS

May 2015 Computer Arithmetic, Real Arithmetic Slide 83

Quad-Precision Arithmetic Using Two Doubles

http://crd.lbl.gov/~dhbailey/mpdist/

xH = 1.011100 . . . 101  220

xL = 1.110101 . . . 110  2–33
x = xH + xL

x = 1.011100 . . . 101  220

The following website provides links to downloadable software
packages for double-double and quad-double arithmetic

Key idea used: One can obtain an accurate sum for two
floating-point numbers by computing their regular sum
s = x +fp y and an error term e = y – (s – x)

1110101 . . . 110

May 2015 Computer Arithmetic, Real Arithmetic Slide 84

20.4 Variable-Precision Arithmetic

Fig. 20.6 Example
variable-precision
integer format.

Sign

±

MSB

LSBx

x

x

(0)

(1)

(w)

w (# add'l words)

Fig. 20.7 Example
variable-precision
floating-point format.

Sign ±

MSB

x

x

x

(1)

(2)

(w)

Exponent e

LSB

Signi-
ficand

 Width w Flags

May 2015 Computer Arithmetic, Real Arithmetic Slide 85

Variable-Precision Floating-Point Addition

Fig. 20.8 Variable-precision floating-point addition.

x x x(u) (u–h) (1)

h words = hk bits y y(v) (1)

y (v) y (1) Case 2Case 1
g = v+h–u  0g = v+h–u < 0

y (g+1)
Alignment shift

. . .

.

. . .

.

May 2015 Computer Arithmetic, Real Arithmetic Slide 86

20.5 Error-Bounding via Interval Arithmetic
Interval definition

[a, b], a  b, is an interval enclosing x, a  x  b
(intervals model uncertainty in real-valued parameters)

[a, a] represents the real number x = a
[a, b], a > b, is the empty interval

Combining and comparing intervals

[xlo, xhi]  [ylo, yhi] = [max(xlo, ylo), min(xhi, yhi)]
[xlo, xhi]  [ylo, yhi] = [min(xlo, ylo), max(xhi, yhi)]
[xlo, xhi]  [ylo, yhi] iff xlo  ylo and xhi  yhi

[xlo, xhi] = [ylo, yhi] iff xlo = ylo and xhi = yhi

[xlo, xhi] < [ylo, yhi] iff xhi < ylo

May 2015 Computer Arithmetic, Real Arithmetic Slide 87

Arithmetic Operations on Intervals

Additive and multiplicative inverses

–[xlo, xhi] = [–xhi, –xlo]

1 / [xlo, xhi] = [1/xhi, 1/xlo], provided that 0  [xlo, xhi]
When 0  [xlo, xhi], the multiplicative inverse is [–,+]

The four basic arithmetic operations

[xlo, xhi] + [ylo, yhi] = [xlo + ylo, xhi + yhi]
[xlo, xhi] – [ylo, yhi] = [xlo – yhi, xhi – ylo]
[xlo, xhi]  [ylo, yhi] = [min(xloylo, xloyhi, xhiylo, xhiyhi),

max(xloylo, xloyhi, xhiylo, xhiyhi)]
[xlo, xhi] / [ylo, yhi] = [xlo, xhi]  [1/yhi, 1/ylo]

May 2015 Computer Arithmetic, Real Arithmetic Slide 88

Getting Narrower Result Intervals

With reasonable assumptions about machine arithmetic, we have:

Theorem 20.2: Consider the execution of an algorithm on real numbers
using machine interval arithmetic in FLP(r, p, ). If the same
algorithm is executed using the precision q, with q > p, the bounds for
both the absolute error and relative error are reduced by the factor rq–p

(the absolute or relative error itself may not be reduced by this factor;
the guarantee applies only to the upper bound)

Theorem 20.1: If f(x(1), x(2), . . . , x(n)) is a rational expression in the
interval variables x(1), x(2), . . . , x(n), that is, f is a finite combination of
x(1), x(2), . . . , x(n) and a finite number of constant intervals by means
of interval arithmetic operations, then x(i)  y(i), i = 1, 2, . . . , n, implies:

f(x(1), x(2), . . . , x(n))  f(y(1), y(2), . . . , y(n))

Thus, arbitrarily narrow result intervals can be obtained by simply
performing arithmetic with sufficiently high precision

May 2015 Computer Arithmetic, Real Arithmetic Slide 89

A Strategy for Accurate Interval Arithmetic

Theorem 20.2: Consider the execution of an algorithm on real numbers
using machine interval arithmetic in FLP(r, p, ). If the same
algorithm is executed using the precision q, with q > p, the bounds for
both the absolute error and relative error are reduced by the factor rq–p

(the absolute or relative error itself may not be reduced by this factor;
the guarantee applies only to the upper bound)

Let wmax be the maximum width of a result interval when
interval arithmetic is used with p radix-r digits of precision.
If wmax  , then we are done. Otherwise, interval
calculations with the higher precision

q = p + logr wmax – logr

is guaranteed to yield the desired accuracy.

May 2015 Computer Arithmetic, Real Arithmetic Slide 90

The Interval Newton Method1/x – d

x6543210
0

–1

2

1

I (0)

N(I(0))
I (1)

Slope = –1/4

Slope = –4

A

Fig. 20.9 Illustration of the interval Newton method for computing 1/d.

x(i+1) = x(i) – f(x(i)) / f (x(i))

N(I (i)) = c(i) – f(c(i)) / f (I (i))

I (i+1) = I (i)  N(I (i))

May 2015 Computer Arithmetic, Real Arithmetic Slide 91

Laws of Algebra in Interval Arithmetic

As in FLP arithmetic, laws of algebra may not hold for interval arithmetic

For example, one can readily construct an example where for intervals
x, y and z, the following two expressions yield different interval results,
thus demonstrating the violation of the distributive law:

x(y + z) xy + xz

Can you find other laws of algebra that may be violated?

May 2015 Computer Arithmetic, Real Arithmetic Slide 92

20.6 Adaptive and Lazy Arithmetic

Need-based incremental precision adjustment to avoid
high-precision calculations dictated by worst-case errors

Lazy evaluation is a powerful paradigm that has been and is
being used in many different contexts. For example, in evaluating
composite conditionals such as

if cond1 and cond2 then action

evaluation of cond2 may be skipped if cond1 yields “false”
More generally, lazy evaluation means

postponing all computations or actions
until they become irrelevant or unavoidable

Opposite of lazy evaluation (speculative or aggressive execution)
has been applied extensively

May 2015 Computer Arithmetic, Real Arithmetic Slide 93

Lazy Arithmetic with Redundant Representations

Redundant number representations offer some advantages for
lazy arithmetic

Because redundant representations support MSD-first arithmetic,
it is possible to produce a small number of result digits by using
correspondingly less computational effort, until more precision is
actually needed

