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About This Presentation

Edition Released Revised Revised Revised Revised
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This presentation is intended to support the use of the textbook 
Computer Arithmetic: Algorithms and Hardware Designs (Oxford 
U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated 
regularly by the author as part of his teaching of the graduate 
course ECE 252B, Computer Arithmetic, at the University of 
California, Santa Barbara. Instructors can use these slides freely 
in classroom teaching and for other educational purposes. 
Unauthorized uses are strictly prohibited. © Behrooz Parhami
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VI  Function Evaluation

Topics in This Part
Chapter 21 Square-Rooting Methods
Chapter 22 The CORDIC Algorithms
Chapter 23 Variation in Function Evaluation
Chapter 24 Arithmetic by Table Lookup

Learn hardware algorithms for evaluating useful functions
• Divisionlike square-rooting algorithms
• Evaluating sin x, tanh x, ln x, . . . by series expansion
• Function evaluation via convergence computation
• Use of tables: the ultimate in simplicity and flexibility
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21  Square-Rooting Methods

Chapter Goals
Learning algorithms and implementations
for both digit-at-a-time and convergence
square-rooting

Chapter Highlights
Square-rooting part of IEEE 754 standard
Digit-recurrence (divisionlike) algorithms
Convergence or iterative schemes
Square-rooting not special case of division
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Square-Rooting Methods: Topics

Topics in This Chapter

21.1 The Pencil-and-Paper Algorithm

21.2 Restoring Shift /Subtract Algorithm

21.3 Binary Nonrestoring Algorithm

21.4 High-Radix Square-Rooting

21.5 Square-Rooting by Convergence

21.6 Fast Hardware Square-Rooters
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21.1  The Pencil-and-Paper Algorithm
Notation for our discussion of division algorithms:

z Radicand z2k–1z2k–2 . . . z3z2z1z0
q Square root qk–1qk–2 . . . q1q0
s Remainder, z – q 2 sksk–1sk–2 . . . s1s0

Remainder range, 0  s  2q (k + 1 digits)
Justification: s  2q + 1 would lead to z = q 2 + s  (q + 1)2

Fig. 21.3   Binary square-rooting in dot notation.
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Example of Decimal Square-Rooting

Fig. 21.1   Extracting the square root of a decimal integer 
using the pencil-and-paper algorithm.

Root digit

q2 q1 q0  q q(0) = 0


9  5 2  4 1  z q2 = 3 q(1) = 3
9

0 5 2 6q1  q1  52 q1 = 0 q(2) = 30

0 0

5 2 4 1 60q0  q0  5241 q0 = 8 q(3) = 308
4 8 6 4

0 3 7 7  s = (377)ten q = (308)ten

Partial rootCheck: 3082 + 377 = 94,864 + 377 = 95,241

“sixty plus q1”
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Square-Rooting as Division with Unknown Divisor

q3 depends only on z7 z6

Justification: For   0,
the square of (q3 + )r3

is q3
2r6 + (2q3 + )r6,

leading to a change in z7 z6

q3 q2 q1 q0

q3 q2 q1 q0

z7 z6 z5 z4 z3 z2 z1 z0 q3

q3

z7 z6 z5 z4 z3 z2 z1 z0

z7 z6 z5 z4 z3 z2

z7 z6 z5 z4 z3 z2 z1 z0

0 q3
in
radix 2

z7 z6 z5 z4

q3 q2

q3 q2

q3 q2 q1

q3 q2 q1

q3 q2 q1 q0

q3 q2 q1 q0

Similarly, q2 depends only on z7 z6 z5 z4, and so on
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Root Digit Selection Rule

The root thus far is denoted by q (i) = (qk–1qk–2 . . . qk–i)ten

Attaching the next digit qk–i–1, partial root becomes q (i+1) = 10q (i) + qk–i–1

The square of q (i+1) is 100(q (i))2 + 20 q (i) qk–i–1 + (qk–i–1)2

100(q (i))2 = (10q (i))2 subtracted from partial remainder in previous steps

Must subtract (10(2q (i)) + qk–i–1)  qk–i–1 to get the new partial remainder

More generally, in radix r, must subtract (r (2q (i)) + qk–i–1)  qk–i–1

In radix 2, must subtract (4q (i) + qk–i–1)  qk–i–1, which is

4q (i) + 1 for qk–i–1 = 1, and 0 otherwise
Thus, we use (qk–1qk–2 . . . qk–I 0 1)two in a trial subtraction
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Example of Binary Square-Rooting

Fig. 21.2   Extracting the square root of a binary integer 
using the pencil-and-paper algorithm.

Root digit

q3 q2 q1 q0  q q(0) = 0


0 11 10 11 0  01? Yes q3 = 1 q(1) = 1
0 1



0 0 1 1  101? No q2 = 0 q(2) = 10
0 0 0



0 1 1 0 1  1001? Yes q1 = 1 q(3) = 101
1 0 0 1



0 1 0 0 1 0  10101? No q0 = 0 q(4) = 1010
0 0 0 0 0



1 0 0 1 0  s = (18)ten q=(1010)two = (10)ten

Partial rootCheck: 102 + 18 = 118 = (0111 0110)two



May 2015 Computer Arithmetic, Function Evaluation Slide 12

21.2  Restoring Shift /Subtract Algorithm
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Consistent with the IEEE 754 floating-point standard, 
we formulate our algorithms for a radicand in the range 
1  z < 4 (after possible 1-bit shift for an odd exponent) 

Binary square-rooting is defined by the recurrence

s (j) = 2s (j–1) – q–j(2q (j–1) + 2–jq–j)    with s (0) = z – 1, q (0) = 1, s (j) = s

where q (j) is the root up to its (–j)th digit; thus q = q (l)

To choose the next root digit q–j  {0, 1}, subtract from 2s (j–1) the value

2q (j–1) + 2–j =  (1q1
(j–1) . q2

(j–1) . . .  qj+1
(j–1) 0 1)two

A negative trial difference means q–j = 0

1  z < 4 Radicand z1z0 . z–1z–2 . . . z–l
1  q < 2 Square root 1 . q–1q–2 . . . q–l
0  s < 4 Remainder s1s0 . s–1s–2 . . . s–lFig. 21.3
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Finding the 
Sq. Root of 
z = 1.110110

via the 
Restoring 
Algorithm

================================
z (radicand = 118/64) 0 1 . 1 1 0 1 1 0
================================
s(0) = z – 1 0 0 0 . 1 1 0 1 1 0 q0 = 1 1.
2s(0) 0 0 1 . 1 0 1 1 0 0
–[2  1.)+2–1] 1 0 . 1
–––––––––––––––––––––––––––––––––
s(1) 1 1 1 . 0 0 1 1 0 0 q–1 = 0 1.0
s(1) = 2s(0) Restore 0 0 1 . 1 0 1 1 0 0
2s(1) 0 1 1 . 0 1 1 0 0 0
–[2  1.0)+2–2] 1 0 . 0 1
–––––––––––––––––––––––––––––––––
s(2) 0 0 1 . 0 0 1 0 0 0 q–2 = 1 1.01
2s(2) 0 1 0 . 0 1 0 0 0 0
–[2  1.01)+2–3] 1 0 . 1 0 1
–––––––––––––––––––––––––––––––––
s(3) 1 1 1 . 1 0 1 0 0 0 q–3 = 0 1.010
s(3) = 2s(2) Restore 0 1 0 . 0 1 0 0 0 0
2s(3) 1 0 0 . 1 0 0 0 0 0
–[2  1.010)+2–4] 1 0 . 1 0 0 1
–––––––––––––––––––––––––––––––––
s(4) 0 0 1 . 1 1 1 1 0 0 q–4 = 1 1.0101
2s(4) 0 1 1 . 1 1 1 0 0 0
–[2  1.0101)+2–5] 1 0 . 1 0 1 0 1
–––––––––––––––––––––––––––––––––
s(5) 0 0 1 . 0 0 1 1 1 0 q–5 = 1 1.01011
2s(5) 0 1 0 . 0 1 1 1 0 0
–[21.01011)+2–6] 1 0 . 1 0 1 1 0 1
–––––––––––––––––––––––––––––––––
s(6) 1 1 1 . 1 0 1 1 1 1 q–6 = 0 1.010110
s(6) = 2s(5) Restore 0 1 0 . 0 1 1 1 0 0
s (remainder = 156/64) 0 . 0 0 0 0 1 0 0 1 1 1 0 0
q (root = 86/64) 1 . 0 1 0 1 1 0
================================

Fig. 21.4
Example of 
sequential 
binary 
square-rooting 
using the 
restoring 
algorithm.

Root 
digit

Partial 
root

q–7 = 1, so round up
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Hardware for Restoring Square-Rooting

Fig. 21.5     Sequential 
shift/subtract restoring 
square-rooter. 
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Rounding the Square Root

In fractional square-rooting, the remainder is not needed

To round the result, we can produce an extra digit q–l–1:

Truncate for q–l–1 = 0, round up for q–l–1 = 1

Midway case, q–l–1 =1 followed by all 0s, impossible (Prob. 21.11)

Example: In Fig. 21.4, we had

(01.110110)two = (1.010110)two
2 + (10.011100)/64

An extra iteration produces q–7 = 1
So the root is rounded up to q = (1.010111)two = 87/64

The rounded-up value is closer to the root than the truncated version

Original: 118/64 = (86/64)2 + 156/(64)2

Rounded: 118/64 = (87/64)2 – 17/(64)2
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21.3  Binary Nonrestoring Algorithm

As in nonrestoring division, nonrestoring square-rooting implies:

Root digits in {1, 1}
On-the-fly conversion to binary
Possible final correction 

The case q–j = 1 (nonnegative partial remainder), is handled as in 
the restoring algorithm; i.e., it leads to the trial subtraction of

q–j [2q (j–1) + 2–j q–j ]  =  2q (j–1) + 2–j

For q–j = 1, we must subtract

q–j [2q (j–1) + 2–j q–j ]  =  – [2q (j–1) – 2–j ]

which is equivalent to adding 2q (j–1) – 2–j

Slight complication, 
compared with 
nonrestoring division

This term cannot be 
formed by concatenation
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Finding the 
Sq. Root of 
z = 1.110110

via the 
Nonrestoring 

Algorithm

================================
z (radicand = 118/64) 0 1 . 1 1 0 1 1 0
================================
s(0) = z – 1 0 0 0 . 1 1 0 1 1 0 q0 = 1 1.
2s(0) 0 0 1 . 1 0 1 1 0 0 q–1 = 1 1.1
–[2  1.)+2–1] 1 0 . 1
–––––––––––––––––––––––––––––––––
s(1) 1 1 1 . 0 0 1 1 0 0 q–2 = 1 1.01
2s(1) 1 1 0 . 0 1 1 0 0 0
+[2  1.1)2–2] 1 0 . 1 1
–––––––––––––––––––––––––––––––––
s(2) 0 0 1 . 0 0 1 0 0 0 q–3 = 1 1.011
2s(2) 0 1 0 . 0 1 0 0 0 0
–[2  1.01)+2–3] 1 0 . 1 0 1
–––––––––––––––––––––––––––––––––
s(3) 1 1 1 . 1 0 1 0 0 0 q–4 = 1 1.0101
2s(3) 1 1 1 . 0 1 0 0 0 0
+[2  1.011)2–4] 1 0 . 1 0 1 1
–––––––––––––––––––––––––––––––––
s(4) 0 0 1 . 1 1 1 1 0 0 q–5 = 1 1.01011
2s(4) 0 1 1 . 1 1 1 0 0 0
–[2  1.0101)+2–5] 1 0 . 1 0 1 0 1
–––––––––––––––––––––––––––––––––
s(5) 0 0 1 . 0 0 1 1 1 0 q–6 = 1 1.010111
2s(5) 0 1 0 . 0 1 1 1 0 0
–[21.01011)+2–6] 1 0 . 1 0 1 1 0 1
–––––––––––––––––––––––––––––––––
s(6) 1 1 1 . 1 0 1 1 1 1 Negative; (17/64)
+[21.01011)2–6] 1 0 . 1 0 1 1 0 1 Correct
–––––––––––––––––––––––––––––––––
s(6) Corrected 0 1 0 . 0 1 1 1 0 0 (156/64)
s (remainder = 156/64) 0 . 0 0 0 0 1 0 0 1 1 1 0 0 (156/642)
q (binary) 1 . 0 1 0 1 1 1 (87/64)
q (corrected binary) 1 . 0 1 0 1 1 0 (86/64)
================================

Fig. 21.6
Example of 
nonrestoring 
binary 
square-rooting.

Root 
digit

Partial 
root
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Some Details for Nonrestoring Square-Rooting

Solution: We keep q (j–1) and q (j–1) – 2–j+1 in registers Q (partial root) 
and Q* (diminished partial root), respectively. Then:

q–j =  1     Subtract 2q (j–1) + 2–j formed by shifting  Q  01
q–j = 1     Add 2q (j–1) – 2–j formed by shifting  Q*11

Updating rules for Q and Q* registers:

q–j =  1  Q := Q 1 Q* := Q 0
q–j = 1  Q := Q*1 Q* := Q*0

Depending on the sign of the partial remainder, add:

(positive) Add  2q (j–1) + 2–j

(negative) Sub. 2q (j–1) – 2–j Cannot be formed by concatenation
Concatenate  01  to the end of q (j–1)

Additional rule for SRT-like algorithm that allow q–j = 0 as well:

q–j =  0  Q := Q 0 Q* := Q*1 
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21.4  High-Radix Square-Rooting

Basic recurrence for fractional radix-r square-rooting:

s (j) =  rs (j–1) – q–j(2q (j–1) + r –j q–j)

As in radix-2 nonrestoring algorithm, we can use two registers 
Q and Q* to hold q (j–1) and its diminished version q (j–1) – r –j+1, 
respectively, suitably updating them in each step

Radix-4 square-rooting in dot notationFig. 21.3 
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An Implementation of Radix-4 Square-Rooting
r = 4, root digit set [–2, 2]

Q* holds q (j–1) – 4–j+1 = q (j–1) – 2–2j+2. Then, one of the following values 
must be subtracted from, or added to, the shifted partial remainder rs (j–1)

q–j =  2 Subtract 4q (j–1) + 2–2j+2 double-shift Q 010
q–j =  1 Subtract 2q (j–1) + 2–2j shift Q 001
q–j = 1 Add 2q (j–1) – 2–2j shift Q*111
q–j = 2 Add 4q (j–1) – 2–2j+2 double-shift Q*110

Updating rules for Q and Q* registers:

q–j =  2  Q := Q 10 Q* := Q 01
q–j =  1  Q := Q 01 Q* := Q 00
q–j =  0  Q := Q 00 Q* := Q*11
q–j = 1  Q := Q*11 Q* := Q*10
q–j = 2  Q := Q*10 Q* := Q*01

Note that the root is obtained in binary form (no conversion needed!) 

s (j) =  rs (j–1) – q–j(2q (j–1) + r –j q–j)
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Keeping the Partial Remainder in Carry-Save Form

To keep magnitudes of partial remainders for division and square-rooting 
comparable, we can perform radix-4 square-rooting using the digit set 

{1, ½ , 0 , ½ , 1}

Can convert from the digit set above to the digit set [–2, 2], or directly to 
binary, with no extra computation

Division: s (j) = 4s (j–1) – q–j d
Square-rooting: s (j) = 4s (j–1) – q–j (2q (j–1) + 4 –j q–j)

As in fast division, root digit selection can be based on a few bits of the 
shifted partial remainder 4s (j–1) and of the partial root q (j–1)

This would allow us to keep s in carry-save form
One extra bit of each component of s (sum and carry) must be examined

Can use the same lookup table for quotient digit and root digit selection
To see how, compare recurrences for radix-4 division and square-rooting:
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21.5  Square-Rooting by Convergence

x

f(x)

z

z

Newton-Raphson method

Choose f(x) = x2 – z with a root at x = z

x (i+1) =  x (i) – f(x (i)) / f (x (i))

x (i+1) =  0.5(x (i) + z /x (i))

Each iteration: division, addition, 1-bit shift
Convergence is quadratic

For 0.5   z < 1, a good starting approximation is (1 + z)/2

This approximation needs no arithmetic

The error is 0 at z = 1 and has a max of 6.07% at z = 0.5

The hardware approximation method of Schwarz and Flynn, using the 
tree circuit of a fast multiplier, can provide a much better approximation 
(e.g., to 16 bits, needing only two iterations for 64 bits of precision)
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Initial Approximation Using Table Lookup

Table-lookup can yield a better starting estimate x (0) for z

For example, with an initial estimate accurate to within 2–8, three 
iterations suffice to increase the accuracy of the root to 64 bits

x (i+1) =  0.5(x (i) + z /x (i))

Example 21.1: Compute the square root of z = (2.4)ten

x (0) read out from table =  1.5 accurate to 10–1

x (1) =  0.5(x (0) + 2.4 / x (0)) =  1.550 000 000     accurate to 10–2

x (2) =  0.5(x (1) + 2.4 / x (1)) =  1.549 193 548     accurate to 10–4

x (3) =  0.5(x (2) + 2.4 / x (2)) =  1.549 193 338     accurate to 10–8

Check: (1.549 193 338)2 =  2.399 999 999
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Convergence Square-Rooting without Division

Rewrite the square-root recurrence as:

x (i+1) =  x (i) + 0.5(1/x (i))(z – (x (i))2)  =  x (i) + 0.5(x (i))(z – (x (i))2)

where (x (i)) is an approximation to 1/x (i) obtained by a simple circuit 
or read out from a table

Because of the approximation used in lieu of the exact value of 1/x (i), 
convergence rate will be less than quadratic

Alternative: Use the recurrence above, but find the reciprocal 
iteratively; thus interlacing the two computations

Using the function f(y) = 1/y – x to compute 1/x, we get:

x (i+1) =  0.5(x (i) + z y (i))
y (i+1) =  y (i) (2 – x (i) y (i))

Convergence is less than quadratic but better than linear

3 multiplications, 2 additions, 
and a 1-bit shift per iteration

x (i+1) =  0.5(x (i) + z /x (i))



May 2015 Computer Arithmetic, Function Evaluation Slide 25

Example for Division-Free Square-Rooting

Example 21.2: Compute 1.4, beginning with x (0) = y (0) = 1

x (1) = 0.5(x (0) + 1.4 y (0)) = 1.200 000 000
y (1) = y (0) (2 – x (0) y (0)) = 1.000 000 000
x (2) = 0.5(x (1) + 1.4 y (1)) = 1.300 000 000
y (2) = y (1) (2 – x (1) y (1)) = 0.800 000 000
x (3) = 0.5(x (2) + 1.4 y (2)) = 1.210 000 000
y (3) = y (2) (2 – x (2) y (2)) = 0.768 000 000
x (4) = 0.5(x (3) + 1.4 y (3)) = 1.142 600 000
y (4) = y (3) (2 – x (3) y (3)) = 0.822 312 960
x (5) = 0.5(x (4) + 1.4 y (4)) = 1.146 919 072
y (5) = y (4) (2 – x (4) y (4)) = 0.872 001 394
x (6) = 0.5(x (5) + 1.4 y (5)) = 1.183 860 512  1.4

x (i+1) = 0.5(x (i) + z y (i))
y (i+1) = y (i) (2 – x (i) y (i))

x converges to z
y converges to 1/z

Check: (1.183 860 512)2 =  1.401 525 712
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Another Division-Free Convergence Scheme
Based on computing 1/z, which is then multiplied by z to obtain z
The function f(x) = 1/x2 – z has a root at x = 1/z (f (x) = –2/x3)

x (i+1) =  0.5x (i) (3 – z (x (i))2)

Quadratic convergence

3 multiplications, 1 addition, 
and a 1-bit shift per iteration

Cray 2 supercomputer used this method. Initially, instead of x (0), the 
two values 1.5x (0) and 0.5(x (0))3 are read out from a table, requiring 
only 1 multiplication in the first iteration. The value x (1) thus obtained 
is accurate to within half the machine precision, so only one other 
iteration is needed (in all, 5 multiplications, 2 additions, 2 shifts)

Example 21.3: Compute the square root of z = (.5678)ten

x (0) read out from table =    1.3
x (1) =  0.5x (0) (3 – 0.5678 (x (0))2) =    1.326 271 700   
x (2) =  0.5x (1) (3 – 0.5678 (x (1))2) =    1.327 095 128
z  z  x (2) =    0.753 524 613
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21.6  Fast Hardware Square-Rooters
Combinational hardware square-rooter serve two purposes:
1. Approximation to start up or speed up convergence methods
2. Replace digit recurrence or convergence methods altogether

Fig. 21.7     Plot of the function z for 1  z < 4.
432100

2

1

z

z

z  1.5

z  1 + z/4

z  7/8 + z/4

z  17/24 + z/3
Best linear approx.

Subrange 1 Subrange 2

More subranges
Better approx in each

1 + (z – 1)/2 1 + z/4
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0 

3 

Radicand 

Subtracted 
bit-matrix  

z 

s Remainder 

Root  q 

q 2 6 – 
q 2 4 – 
q 2 2 
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q (q     2 0 – 

(q     
(q     
(q     

(1) 
(0) 

(2) 
(3) 

0 
0 
0 
0 

2 

0 

3 q 
q 
q 1 
q 

) 
) 
) 
) 

Nonrestoring Array Square-Rooters

Array square-
rooters can be 
derived from 
the dot-notation 
representation 
in much the 
same way as 
array dividers

Fig. 21.8     Nonrestoring array square-rooter 
built of controlled add/subtract cells incorporating 
full adders (FAs) and XOR gates.

s       s        s       s–1      –2       –3      –4

q

q

–1

–2

q–3

FA

XOR

Cell

s       s        s       s–5      –6       –7      –8

q–4

z z–1 –2

z z–3 –4

z z–5 –6

z z–7 –8

1

1

1

10

0

0

0

1
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Understanding the Array Square-Rooter Design

Partial root, transferred diagonally from row to row, is appended with:
01 if the last root digit was 1; with 11 if the last root digit was 0

s       s        s       s–1      –2       –3      –4

q

q

–1

–2

q–3

FA

XOR

Cell

s       s        s       s–5      –6       –7      –8

q–4

z z–1 –2

z z–3 –4

z z–5 –6

z z–7 –8

1

1

1

10

0

0

0

1
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Nonrestoring Array Square-Rooter in Action

Check: 118/256 = (10/16)2 + (3/256)? Note that the answer is
approximate (to within 1 ulp) due to there being no final correction

 0 1 

s       s        s       s–1      –2       –3      –4

q

q

–1

–2

q–3

FA

XOR

Cell

s       s        s       s–5      –6       –7      –8

q–4

z z–1 –2

z z–3 –4

z z–5 –6

z z–7 –8

1

1

1

10

0

0

0

1

0 1

1 1

0 1

1

1

0

1

0

0 0

0 1

0 1 0 1

1 1 1 0

0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 1 0 1 0 1

1 1 1 1 1 1 0 1

1

1

0

1

1

110

11011

0100000

0
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Root 
digit

Partial 
root

Digit-at-a-Time Version of the Previous Example
================================
z = 118/256 . 0 1 1 1 0 1 1 0
================================
s (0) = z 0 0 . 0 1 1 1 0 1 1 0
2s (0) 0 0 0 . 1 1 1 0 1 1 0
–(2q + 2–1) 1 1 . 1
–––––––––––––––––––––––––––––––––––
s (1) 0 0 . 0 1 1 0 1 1 0 q–1 = 1 q = .1
2s (1) 0 0 0 . 1 1 0 1 1 0
–(2q + 2–2) 1 0 . 1 1
–––––––––––––––––––––––––––––––––––
s (2) 1 1 . 1 0 0 1 1 0 q–2 = 0 q = .10
2s (2) 1 1 1 . 0 0 1 1 0
+(2q – 2–3) 0 0 . 1 1 1
–––––––––––––––––––––––––––––––––––
s (3) 0 0 . 0 0 0 1 0 q–3 = 1 q =.101
2s (3) 0 0 0 . 0 0 1 0
–(2q + 2–4) 1 0 . 1 0 1 1
–––––––––––––––––––––––––––––––––––
s (4) 1 0 . 1 1 0 1 q–4 = 0 q = .1010
=================================

In this example, z is ¼ of that in 
Fig. 21.6. Subtraction (addition) 
uses the term 2q + 2–i (2q – 2–i).
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Square Rooting Is Not a Special Case of Division

Multiplier

a x

p = a x

Multiplier

x

p = x x = x2

Divider

z d

q = z / d

Divider

z

q = z / q = z1/2

Multiplier, with both inputs connected 
to same value, becomes a squarer

But, direct realization of squarer leads 
to simpler and faster circuit

Divider can’t be used as square-rooter 
via feedback connection

Direct square-rooter realization does 
not lead to simpler or faster circuit
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22  The CORDIC Algorithms

Chapter Goals
Learning a useful convergence method for
evaluating trigonometric and other functions

Chapter Highlights
Basic CORDIC idea: rotate a vector with

end point at (x,y) = (1,0) by the angle z
to put its end point at (cos z, sin z)

Other functions evaluated similarly
Complexity comparable to division
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The CORDIC Algorithms: Topics

Topics in This Chapter

22.1 Rotations and Pseudorotations

22.2 Basic CORDIC Iterations

22.3 CORDIC Hardware

22.4 Generalized CORDIC

22.5 Using the CORDIC Method

22.6 An Algebraic Formulation
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22.1  Rotations and Pseudorotations

-

Evaluation of trigonometric, hyperbolic, and other common functions, 
such as log and exp, is needed in many computations   

It comes as a surprise to most people that such elementary functions 
can be evaluated in time that is comparable to division time or a 
fairly small multiple of it

Some groups advocate including these functions in IEEE 754, thus 
requiring that they be evaluated exactly, except for the final rounding

Progress has been made toward such properly rounded elementary 
functions, but the cost of achieving this goal is still prohibitive

CORDIC is a low-cost method that achieves the reasonable 
accuracy of about 1 ulp, but does not guarantee proper rounding
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Key Ideas on which CORDIC Is Based

-

If we have a computationally efficient way of rotating a vector,
we can evaluate cos, sin, and tan–1 functions

Rotation by an arbitrary angle is difficult, so we:

Perform psuedorotations that require simpler operations
Use special angles to synthesize the desired angle z

z =  (1) +  (2) + . . . +  (m)

COordinate Rotation 
DIgital Computer 
used this method 
in the1950s; 
modern electronic 
calculators also use it

z 

(cos z, sin z) 

(1, 0) 

tan   y 

(1, y) 

–1 

start at (1, 0) 
rotate by z  
get cos z, sin z 

start at (1, y) 
rotate until y = 0  
rotation amount is tan  y –1 
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Rotating a Vector (x (i), y (i)) by the Angle  (i)

Fig. 22.1   A pseudorotation 
step in CORDIC

x 

y 
Rotation 

Pseudo- 
rotation 

O 

R   (i+1) 

R   (i)  (i)  

E  (i+1) 
E(i+1)

E  (i) 

 y   (i+1) 

x  (i+1) 

 y   (i) 

x  (i) 

Our strategy: Eliminate 
the terms (1 + tan2(i))1/2

and choose the angles (i))
so that tan (i) is a power 
of 2; need two shift-adds

x(i+1) = x(i) cos (i) – y(i) sin (i) = (x(i) – y(i) tan (i)) / (1 + tan2(i))1/2

y(i+1) = y(i) cos (i) + x(i) sin (i) = (y(i) + x(i) tan (i)) / (1 + tan2(i))1/2

z(i+1) = z(i) – (i)

Recall that cos  = 1 / (1 + tan2)1/2
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Pseudorotating a Vector (x (i), y (i)) by the Angle  (i)

Fig. 22.1   A pseudorotation 
step in CORDIC

x 

y 
Rotation 

Pseudo- 
rotation 

O 

R   (i+1) 

R   (i)  (i)  

E  (i+1) 
E(i+1)

E  (i) 

 y   (i+1) 

x  (i+1) 

 y   (i) 

x  (i) 

Pseudorotation: Whereas a real rotation 
does not change the length R(i) of the vector, 
a pseudorotation step increases its length to:

R(i+1) = R(i) / cos (i) = R(i) (1 + tan2(i))1/2

x(i+1) = x(i) – y(i) tan (i)

y(i+1) = y(i) + x(i) tan (i)

z(i+1) = z(i) – (i)
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A Sequence of Rotations or Pseudorotations

After m real rotations by 
(1), (2) , . . . , (m) , given 
x(0) = x, y(0) = y, and z(0) = z

x(m) = x cos((i)) – y sin((i))        
y(m) = y cos((i)) + x sin((i))        
z(m) = z – ((i)) 

x(m) = K(x cos((i)) – y sin((i)))        
y(m) = K(y cos((i)) + x sin((i)))        
z(m) = z – ((i)) 

where K = (1 + tan2(i))1/2 is 
a constant if angles of rotation 
are always the same, differing 
only in sign or direction

After m pseudorotations by 
(1), (2) , . . . , (m) , given 
x(0) = x, y(0) = y, and z(0) = z

(1)

(2)

(3)

Question: Can we find a set of angles so 
that any angle can be synthesized from 
all of them with appropriate signs?
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22.2  Basic CORDIC Iterations
CORDIC iteration: In step i, we pseudorotate 
by an angle whose tangent is di 2–i (the angle 
e(i) is fixed, only direction di is to be picked)

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

––––––––––––––––––––––––––––––––
i
––––––––––––––––––––––––––––––––
0 45.0 0.785 398 163
1 26.6 0.463 647 609
2 14.0 0.244 978 663
3 7.1 0.124 354 994
4 3.6 0.062 418 810
5 1.8 0.031 239 833
6 0.9 0.015 623 728
7 0.4 0.007 812 341
8 0.2 0.003 906 230
9 0.1 0.001 953 123
––––––––––––––––––––––––––––––––

e(i) in degrees
(approximate)

e(i) in radians
(precise)

Table 22.1     Value of 
the function e(i) = tan–1 2–i,
in degrees and radians, 
for 0  i  9 

Example: 30 angle
30.0   45.0 – 26.6 + 14.0 

– 7.1 +  3.6  +  1.8 
– 0.9  + 0.4  – 0.2 
+ 0.1  

=   30.1
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Choosing the Angles to Force z to Zero
x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

–––––––––––––––––––––––––––––––
i z(i) – di e(i) = z(i+1)

–––––––––––––––––––––––––––––––
+30.0

0 +30.0 – 45.0 = –15.0
1 –15.0 + 26.6 = +11.6
2 +11.6 – 14.0 = –2.4
3 –2.4 + 7.1 = +4.7
4 +4.7 – 3.6 = +1.1
5 +1.1 – 1.8 = –0.7
6 –0.7 + 0.9 = +0.2
7 +0.2 – 0.4 = –0.2
8 –0.2 + 0.2 = +0.0
9 +0.0 – 0.1 = –0.1
–––––––––––––––––––––––––––––––

Table 22.2    Choosing the 
signs of the rotation angles 
in order to force z to 0 

y

x

x   ,y

x
–45

+26.6

–14
30

(0) (0)

(10)

x   ,y(1) (1)

x   ,y(2) (2)

x   ,y(3) (3)

Fig. 22.2    The first three 
of 10 pseudorotations 
leading from (x(0), y(0)) to 
(x(10), 0) in rotating by +30. 
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Why Any Angle Can Be Formed from Our List
Analogy: Paying a certain amount while using all currency denominations 
(in positive or negative direction) exactly once; red values are fictitious.

$20   $10   $5   $3 $2   $1   $.50  $.25  $.20 $.10  $.05  $.03 $.02  $.01

Example: Pay $12.50
$20 – $10 + $5 – $3 + $2 – $1 – $.50 + $.25 – $.20 – $.10 + $.05 + $.03 – $.02 – $.01

Convergence is possible as long as each denomination is no greater than 
the sum of all denominations that follow it.
Domain of convergence: –$42.16 to +$42.16
We can guarantee convergence with actual denominations if we allow 
multiple steps at some values:

$20   $10   $5   $2   $2 $1   $.50  $.25  $.10  $.10 $.05  $.01  $.01  $.01  $.01 

Example: Pay $12.50
$20 – $10 + $5 – $2 – $2 + $1 + $.50+$.25–$.10–$.10–$.05+$.01–$.01+ $.01–$.01

We will see later that in hyperbolic CORDIC, convergence is guaranteed 
only if certain “angles” are used twice.
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Angle Recoding

The selection of angles during pseudorotations can be viewed as recoding 
the angle in a specific number system

For example, an angle of 30 is recoded as the following digit string, with 
each digit being 1 or –1:

45.0 26.6 14.0 7.1 3.6 1.8 0.9 0.4       0.2       0.1
1 –1 1 –1 1 1 –1 1         –1          1

The money-exchange analogy also lends itself to this recoding view

For example, a payment of $12.50 is recoded as:

$20   $10   $5   $3 $2   $1   $.50  $.25  $.20 $.10  $.05  $.03 $.02  $.01
1 –1 1 –1 1 –1 –1 1 –1 –1 1 1 –1 –1
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Using CORDIC in Rotation Mode

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

For k bits of precision in results, 
k CORDIC iterations are needed, 
because tan–1 2–i  2–I  for large i

x(m) = K(x cos z – y sin z)        
y(m) = K(y cos z + x sin z)        
z(m) = 0

where K = 1.646 760 258 121 . . .

Make z
converge to 0 
by choosing 
di = sign(z(i))

0

0

Start with
x = 1/K = 0.607 252 935 . . .
and y = 0
to find cos z and sin z

Convergence of z to 0 is possible because each of the angles 
in our list is more than half the previous one or, equivalently, 
each is less than the sum of all the angles that follow it

Domain of convergence is –99.7˚ ≤ z ≤ 99.7˚, where 99.7˚ is the sum 
of all the angles in our list; the domain contains [–/2, /2] radians
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Using CORDIC in Vectoring Mode

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

For k bits of precision in results, 
k CORDIC iterations are needed, 
because tan–1 2–i  2–I  for large i

x(m) = K(x2 + y2)1/2

y(m) = 0        
z(m) = z + tan–1(y /x)

where K = 1.646 760 258 121 . . .

Make y converge 
to 0 by choosing 
di = – sign(x(i)y(i))

0

Start with
x = 1 and z = 0
to find tan–1y

Even though the computation above always converges, 
one can use the relationship  tan –1(1/y )  =  /2 – tan–1y
to limit the range of fixed-point numbers encountered

Other trig functions: tan z obtained from sin z and cos z via division;
inverse sine and cosine (sin –1 z and cos–1 z) discussed later
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22.3  CORDIC Hardware

x

y

z

Shift

Shift

±

±

±

Lookup 
  Table

Fig. 22.3   Hardware elements needed for the CORDIC method.

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

If very high speed is 
not needed (as in a 
calculator), a single 
adder and one shifter 
would suffice

k table entries for 
k bits of precision
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22.4  Generalized CORDIC

Fig. 22.4   Circular, linear, and hyperbolic CORDIC.

x 

y 

O 

B   A 

  F 

 E 

  C 

 D 

 = –1  = 1  = 0 

U  V  W 

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

 = 1 Circular rotations   
(basic CORDIC)
e(i) = tan–1 2–i

 = 0 Linear rotations
e(i) = 2–i

 = –1 Hyperbolic rotations
e(i) = tanh–1 2–i
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22.5  Using the CORDIC Method

Fig. 22.5   
Summary of 
generalized 
CORDIC 
algorithms.

                         
 

For cos & sin, set x = 1/K, y = 0  
   

 tan z = sin z / cos z 
 

For tan   , set x = 1, z = 0  
 

–1 
 

For multiplication, set y = 0 
 

For division, set z = 0 
 

  
   

In executing the iterations for     = –1, steps 4, 13, 40, 121, . . . , j , 3j + 1, . . .  
 

 
 must be repeated. These repetitions are incorporated in the constant K' below. 

For cosh & sinh, set x = 1/K', y = 0  
 

  
 

tanh z = sinh z / cosh z  
 exp(z) = sinh z + cosh z  
 

For tanh  , set x = 1, z = 0  
 

–1 
 

w   = exp(t ln w) 
 

t 
 

ln w = 2 tanh    |(w – 1)/(w + 1)|  
 

–1 
 

Rotation: d  = sign(z    ),    
 

 i 
 

z    0 
 

(i) 
 

(i) 
 

e     = 
 

    = 1 
 Circular 

 

tan   2 
 

–i 
 

 
 

(i) 
 –1 
 

    = –1 
 Hyperbolic 

 

 
 

e     = 
 

(i) 
 

tanh   2 
 

–i 
 

–1 
 

Mode  Vectoring: d  = –sign(x   y   ),    
 

 i 
 

 (i) 
 

  (i) 
 

y    0 
 

(i) 
 

K(x cos z – y sin z) 
 K(y cos z + x sin z) 
 0 
 

x 
 y 
 z 
 

 

C 
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D 
I 
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x 
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x 
 y 
 z 
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D 
I 
C 

x 
  0 

  z + y/x 
 

x 
 y 
 z 
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D 
I 
C 

K' (x cosh z – y sinh z) 
 K' (y cosh z + x sinh z) 
  0 
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

                         
 

0 
 z + tan   (y/x) 
 

–1 
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

K  x   + y 
 

2 
 

2 
 

0 
 z + tanh   (y/x) 
 

–1 
   
 

x 
 y 
 z 
 

 

C 
O 
R 
D 
I 
C 

K'  x   – y 
 

2 
 

 2 
 

  
 
cos   w = tan   [1 – w  / w]  
 

2 
 

–1 
 

–1 
 

sin   w = tan   [w / 1 – w  ]  
 

 2 
 

–1 
 

–1 
 

w = (w + 1/4)   – (w – 1/4)  
 

2 
 

 2 
 

cosh    w = ln(w +  1 – w  )  
 

–1 
 

 2 
   

 
sinh    w =  ln(w +  1 + w  )  
 

–1 
 

 2 
 

Note  

e   = 2 
 

    = 0 
 Linear 
 

 
 

(i) 
 

 –i 
 

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

  {–1, 0, 1}
di  {–1, 1}
K = 1.646 760 258 121 ...
1/K = .607 252 935 009 ...
K' = .828159 360 960 2 ...
1/K' = 1.207497 067763 ...
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CORDIC Speedup Methods

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

Skipping some rotations
Must keep track of expansion via the recurrence:

(K(i+1))2 = (K(i))2 (1 ± 2–2i)

This additional work makes variable-factor CORDIC  
less cost-effective than constant-factor CORDIC

Early termination
Do the first k/2 iterations as usual, then combine 
the remaining k/2 into a single multiplicative step:

For very small z, we have  tan–1z  z  tan z

Expansion factor not an issue because contribution 
of the ignored terms is provably less than ulp

x(k) = x(k/2) – y(k/2)z(k/2)

y(k) = y(i) + x(k/2) z(k/2)

z(k) = z(k/2) – z(k/2)

High-radix CORDIC
The hardware for the radix-4 version of CORDIC is 
quite similar to Fig. 22.3 

di  {–2, –1, 1, 2} or
{–2, –1, 0, 1, 2}
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22.6  An Algebraic Formulation

Because

cos z + j sin z = e jz where       j = –1 

cos z and sin z can be computed via evaluating the complex 
exponential function e jz

This leads to an alternate derivation of CORDIC iterations

Details in the text
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23  Variations in Function Evaluation

Chapter Goals
Learning alternate computation methods
(convergence and otherwise) for some
functions computable through CORDIC

Chapter Highlights
Reasons for needing alternate methods:
Achieve higher performance or precision
Allow speed/cost tradeoffs
Optimizations, fit to diverse technologies
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Variations in Function Evaluation: Topics

Topics in This Chapter

23.1 Normalization and Range Reduction

23.2 Computing Logarithms

23.3 Exponentiation

23.4 Division and Square-Rooting, Again

23.5 Use of Approximating Functions

23.6 Merged Arithmetic
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23.1  Normalization and Range Reduction

u (i+1) = f(u (i), v (i), w (i))
v (i+1) = g(u (i), v (i), w (i))
w (i+1) = h(u (i), v (i), w (i))

u (i+1) = f(u (i), v (i))
v (i+1) = g(u (i), v (i))

Additive normalization: Normalize u via addition of terms to it

Constant

Desired
function

Guide the iteration such that one of the values converges to 
a constant (usually 0 or 1); this is known as normalization

The other value then converges to the desired function

Multiplicative normalization: Normalize u via multiplication of terms

Additive normalization is more desirable, unless the multiplicative 
terms are of the form 1 ± 2a (shift-add) or multiplication leads to 
much faster convergence compared with addition
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Convergence Methods You Already Know

CORDIC
Example of additive normalization

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

Division by repeated multiplications
Example of multiplicative normalization

d (i+1) =  d (i) (2  d (i)) Set d (0) = d; iterate until d (m)  1

z (i+1) =  z (i) (2  d (i)) Set z (0) = z; obtain z/d = q  z (m)

Force y or z to 0 by
adding terms to it

Force d to 1 by
multiplying terms with it
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Range Reduction

Must be careful: A slight error in the value of  is amplified when a 
large multiple of 2 is added to, or subtracted from, the argument

0–/2 /2
CORDIC’s conv. domain

–99.7 to 99.7

 3/2 2––3/2–2

cos(2j + z) = cos zcos(z – ) = –cos z
Subtracting multiples of 2
from the argument does not 
change the function value

Adding  to the 
argument flips 
the function sign

Additive range reduction: see the CORDIC example above

Multiplicative range reduction: applicable to the log function, e.g.

Example: Compute cos(1.125  247)
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23.2  Computing Logarithms

x (i+1) =  x (i) c (i) =  x (i) (1 + di 2–i)

y (i+1) =  y (i) – ln c (i) = y (i) – ln(1 + di 2–i) 
Read out from table

Force x (m) to 1

y (m) converges to y + ln x

di  {1, 0, 1}

0

Why does this multiplicative normalization method work?

x (m) = x c (i)  1      c (i)  1/x

y (m) = y –  ln c (i) = y – ln (c (i)) = y – ln(1/x)   y + ln x

Convergence domain: 1/(1+2–i)  x  1/(1–2–i)  or  0.21  x  3.45

Number of iterations: k, for k bits of precision; for large i, ln(12–i)  2–i

Use directly for x  [1, 2). For x = 2qs, we have:
ln x = q ln 2 + ln s = 0.693 147 180 q + ln s

Radix-4 version 
can be devised
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Computing Binary Logarithms via Squaring

log  x

Square
r

In itia lized to x  

value 2 iff 
th is b it is  1

2

Radix Shift
0 1

PointFig. 23.1   Hardware elements 
needed for computing log2x.

For x  [1, 2), log2 x is a fractional number y = (.y–1y–2y–3 . . . y–l)two

x =  2y =  2

x2 = 22y =  2  y–1 = 1 iff x 2  2 

(. y–1y–2y–3 . . . y–l)two

(y–1.y–2y–3 . . . y–l)two

Once y–1 has been determined, if y–1 = 0, we are back at the original 
situation; otherwise, divide both sides of the equation above by 2 to get:

x2/2  =  2 /2  =  2(1 . y–2y–3 . . . y–l)two (. y–2y–3 . . . y–l)two

Generalization to base b:

x =  b

y–1 = 1 iff x 2  b

(. y–1y–2y–3 . . . y–l)two
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23.3  Exponentiation

x (i+1) =  x (i) – ln c (i) =  x (i) – ln(1 + di 2–i)

y (i+1) =  y (i) c (i) = y (i) (1 + di 2–i) 

Read out from table

Force x (m) to 0

y (m) converges to yex

di  {1, 0, 1} 1

Why does this additive normalization method work?

x (m) = x –  ln c (i)  0       ln c (i)  x

y (m) = y c (i) = y exp(ln c (i)) = y exp( ln c (i))   yex

Convergence domain:  ln (1– 2–i)  x   ln (1+2–i)  or  –1.24  x  1.56

Number of iterations: k, for k bits of precision; for large i, ln(12–i)  2–i

Can eliminate half the iterations because
ln(1 + ) =  – 2/2 + 3/3 – . . .    for 2 < ulp
and we may write y (k)= y (k/2) (1 + x (k/2))

Radix-4 version 
can be devised

Computing ex
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General Exponentiation, or Computing xy

xy =  (e ln x) y =  e y ln x So, compute natural log, multiply, exponentiate

When y is an integer, we can exponentiate by repeated multiplication 
(need to consider only positive y; for negative y, compute reciprocal)

In particular, when y is a constant, the methods used are reminiscent 
of multiplication by constants (Section 9.5) 

Example: x 25 = ((((x)2x)2)2)2x [4 squarings and 2 multiplications] 

Noting that 25 = (1 1 0 0 1)two, leads to a general procedure 

Computing xy, when y is an unsigned integer

Initialize the partial result to 1 
Scan the binary representation of y, starting at its MSB, and repeat
If the current bit is 1, multiply the partial result by x
If the current bit is 0, do not change the partial result
Square the partial result before the next step (if any)

Method is prone to inaccuracies
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Faster Exponentiation via Recoding

Radix-4 example: 31 = (1 1 1 1 1)two = (1 0 0 0 01)two = (2 0 1)four

x 31 = (((x2)4)4 /x [Can you formulate the general procedure?]

Example: x 31 = ((((x)2x)2x)2x)2x [4 squarings and 4 multiplications] 

Note that 31 = (1 1 1 1 1)two = (1 0 0 0 01)two

x 31 = (((((x)2)2)2)2)2 /x [5 squarings and 1 division]

Computing xy, when y is an integer encoded in BSD format

Initialize the partial result to 1 
Scan the binary representation of y, starting at its MSB, and repeat
If the current digit is 1, multiply the partial result by x
If the current digit is 0, do not change the partial result
If the current digit is 1, divide the partial result by x
Square the partial result before the next step (if any)
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23.4  Division and Square-Rooting, Again

s (i+1) =  s (i) –  (i) d

q (i+1) =  q (i) +  (i)

Computing q = z /d In digit-recurrence division,  (i) is the next 
quotient digit and the addition for q turns into 
concatenation; more generally,  (i) can be 
any estimate for the difference between the 
partial quotient q (i) and the final quotient q

Because s (i) becomes successively smaller as it converges to 0, 
scaled versions of the recurrences above are usually preferred. 
In the following, s (i) stands for s (i) r i and q (i) for q (i) r i :

s (i+1) =  rs (i) –  (i) d Set s (0) = z and keep s (i) bounded

q (i+1) =  rq (i) +  (i) Set q (0) = 0 and find q * = q (m) r –m

In the scaled version,  (i) is an estimate for r (r i–m q – q (i)) = r (r i q* - q (i)), 
where q* = r –m q represents the true quotient



May 2015 Computer Arithmetic, Function Evaluation Slide 62

Square-Rooting via Multiplicative Normalization
Idea: If z is multiplied by a sequence of values (c (i))2, chosen so that the 
product z(c (i))2 converges to 1, then z c (i) converges to z

x (i+1) =  x (i) (1 + di 2–i)2 =  x (i) (1 + 2di 2–i + di
2 2–2i) x (0) = z, x

(m) 1

y (i+1) =  y (i) (1 + di 2–i) y (0) = z, y (m) z
What remains is to devise a scheme for choosing di values in {–1, 0, 1}

di = 1 for x (i) < 1 –  = 1 – 2–i di = –1 for x (i) > 1 +  = 1 + 2–i

To avoid the need for comparison with a different constant in each step, 
a scaled version of the first recurrence is used in which u (i) = 2i (x (i) – 1):

u (i+1) =  2(u (i) + 2di) + 2–i+1(2di u (i) + di
2) + 2–2i+1di

2 u (i) u (0) = z –1, u (m) 0

y (i+1) =  y (i) (1 + di 2–i) y (0) = z, y (m) z

Radix-4 version can be devised: Digit set [–2, 2] or {–1, –½, 0, ½, 1}
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Square-Rooting via Additive Normalization
Idea: If a sequence of values c (i) can be obtained such that z – (c (i))2

converges to 0, then c (i) converges to z

x (i+1) = z – (y (i+1))2 = z – (y (i) +c (i))2 = x (i) +2di y (i) 2–i – di
2 2–2i x (0) =z, x (m)0

y (i+1) = y (i) + c (i) = y (i) – di 2–i y (0) =0, y (m)z

What remains is to devise a scheme for choosing di values in {–1, 0, 1}

di = 1 for x (i) < – = –2–i di = –1 for x (i) > + = +2–i

To avoid the need for comparison with a different constant in each step, 
a scaled version of the first recurrence may be used in which u (i) = 2i x (i):

u (i+1) =  2(u (i) + 2di y (i) – di
2 2–i ) u (0) = z , u (i) bounded

y (i+1) =  y (i) – di 2–i y (0) = 0, y (m) z

Radix-4 version can be devised: Digit set [–2, 2] or {–1, –½, 0, ½, 1}
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23.5  Use of Approximating Functions
Convert the problem of evaluating the function f to that of function g
approximating f, perhaps with a few pre- and postprocessing operations 

Approximating polynomials need only additions and multiplications 

Polynomial approximations can be derived from various schemes  

The Taylor-series expansion of f(x) about x = a is

f(x) =  j=0 to  f (j) (a) (x – a) j / j! 

The error due to omitting terms of degree > m is:

f (m+1) (a + (x – a)) (x – a)m+1 / (m + 1)! 0 <  < 1

Setting a = 0 yields the Maclaurin-series expansion

f(x) =  j=0 to  f (j) (0) x j / j! 

and its corresponding error bound:

f (m+1) (x) xm+1 / (m + 1)! 0 <  < 1

Efficiency in 
computation 
can be 
gained via 
Horner’s 
method and 
incremental 
evaluation
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Some Polynomial Approximations (Table 23.1)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Func Polynomial approximation Conditions
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1/x 1 + y + y 2 + y3 + .  .  . + y i + .  .  . 0<x<2, y=1–x

ex 1 + x /1! + x 2/2! + x 3/3! + .  .  . + x i /i ! + .  .  .

ln x –y – y2/2 – y 3/3 – y 4/4 – .  .  . – y i /i – .  .  . 0<x 2, y=1–x

ln x 2[z + z 3/3 + z 5/5 + .  .  . + z 2i+1/(2i+1) + .  .  . ] x>0, z= x–1
x+1

sin x x –x 3/3!+x 5/5!–x 7/7!+ . . . +(–1)i x2i+1/(2i+1)!+ . . .

cos x 1– x 2/2!+x 4/4!– x 6/6!+ .  .  . +(–1)i x2i/(2i )! + .  .  .

tan–1x x –x 3/3+x 5/5–x 7/7+ . . . + (–1)i x2i+1/(2i+1)+ . . . –1 < x < 1

sinh x x +x 3/3!+x 5/5!+x 7/7!+ .  .  . +x2i+1/(2i+1)!+ .  .  .

cosh x 1+x 2/2!+x 4/4!+x 6/6!+ .  .  . +x2i/(2i )! + .  .  .

tanh–1x x +x 3/3+x 5/5+x 7/7+ .  .  . +x2i+1/(2i+1)+ .  .  . –1 < x < 1
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Function Evaluation via Divide-and-Conquer

Let x in [0, 4) be the (l +2)-bit significand of a floating-point number 
or its shifted version. Divide x into two chunks xH and x L:

x = xH + 2–t x L

0  xH < 4 t + 2  bits

0  x L < 1 l – t bits
t bits

x H in [0, 4) x L in [0, 1)

The Taylor-series expansion of f(x) about x = xH is

f(x)  =   j=0 to  f (j) (xH) (2–t x L) j / j! 

A linear approximation is obtained by taking only the first two terms

f(x)   f (xH) + 2–t x L f (xH) 

If t is not too large, f and/or f (and other derivatives of f, if needed) 
can be evaluated via table lookup
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Approximation by the Ratio of Two Polynomials

Example, yielding good results for many elementary functions 

f(x)  a(5)x5 + a(4)x4 + a(3)x3 + a(2)x2 + a(1)x + a(0)

b(5)x5 + b(4)x4 + b(3)x3 + b(2)x2 + b(1)x + b(0)  

Using Horner’s method, such a “rational approximation” needs 
10 multiplications, 10 additions, and 1 division
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23.6  Merged Arithmetic
Our methods thus far rely on word-level building-block operations 
such as addition, multiplication, shifting, . . . 

Sometimes, we can compute a function of interest directly without 
breaking it down into conventional operations

Example: merged arithmetic for inner product computation

z = z (0) + x (1) y (1) + x (2) y (2) + x (3) y (3)        
   

   
   

   
   

   
   

   
   

   
   

   

x(1)y(1)

x(3)y(3)

x(2)y(2)

z(0)

Fig. 23.2  Merged-arithmetic computation of 
an inner product followed by accumulation.
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Example of Merged Arithmetic Implementation

Example: Inner product computation

z = z (0) + x (1) y (1) + x (2) y (2) + x (3) y (3)

       
   

   
   

   
   

   
   

   
   

   
   

   

x(1)y(1)

x(3)y(3)

x(2)y(2)

z(0)

Fig. 23.3    Tabular representation 
of the dot matrix for inner-product 
computation and its reduction.

1   4   7  10  13  10   7   4     16 FAs
2   4   6   8   8   6   4   2     10 FAs + 1 HA  
3   4   4   6   6   3   3   1      9 FAs

1   2   3   4   4   3   2   1   1      4 FAs + 1 HA
1   3   2   3   3   2   1   1   1      3 FAs + 2 HAs
2   2   2   2   2   1   1   1   1      5-bit CPA

Fig. 23.2
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Another Merged Arithmetic Example
Approximation of reciprocal (1/x) and reciprocal square root (1/x) 
functions with 29-30 bits of precision, so that a long floating-point 
result can be obtained with just one iteration at the end [Pine02]

u v w 1. 

c 
Table 

b 
Table 

a 
Table Squarer Radix-4 

Booth 

Radix-4 
Booth 

Partial products gen Partial products gen 

9 bits 24 bits 19 bits 

30 bits 20 bits 12 bits 

16 bits 

Multioperand adder 

30 bits, 
carry-save 

Double-
precision 
significand f(x) = c + bv + av 2

1 square

Comparable 
to a multiplier

2 mult’s

2 adds
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24  Arithmetic by Table Lookup

Chapter Goals
Learning table lookup techniques
for flexible and dense VLSI realization
of arithmetic functions

Chapter Highlights
We have used tables to simplify or speedup
q digit selection, convergence methods, . . .
Now come tables as primary computational
mechanisms (as stars, not supporting cast)



May 2015 Computer Arithmetic, Function Evaluation Slide 72

Arithmetic by Table Lookup: Topics

Topics in This Chapter

24.1 Direct and Indirect Table Lookup

24.2 Binary-to-Unary Reduction

24.3 Tables in Bit-Serial Arithmetic

24.4 Interpolating Memory

24.5 Piecewise Lookup Tables

24.6 Multipartite Table Methods
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24.1  Direct and Indirect Table Lookup

2   by  
table

Result(s) 
   bits

Pre- 
proces- 
sing 
logic

Post- 
processing 
logic

Smaller 
table(s)

Operand(s) 
    bitsu u v

v

Operand(s) 
    bitsu

Result(s) 
   bitsv

. 

. 

.

. . .

Fig. 24.1    Direct table lookup versus 
table-lookup with pre- and post-processing.
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Tables in Supporting and Primary Roles

Tables are used in two ways: 

In supporting role, as in initial estimate for division

As main computing mechanism

Boundary between two uses is fuzzy 

Pure logic             Hybrid solutions              Pure tabular 

Previously, we started with the goal of designing logic circuits 
for particular arithmetic computations and ended up using 
tables to facilitate or speed up certain steps 

Here, we aim for a tabular implementation and end up using 
peripheral logic circuits to reduce the table size 

Some solutions can be derived starting at either endpoint
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Lx + +() Lx + ()

24.2  Binary-to-Unary Reduction
Strategy: Reduce the table size by using an auxiliary unary function 
to evaluate a desired binary function

Example 1: Addition/subtraction in a logarithmic number system; 
i.e., finding Lz = log(x  y), given Lx and Ly

Solution: Let  = Ly – Lx

Lz =  log(x  y)  

=  log(x (1  y/x))

=  log x + log(1  y/x)

=  Lx + log(1  log –1)

Pre-
process

+ table  table

Postprocess

Lx

Ly

Lz

 = Ly – Lx
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Another Example of Binary-to-Unary Reduction
Example 2: Multiplication via squaring, xy = (x + y)2/4 – (x – y)2/4

Simplification and implementation details
If x and y are k bits wide,
x + y and x – y are k + 1
bits wide, leading to two
tables of size 2k+12k
(total table size = 2k+3k bits)
(x  y)/2 =  (x  y)/2 + /2        {0, 1} is the LSB
(x + y)2/4 – (x – y)2/4

=  [ (x + y)/2 + /2]2 – [ (x – y)/2 + /2]2

=  (x + y)/2 2 – (x – y)/2 2 + y
Pre-process: compute x + y and x – y; drop their LSBs
Table lookup: consult two squaring table(s) of size 2k (2k – 1)
Post-process: carry-save adder, followed by carry-propagate adder 
(table size after simplification = 2k+1 (2k – 1)  2k+2k bits)

Preprocess 
(two adds) Square 

table
Square 
table

Postprocess (add)

y

x

xy

x + y

x – y

Can be realized 
with one adder 
and one table

Fig. 24.2
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24.3  Tables in Bit-Serial Arithmetic

Fig. 24.3    Bit-serial ALU 
with two tables implemented 
as multiplexers.

a
b c

 
f op- 
code

 
g op- 
code

f(a, b, c)

g(a, b, c)

  From 
Memory

0 
1 
2 
3 
4 
5 
6 
7

Mux
0 
1 
2 
3 
4 
5 
6 
7

Mux

Flags

To Memory

Used in Connection Machine 2, 
an MPP introduced in 1987

(64 Kb) 3 bits specify a 
flag and a value 
to conditionalize 
the operation

Specified by 
16-bit addresses Specified by 

2-bit address

Specified by 
2-bit address

Replaces a
in memory

8-bit opcode
(f truth table)

8-bit opcode
(g truth table)

0
0
0
1
0
1
1
1

Carry bit
for addition

0
1
0
1
0
1
0
1

Sum bit 
for addition
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Other Table-Based Bit-Serial Arithmetic Examples

See Section 4.3: Conversion from binary/decimal to RNS

Table
Modular

accumulator

x 0

x 1

x 2

xk–2...

x mod m

xk–1

. . .

Evaluation of linear expressions 
(assume unsigned values)

z = ax + by = a xi 2i + b yi 2i

=  (axi+ byi) 2i

0

Address

4-entry table

b

a + b

a

xi

yi

Sum

Carry

CSA

Data

k
/

k–1
/

k–1
/

k
/

k–1
/

k–1
/

LSB
zi

CS residual
Fig. 24.4   Bit-serial evaluation 
of z = ax + by.
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24.4  Interpolating Memory
Linear interpolation: Computing f(x), x  [xlo, xhi], from f(xlo) and f(xhi)

x – xlof (x)  =  f (xlo) +  [ f (xhi) – f (xlo) ]         4 adds, 1 divide, 1 multiplyxhi – xlo

If the xlo and xhi endpoints are consecutive multiples of a power of 2, 
the division and two of the additions become trivial

Example: Evaluating log2x for x  [1, 2)

f(xlo) = log21 = 0, f(xhi) = log22 = 1; thus:

log2x  x – 1  =  Fractional part of x

An improved linear interpolation formula 
ln 2 – ln(ln 2) – 1 

log2x  + (x – 1) = 0.043 036 + x2 ln 2 

1 2
0

1
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Hardware Linear Interpolation Scheme

Fig. 24.5     Linear interpolation for computing f(x) 
and its hardware realization.

Add 

a

f(x) 

Multiply 

b

x 

x 

x lo x hi x 

f(x) 

Initial linear 
approximation 

Improved linear 
approximation 

a + b x 
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Linear Interpolation with Four Subintervals

Fig. 24.6     
Linear 
interpolation 
for computing 
f(x) using 4 
subintervals.

Add 

a 

f(x) 

Multiply 4x 

x 

x min x max x 

f(x) 

i = 0 

a   + b   x 

 (i) b   /4  (i) 

4-entry tables
2-bit address 

x 

(i) (i) 

i = 1 
i = 2 

i = 3 

Table 24.1     
Approximating 
log2x for x in 
[1,2) using linear 
interpolation 
within 4 
subintervals.

––––––––––––––––––––––––––––––––––––––––––––––––
i xlo xhi a (i) b (i)/4 Max error

––––––––––––––––––––––––––––––––––––––––––––––––
0 1.00 1.25 0.004 487 0.321 928  0.004 487
1 1.25 1.50 0.324 924 0.263 034  0.002 996
2 1.50 1.75 0.587 105 0.222 392  0.002 142
3 1.75 2.00 0.808 962 0.192 645  0.001 607

––––––––––––––––––––––––––––––––––––––––––––––––
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Tradeoffs in Cost, Speed, and Accuracy
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5 
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2 
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7 
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4 
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1 
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Second- 
order 

Third- 
order 

Fig. 24.7     
Maximum 
absolute error in 
computing log2x
as a function of 
number h of 
address bits for 
the tables with 
linear, quadratic 
(second-degree), 
and cubic 
(third-degree) 
interpolations 
[Noet89].
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Interpolation with Nonuniform Intervals

The [0,1) range 
divided into 4 
nonuniform intervals

One way to use interpolation with nonuniform intervals to 
successively divide ranges and subranges of interest into 2 parts, 
with finer divisions used where the function exhibits greater 
curvature (nonlinearity)

0 1

.0xx .10x .111.110

In this way, a number of leading bits can be used to decide 
which subrange is applicable
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24.5  Piecewise Lookup Tables
To compute a function of a short (single) IEEE floating-point number: 

Divide the 26-bit significand x (2 whole + 24 fractional bits) into 4 sections  

x =  t + u + 2v + 3w
=  t + 2–6u + 2–12v + 2–18w

where u, v, w are 6-bit fractions in [0, 1) and t, with up to 8 bits, is in [0, 4) 

Taylor polynomial for f(x):

f(x)  =  i=0 to  f (i) (t + u) (2v + 3w)i / i !

Ignore terms smaller than 5 = 2–30

f(x)   f(t + u) 
+ (/2) [f(t + u + v) – f(t + u – v)]
+ (2/2) [f(t + u + w) – f(t + u – w)] 
+ 4 [(v2/2) f (2)(t) – (v 3/6) f (3)(t)]

t u v w

Use 4 additions to 
form these terms

Read 5 values of f
from tables

Perform 6-operand 
addition

Read this last term 
from a table
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Modular Reduction, or Computing z mod p

(x + y) mod p = (x mod p + y mod p) mod p

Table 
   1

Table 
   2

v

d d

Adder

Adder

–p

Mux+  –

d-bit output

b-bit input
b–g g

d d

d+1

dd

Sign

d+1

z

z mod p

LvH

Fig. 24.8a     Two-table modular reduction 
scheme based on divide-and-conquer.

Divide the argument z into 
a (b – g)-bit upper part (x) 
and a g-bit lower part (y), 
where x ends with g zeros
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Another Two-Table Modular Reduction Scheme

Fig. 24.8b      Modular reduction 
based on successive refinement.

Table 
   2 m*

d

d-bit output

b–h h

z mod p

b-bit  
input

z

Adder

Table 
   1 v

d*

d*–h h d*

d*Explanation to be added

Divide the argument z into 
a (b – h)-bit upper part (x) 
and an h-bit lower part (y), 
where x ends with h zeros
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24.6  Multipartite Table Methods

Fig. 24.9    The bipartite 
table method.

Total table size is 2a+b + 2k–b, 
in lieu of 2k; width of table 
entries has been ignored in 
this comparison

a

k-bit input x

Add

u Table

v Table

b

k–a–b 

k-bit output y

x0

x1

x2

u(x0, x1)

v(x0, x2)

f(x)

Subintervals

An interval

f(x)

x

(a) Hardware realization (b) Linear approximation

Common 
Slope

Divide the domain of interest into 
2a intervals, each of which is further 
divided into 2b smaller subintervals 

The trick: Use linear interpolation 
with an initial value determined for 
each subinterval and a common 
slope for each larger interval 
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Generalizing to Tripartite and Higher-Order Tables

Source of figure: www.ens-lyon.fr/LIP/Arenaire/Ware/Multipartite/

Two-part tables have 
been generalized to 
multipart (3-part, 
4-part, . . . ) tables


