
May 2015 Computer Arithmetic, Function Evaluation Slide 1

Part VI
Function Evaluation

 Number Representation
 Numbers and Arithmetic
 Representing Signed Numbers
 Redundant Number Systems
 Residue Number Systems

 Addition / Subtraction
 Basic Addition and Counting
 Carry-Lookahead Adders
 Variations in Fast Adders
 Multioperand Addition

 Multiplication
 Basic Multiplication Schemes
 High-Radix Multipliers
 Tree and Array Multipliers
 Variations in Multipliers

 Division
 Basic Division Schemes
 High-Radix Dividers
 Variations in Dividers
 Division by Convergence

 Real Arithmetic
 Floating-Point Reperesentations
 Floating-Point Operations
 Errors and Error Control
 Precise and Certifiable Arithmetic

 Function Evaluation
 Square-Rooting Methods
 The CORDIC Algorithms
 Variations in Function Evaluation
 Arithmetic by Table Lookup

 Implementation Topics
 High-Throughput Arithmetic
 Low-Power Arithmetic
 Fault-Tolerant Arithmetic
 Past, Present, and Future

 Parts Chapters

I.

II.

III.

IV.

V.

VI.

VII.

 1.
 2.
 3.
 4.

5.
6.
7.
8.

9.
10.
11.
12.

25.
26.
27.
28.

21.
22.
23.
24.

17.
18.
19.
20.

13.
14.
15.
16.

E
le

m
en

ta
ry

 O
pe

ra
tio

ns

28. Reconfigurable Arithmetic

Appendix: Past, Present, and Future

May 2015 Computer Arithmetic, Function Evaluation Slide 2

About This Presentation

Edition Released Revised Revised Revised Revised
First Jan. 2000 Sep. 2001 Sep. 2003 Oct. 2005 June 2007

May 2008 May 2009

Second May 2010 May 2011 May 2012 May 2015

This presentation is intended to support the use of the textbook
Computer Arithmetic: Algorithms and Hardware Designs (Oxford
U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated
regularly by the author as part of his teaching of the graduate
course ECE 252B, Computer Arithmetic, at the University of
California, Santa Barbara. Instructors can use these slides freely
in classroom teaching and for other educational purposes.
Unauthorized uses are strictly prohibited. © Behrooz Parhami

May 2015 Computer Arithmetic, Function Evaluation Slide 3

VI Function Evaluation

Topics in This Part
Chapter 21 Square-Rooting Methods
Chapter 22 The CORDIC Algorithms
Chapter 23 Variation in Function Evaluation
Chapter 24 Arithmetic by Table Lookup

Learn hardware algorithms for evaluating useful functions
• Divisionlike square-rooting algorithms
• Evaluating sin x, tanh x, ln x, . . . by series expansion
• Function evaluation via convergence computation
• Use of tables: the ultimate in simplicity and flexibility

May 2015 Computer Arithmetic, Function Evaluation Slide 4

May 2015 Computer Arithmetic, Function Evaluation Slide 5

21 Square-Rooting Methods

Chapter Goals
Learning algorithms and implementations
for both digit-at-a-time and convergence
square-rooting

Chapter Highlights
Square-rooting part of IEEE 754 standard
Digit-recurrence (divisionlike) algorithms
Convergence or iterative schemes
Square-rooting not special case of division

May 2015 Computer Arithmetic, Function Evaluation Slide 6

Square-Rooting Methods: Topics

Topics in This Chapter

21.1 The Pencil-and-Paper Algorithm

21.2 Restoring Shift /Subtract Algorithm

21.3 Binary Nonrestoring Algorithm

21.4 High-Radix Square-Rooting

21.5 Square-Rooting by Convergence

21.6 Fast Hardware Square-Rooters

May 2015 Computer Arithmetic, Function Evaluation Slide 7

21.1 The Pencil-and-Paper Algorithm
Notation for our discussion of division algorithms:

z Radicand z2k–1z2k–2 . . . z3z2z1z0
q Square root qk–1qk–2 . . . q1q0
s Remainder, z – q 2 sksk–1sk–2 . . . s1s0

Remainder range, 0  s  2q (k + 1 digits)
Justification: s  2q + 1 would lead to z = q 2 + s  (q + 1)2

Fig. 21.3 Binary square-rooting in dot notation.

2

0

3

Radicand

Subtracted
bit-matrix

z

s Remainder

Root q

q 2 6 –
q 2 4 –
q 2 2

1 –
q (q 2 0 –

(q
(q
(q

(1)
(0)

(2)
(3)

0
0
0
0

2

0

3 q
q
q 1
q

)
)
)
)

May 2015 Computer Arithmetic, Function Evaluation Slide 8

Example of Decimal Square-Rooting

Fig. 21.1 Extracting the square root of a decimal integer
using the pencil-and-paper algorithm.

Root digit

q2 q1 q0  q q(0) = 0


9  5 2  4 1  z q2 = 3 q(1) = 3
9

0 5 2 6q1  q1  52 q1 = 0 q(2) = 30

0 0

5 2 4 1 60q0  q0  5241 q0 = 8 q(3) = 308
4 8 6 4

0 3 7 7  s = (377)ten q = (308)ten

Partial rootCheck: 3082 + 377 = 94,864 + 377 = 95,241

“sixty plus q1”

May 2015 Computer Arithmetic, Function Evaluation Slide 9

Square-Rooting as Division with Unknown Divisor

q3 depends only on z7 z6

Justification: For   0,
the square of (q3 + )r3

is q3
2r6 + (2q3 + )r6,

leading to a change in z7 z6

q3 q2 q1 q0

q3 q2 q1 q0

z7 z6 z5 z4 z3 z2 z1 z0 q3

q3

z7 z6 z5 z4 z3 z2 z1 z0

z7 z6 z5 z4 z3 z2

z7 z6 z5 z4 z3 z2 z1 z0

0 q3
in
radix 2

z7 z6 z5 z4

q3 q2

q3 q2

q3 q2 q1

q3 q2 q1

q3 q2 q1 q0

q3 q2 q1 q0

Similarly, q2 depends only on z7 z6 z5 z4, and so on

May 2015 Computer Arithmetic, Function Evaluation Slide 10

Root Digit Selection Rule

The root thus far is denoted by q (i) = (qk–1qk–2 . . . qk–i)ten

Attaching the next digit qk–i–1, partial root becomes q (i+1) = 10q (i) + qk–i–1

The square of q (i+1) is 100(q (i))2 + 20 q (i) qk–i–1 + (qk–i–1)2

100(q (i))2 = (10q (i))2 subtracted from partial remainder in previous steps

Must subtract (10(2q (i)) + qk–i–1)  qk–i–1 to get the new partial remainder

More generally, in radix r, must subtract (r (2q (i)) + qk–i–1)  qk–i–1

In radix 2, must subtract (4q (i) + qk–i–1)  qk–i–1, which is

4q (i) + 1 for qk–i–1 = 1, and 0 otherwise
Thus, we use (qk–1qk–2 . . . qk–I 0 1)two in a trial subtraction

May 2015 Computer Arithmetic, Function Evaluation Slide 11

Example of Binary Square-Rooting

Fig. 21.2 Extracting the square root of a binary integer
using the pencil-and-paper algorithm.

Root digit

q3 q2 q1 q0  q q(0) = 0


0 11 10 11 0  01? Yes q3 = 1 q(1) = 1
0 1



0 0 1 1  101? No q2 = 0 q(2) = 10
0 0 0



0 1 1 0 1  1001? Yes q1 = 1 q(3) = 101
1 0 0 1



0 1 0 0 1 0  10101? No q0 = 0 q(4) = 1010
0 0 0 0 0



1 0 0 1 0  s = (18)ten q=(1010)two = (10)ten

Partial rootCheck: 102 + 18 = 118 = (0111 0110)two

May 2015 Computer Arithmetic, Function Evaluation Slide 12

21.2 Restoring Shift /Subtract Algorithm

2

0

3

Radicand

Subtracted
bit-matrix

z

s Remainder

Root q

q 2 6 –
q 2 4 –
q 2 2

1 –
q (q 2 0 –

(q
(q
(q

(1)
(0)

(2)
(3)

0
0
0
0

2

0

3 q
q
q 1
q

)
)
)
)

Consistent with the IEEE 754 floating-point standard,
we formulate our algorithms for a radicand in the range
1  z < 4 (after possible 1-bit shift for an odd exponent)

Binary square-rooting is defined by the recurrence

s (j) = 2s (j–1) – q–j(2q (j–1) + 2–jq–j) with s (0) = z – 1, q (0) = 1, s (j) = s

where q (j) is the root up to its (–j)th digit; thus q = q (l)

To choose the next root digit q–j  {0, 1}, subtract from 2s (j–1) the value

2q (j–1) + 2–j = (1q1
(j–1) . q2

(j–1) . . . qj+1
(j–1) 0 1)two

A negative trial difference means q–j = 0

1  z < 4 Radicand z1z0 . z–1z–2 . . . z–l
1  q < 2 Square root 1 . q–1q–2 . . . q–l
0  s < 4 Remainder s1s0 . s–1s–2 . . . s–lFig. 21.3

May 2015 Computer Arithmetic, Function Evaluation Slide 13

Finding the
Sq. Root of
z = 1.110110

via the
Restoring
Algorithm

================================
z (radicand = 118/64) 0 1 . 1 1 0 1 1 0
================================
s(0) = z – 1 0 0 0 . 1 1 0 1 1 0 q0 = 1 1.
2s(0) 0 0 1 . 1 0 1 1 0 0
–[2  1.)+2–1] 1 0 . 1
–––––––––––––––––––––––––––––––––
s(1) 1 1 1 . 0 0 1 1 0 0 q–1 = 0 1.0
s(1) = 2s(0) Restore 0 0 1 . 1 0 1 1 0 0
2s(1) 0 1 1 . 0 1 1 0 0 0
–[2  1.0)+2–2] 1 0 . 0 1
–––––––––––––––––––––––––––––––––
s(2) 0 0 1 . 0 0 1 0 0 0 q–2 = 1 1.01
2s(2) 0 1 0 . 0 1 0 0 0 0
–[2  1.01)+2–3] 1 0 . 1 0 1
–––––––––––––––––––––––––––––––––
s(3) 1 1 1 . 1 0 1 0 0 0 q–3 = 0 1.010
s(3) = 2s(2) Restore 0 1 0 . 0 1 0 0 0 0
2s(3) 1 0 0 . 1 0 0 0 0 0
–[2  1.010)+2–4] 1 0 . 1 0 0 1
–––––––––––––––––––––––––––––––––
s(4) 0 0 1 . 1 1 1 1 0 0 q–4 = 1 1.0101
2s(4) 0 1 1 . 1 1 1 0 0 0
–[2  1.0101)+2–5] 1 0 . 1 0 1 0 1
–––––––––––––––––––––––––––––––––
s(5) 0 0 1 . 0 0 1 1 1 0 q–5 = 1 1.01011
2s(5) 0 1 0 . 0 1 1 1 0 0
–[21.01011)+2–6] 1 0 . 1 0 1 1 0 1
–––––––––––––––––––––––––––––––––
s(6) 1 1 1 . 1 0 1 1 1 1 q–6 = 0 1.010110
s(6) = 2s(5) Restore 0 1 0 . 0 1 1 1 0 0
s (remainder = 156/64) 0 . 0 0 0 0 1 0 0 1 1 1 0 0
q (root = 86/64) 1 . 0 1 0 1 1 0
================================

Fig. 21.4
Example of
sequential
binary
square-rooting
using the
restoring
algorithm.

Root
digit

Partial
root

q–7 = 1, so round up

May 2015 Computer Arithmetic, Function Evaluation Slide 14

Hardware for Restoring Square-Rooting

Fig. 21.5 Sequential
shift/subtract restoring
square-rooter.

Quotient q

Mux

Adder
out c

0 1

Partial remainder s (initial value z)

Divisor d

Shift

Shift

 Load

1
in c

(j)

Quotient
digit

selector

q k–j

MSB of
2s (j–1)

k

k

k

Trial difference

Fig. 13.5 Shift/subtract sequential
restoring divider (for comparison).

Partial Remainder

Square-Root

Load

sub

(l+2)-bit
 adder

Trial Difference

l+2

cout cin

Complement

q–j

2s (j–1)
MSB of

Put z – 1 here
 at the outset

 Select
Root Digit

l+2

l + 2

(l + 2)

May 2015 Computer Arithmetic, Function Evaluation Slide 15

Rounding the Square Root

In fractional square-rooting, the remainder is not needed

To round the result, we can produce an extra digit q–l–1:

Truncate for q–l–1 = 0, round up for q–l–1 = 1

Midway case, q–l–1 =1 followed by all 0s, impossible (Prob. 21.11)

Example: In Fig. 21.4, we had

(01.110110)two = (1.010110)two
2 + (10.011100)/64

An extra iteration produces q–7 = 1
So the root is rounded up to q = (1.010111)two = 87/64

The rounded-up value is closer to the root than the truncated version

Original: 118/64 = (86/64)2 + 156/(64)2

Rounded: 118/64 = (87/64)2 – 17/(64)2

May 2015 Computer Arithmetic, Function Evaluation Slide 16

21.3 Binary Nonrestoring Algorithm

As in nonrestoring division, nonrestoring square-rooting implies:

Root digits in {1, 1}
On-the-fly conversion to binary
Possible final correction

The case q–j = 1 (nonnegative partial remainder), is handled as in
the restoring algorithm; i.e., it leads to the trial subtraction of

q–j [2q (j–1) + 2–j q–j] = 2q (j–1) + 2–j

For q–j = 1, we must subtract

q–j [2q (j–1) + 2–j q–j] = – [2q (j–1) – 2–j]

which is equivalent to adding 2q (j–1) – 2–j

Slight complication,
compared with
nonrestoring division

This term cannot be
formed by concatenation

May 2015 Computer Arithmetic, Function Evaluation Slide 17

Finding the
Sq. Root of
z = 1.110110

via the
Nonrestoring

Algorithm

================================
z (radicand = 118/64) 0 1 . 1 1 0 1 1 0
================================
s(0) = z – 1 0 0 0 . 1 1 0 1 1 0 q0 = 1 1.
2s(0) 0 0 1 . 1 0 1 1 0 0 q–1 = 1 1.1
–[2  1.)+2–1] 1 0 . 1
–––––––––––––––––––––––––––––––––
s(1) 1 1 1 . 0 0 1 1 0 0 q–2 = 1 1.01
2s(1) 1 1 0 . 0 1 1 0 0 0
+[2  1.1)2–2] 1 0 . 1 1
–––––––––––––––––––––––––––––––––
s(2) 0 0 1 . 0 0 1 0 0 0 q–3 = 1 1.011
2s(2) 0 1 0 . 0 1 0 0 0 0
–[2  1.01)+2–3] 1 0 . 1 0 1
–––––––––––––––––––––––––––––––––
s(3) 1 1 1 . 1 0 1 0 0 0 q–4 = 1 1.0101
2s(3) 1 1 1 . 0 1 0 0 0 0
+[2  1.011)2–4] 1 0 . 1 0 1 1
–––––––––––––––––––––––––––––––––
s(4) 0 0 1 . 1 1 1 1 0 0 q–5 = 1 1.01011
2s(4) 0 1 1 . 1 1 1 0 0 0
–[2  1.0101)+2–5] 1 0 . 1 0 1 0 1
–––––––––––––––––––––––––––––––––
s(5) 0 0 1 . 0 0 1 1 1 0 q–6 = 1 1.010111
2s(5) 0 1 0 . 0 1 1 1 0 0
–[21.01011)+2–6] 1 0 . 1 0 1 1 0 1
–––––––––––––––––––––––––––––––––
s(6) 1 1 1 . 1 0 1 1 1 1 Negative; (17/64)
+[21.01011)2–6] 1 0 . 1 0 1 1 0 1 Correct
–––––––––––––––––––––––––––––––––
s(6) Corrected 0 1 0 . 0 1 1 1 0 0 (156/64)
s (remainder = 156/64) 0 . 0 0 0 0 1 0 0 1 1 1 0 0 (156/642)
q (binary) 1 . 0 1 0 1 1 1 (87/64)
q (corrected binary) 1 . 0 1 0 1 1 0 (86/64)
================================

Fig. 21.6
Example of
nonrestoring
binary
square-rooting.

Root
digit

Partial
root

May 2015 Computer Arithmetic, Function Evaluation Slide 18

Some Details for Nonrestoring Square-Rooting

Solution: We keep q (j–1) and q (j–1) – 2–j+1 in registers Q (partial root)
and Q* (diminished partial root), respectively. Then:

q–j = 1 Subtract 2q (j–1) + 2–j formed by shifting Q 01
q–j = 1 Add 2q (j–1) – 2–j formed by shifting Q*11

Updating rules for Q and Q* registers:

q–j = 1  Q := Q 1 Q* := Q 0
q–j = 1  Q := Q*1 Q* := Q*0

Depending on the sign of the partial remainder, add:

(positive) Add 2q (j–1) + 2–j

(negative) Sub. 2q (j–1) – 2–j Cannot be formed by concatenation
Concatenate 01 to the end of q (j–1)

Additional rule for SRT-like algorithm that allow q–j = 0 as well:

q–j = 0  Q := Q 0 Q* := Q*1

May 2015 Computer Arithmetic, Function Evaluation Slide 19

2

0

3

Radicand

Subtracted
bit-matrix

z

s Remainder

Root q

q 2 6 –
q 2 4 –
q 2 2

1 –
q (q 2 0 –

(q
(q
(q

(1)
(0)

(2)
(3)

0
0
0
0

2

0

3 q
q
q 1
q

)
)
)
)

21.4 High-Radix Square-Rooting

Basic recurrence for fractional radix-r square-rooting:

s (j) = rs (j–1) – q–j(2q (j–1) + r –j q–j)

As in radix-2 nonrestoring algorithm, we can use two registers
Q and Q* to hold q (j–1) and its diminished version q (j–1) – r –j+1,
respectively, suitably updating them in each step

Radix-4 square-rooting in dot notationFig. 21.3

May 2015 Computer Arithmetic, Function Evaluation Slide 20

An Implementation of Radix-4 Square-Rooting
r = 4, root digit set [–2, 2]

Q* holds q (j–1) – 4–j+1 = q (j–1) – 2–2j+2. Then, one of the following values
must be subtracted from, or added to, the shifted partial remainder rs (j–1)

q–j = 2 Subtract 4q (j–1) + 2–2j+2 double-shift Q 010
q–j = 1 Subtract 2q (j–1) + 2–2j shift Q 001
q–j = 1 Add 2q (j–1) – 2–2j shift Q*111
q–j = 2 Add 4q (j–1) – 2–2j+2 double-shift Q*110

Updating rules for Q and Q* registers:

q–j = 2  Q := Q 10 Q* := Q 01
q–j = 1  Q := Q 01 Q* := Q 00
q–j = 0  Q := Q 00 Q* := Q*11
q–j = 1  Q := Q*11 Q* := Q*10
q–j = 2  Q := Q*10 Q* := Q*01

Note that the root is obtained in binary form (no conversion needed!)

s (j) = rs (j–1) – q–j(2q (j–1) + r –j q–j)

May 2015 Computer Arithmetic, Function Evaluation Slide 21

Keeping the Partial Remainder in Carry-Save Form

To keep magnitudes of partial remainders for division and square-rooting
comparable, we can perform radix-4 square-rooting using the digit set

{1, ½ , 0 , ½ , 1}

Can convert from the digit set above to the digit set [–2, 2], or directly to
binary, with no extra computation

Division: s (j) = 4s (j–1) – q–j d
Square-rooting: s (j) = 4s (j–1) – q–j (2q (j–1) + 4 –j q–j)

As in fast division, root digit selection can be based on a few bits of the
shifted partial remainder 4s (j–1) and of the partial root q (j–1)

This would allow us to keep s in carry-save form
One extra bit of each component of s (sum and carry) must be examined

Can use the same lookup table for quotient digit and root digit selection
To see how, compare recurrences for radix-4 division and square-rooting:

May 2015 Computer Arithmetic, Function Evaluation Slide 22

21.5 Square-Rooting by Convergence

x

f(x)

z

z

Newton-Raphson method

Choose f(x) = x2 – z with a root at x = z

x (i+1) = x (i) – f(x (i)) / f (x (i))

x (i+1) = 0.5(x (i) + z /x (i))

Each iteration: division, addition, 1-bit shift
Convergence is quadratic

For 0.5  z < 1, a good starting approximation is (1 + z)/2

This approximation needs no arithmetic

The error is 0 at z = 1 and has a max of 6.07% at z = 0.5

The hardware approximation method of Schwarz and Flynn, using the
tree circuit of a fast multiplier, can provide a much better approximation
(e.g., to 16 bits, needing only two iterations for 64 bits of precision)

May 2015 Computer Arithmetic, Function Evaluation Slide 23

Initial Approximation Using Table Lookup

Table-lookup can yield a better starting estimate x (0) for z

For example, with an initial estimate accurate to within 2–8, three
iterations suffice to increase the accuracy of the root to 64 bits

x (i+1) = 0.5(x (i) + z /x (i))

Example 21.1: Compute the square root of z = (2.4)ten

x (0) read out from table = 1.5 accurate to 10–1

x (1) = 0.5(x (0) + 2.4 / x (0)) = 1.550 000 000 accurate to 10–2

x (2) = 0.5(x (1) + 2.4 / x (1)) = 1.549 193 548 accurate to 10–4

x (3) = 0.5(x (2) + 2.4 / x (2)) = 1.549 193 338 accurate to 10–8

Check: (1.549 193 338)2 = 2.399 999 999

May 2015 Computer Arithmetic, Function Evaluation Slide 24

Convergence Square-Rooting without Division

Rewrite the square-root recurrence as:

x (i+1) = x (i) + 0.5(1/x (i))(z – (x (i))2) = x (i) + 0.5(x (i))(z – (x (i))2)

where (x (i)) is an approximation to 1/x (i) obtained by a simple circuit
or read out from a table

Because of the approximation used in lieu of the exact value of 1/x (i),
convergence rate will be less than quadratic

Alternative: Use the recurrence above, but find the reciprocal
iteratively; thus interlacing the two computations

Using the function f(y) = 1/y – x to compute 1/x, we get:

x (i+1) = 0.5(x (i) + z y (i))
y (i+1) = y (i) (2 – x (i) y (i))

Convergence is less than quadratic but better than linear

3 multiplications, 2 additions,
and a 1-bit shift per iteration

x (i+1) = 0.5(x (i) + z /x (i))

May 2015 Computer Arithmetic, Function Evaluation Slide 25

Example for Division-Free Square-Rooting

Example 21.2: Compute 1.4, beginning with x (0) = y (0) = 1

x (1) = 0.5(x (0) + 1.4 y (0)) = 1.200 000 000
y (1) = y (0) (2 – x (0) y (0)) = 1.000 000 000
x (2) = 0.5(x (1) + 1.4 y (1)) = 1.300 000 000
y (2) = y (1) (2 – x (1) y (1)) = 0.800 000 000
x (3) = 0.5(x (2) + 1.4 y (2)) = 1.210 000 000
y (3) = y (2) (2 – x (2) y (2)) = 0.768 000 000
x (4) = 0.5(x (3) + 1.4 y (3)) = 1.142 600 000
y (4) = y (3) (2 – x (3) y (3)) = 0.822 312 960
x (5) = 0.5(x (4) + 1.4 y (4)) = 1.146 919 072
y (5) = y (4) (2 – x (4) y (4)) = 0.872 001 394
x (6) = 0.5(x (5) + 1.4 y (5)) = 1.183 860 512  1.4

x (i+1) = 0.5(x (i) + z y (i))
y (i+1) = y (i) (2 – x (i) y (i))

x converges to z
y converges to 1/z

Check: (1.183 860 512)2 = 1.401 525 712

May 2015 Computer Arithmetic, Function Evaluation Slide 26

Another Division-Free Convergence Scheme
Based on computing 1/z, which is then multiplied by z to obtain z
The function f(x) = 1/x2 – z has a root at x = 1/z (f (x) = –2/x3)

x (i+1) = 0.5x (i) (3 – z (x (i))2)

Quadratic convergence

3 multiplications, 1 addition,
and a 1-bit shift per iteration

Cray 2 supercomputer used this method. Initially, instead of x (0), the
two values 1.5x (0) and 0.5(x (0))3 are read out from a table, requiring
only 1 multiplication in the first iteration. The value x (1) thus obtained
is accurate to within half the machine precision, so only one other
iteration is needed (in all, 5 multiplications, 2 additions, 2 shifts)

Example 21.3: Compute the square root of z = (.5678)ten

x (0) read out from table = 1.3
x (1) = 0.5x (0) (3 – 0.5678 (x (0))2) = 1.326 271 700
x (2) = 0.5x (1) (3 – 0.5678 (x (1))2) = 1.327 095 128
z  z  x (2) = 0.753 524 613

May 2015 Computer Arithmetic, Function Evaluation Slide 27

21.6 Fast Hardware Square-Rooters
Combinational hardware square-rooter serve two purposes:
1. Approximation to start up or speed up convergence methods
2. Replace digit recurrence or convergence methods altogether

Fig. 21.7 Plot of the function z for 1  z < 4.
432100

2

1

z

z

z  1.5

z  1 + z/4

z  7/8 + z/4

z  17/24 + z/3
Best linear approx.

Subrange 1 Subrange 2

More subranges
Better approx in each

1 + (z – 1)/2 1 + z/4

May 2015 Computer Arithmetic, Function Evaluation Slide 28

2

0

3

Radicand

Subtracted
bit-matrix

z

s Remainder

Root q

q 2 6 –
q 2 4 –
q 2 2

1 –
q (q 2 0 –

(q
(q
(q

(1)
(0)

(2)
(3)

0
0
0
0

2

0

3 q
q
q 1
q

)
)
)
)

Nonrestoring Array Square-Rooters

Array square-
rooters can be
derived from
the dot-notation
representation
in much the
same way as
array dividers

Fig. 21.8 Nonrestoring array square-rooter
built of controlled add/subtract cells incorporating
full adders (FAs) and XOR gates.

s s s s–1 –2 –3 –4

q

q

–1

–2

q–3

FA

XOR

Cell

s s s s–5 –6 –7 –8

q–4

z z–1 –2

z z–3 –4

z z–5 –6

z z–7 –8

1

1

1

10

0

0

0

1

May 2015 Computer Arithmetic, Function Evaluation Slide 29

Understanding the Array Square-Rooter Design

Partial root, transferred diagonally from row to row, is appended with:
01 if the last root digit was 1; with 11 if the last root digit was 0

s s s s–1 –2 –3 –4

q

q

–1

–2

q–3

FA

XOR

Cell

s s s s–5 –6 –7 –8

q–4

z z–1 –2

z z–3 –4

z z–5 –6

z z–7 –8

1

1

1

10

0

0

0

1

May 2015 Computer Arithmetic, Function Evaluation Slide 30

Nonrestoring Array Square-Rooter in Action

Check: 118/256 = (10/16)2 + (3/256)? Note that the answer is
approximate (to within 1 ulp) due to there being no final correction

 0 1

s s s s–1 –2 –3 –4

q

q

–1

–2

q–3

FA

XOR

Cell

s s s s–5 –6 –7 –8

q–4

z z–1 –2

z z–3 –4

z z–5 –6

z z–7 –8

1

1

1

10

0

0

0

1

0 1

1 1

0 1

1

1

0

1

0

0 0

0 1

0 1 0 1

1 1 1 0

0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 1 0 1 0 1

1 1 1 1 1 1 0 1

1

1

0

1

1

110

11011

0100000

0

May 2015 Computer Arithmetic, Function Evaluation Slide 31

Root
digit

Partial
root

Digit-at-a-Time Version of the Previous Example
================================
z = 118/256 . 0 1 1 1 0 1 1 0
================================
s (0) = z 0 0 . 0 1 1 1 0 1 1 0
2s (0) 0 0 0 . 1 1 1 0 1 1 0
–(2q + 2–1) 1 1 . 1
–––––––––––––––––––––––––––––––––––
s (1) 0 0 . 0 1 1 0 1 1 0 q–1 = 1 q = .1
2s (1) 0 0 0 . 1 1 0 1 1 0
–(2q + 2–2) 1 0 . 1 1
–––––––––––––––––––––––––––––––––––
s (2) 1 1 . 1 0 0 1 1 0 q–2 = 0 q = .10
2s (2) 1 1 1 . 0 0 1 1 0
+(2q – 2–3) 0 0 . 1 1 1
–––––––––––––––––––––––––––––––––––
s (3) 0 0 . 0 0 0 1 0 q–3 = 1 q =.101
2s (3) 0 0 0 . 0 0 1 0
–(2q + 2–4) 1 0 . 1 0 1 1
–––––––––––––––––––––––––––––––––––
s (4) 1 0 . 1 1 0 1 q–4 = 0 q = .1010
=================================

In this example, z is ¼ of that in
Fig. 21.6. Subtraction (addition)
uses the term 2q + 2–i (2q – 2–i).

May 2015 Computer Arithmetic, Function Evaluation Slide 32

Square Rooting Is Not a Special Case of Division

Multiplier

a x

p = a x

Multiplier

x

p = x x = x2

Divider

z d

q = z / d

Divider

z

q = z / q = z1/2

Multiplier, with both inputs connected
to same value, becomes a squarer

But, direct realization of squarer leads
to simpler and faster circuit

Divider can’t be used as square-rooter
via feedback connection

Direct square-rooter realization does
not lead to simpler or faster circuit

May 2015 Computer Arithmetic, Function Evaluation Slide 33

22 The CORDIC Algorithms

Chapter Goals
Learning a useful convergence method for
evaluating trigonometric and other functions

Chapter Highlights
Basic CORDIC idea: rotate a vector with

end point at (x,y) = (1,0) by the angle z
to put its end point at (cos z, sin z)

Other functions evaluated similarly
Complexity comparable to division

May 2015 Computer Arithmetic, Function Evaluation Slide 34

The CORDIC Algorithms: Topics

Topics in This Chapter

22.1 Rotations and Pseudorotations

22.2 Basic CORDIC Iterations

22.3 CORDIC Hardware

22.4 Generalized CORDIC

22.5 Using the CORDIC Method

22.6 An Algebraic Formulation

May 2015 Computer Arithmetic, Function Evaluation Slide 35

22.1 Rotations and Pseudorotations

-

Evaluation of trigonometric, hyperbolic, and other common functions,
such as log and exp, is needed in many computations

It comes as a surprise to most people that such elementary functions
can be evaluated in time that is comparable to division time or a
fairly small multiple of it

Some groups advocate including these functions in IEEE 754, thus
requiring that they be evaluated exactly, except for the final rounding

Progress has been made toward such properly rounded elementary
functions, but the cost of achieving this goal is still prohibitive

CORDIC is a low-cost method that achieves the reasonable
accuracy of about 1 ulp, but does not guarantee proper rounding

May 2015 Computer Arithmetic, Function Evaluation Slide 36

Key Ideas on which CORDIC Is Based

-

If we have a computationally efficient way of rotating a vector,
we can evaluate cos, sin, and tan–1 functions

Rotation by an arbitrary angle is difficult, so we:

Perform psuedorotations that require simpler operations
Use special angles to synthesize the desired angle z

z =  (1) +  (2) + . . . +  (m)

COordinate Rotation
DIgital Computer
used this method
in the1950s;
modern electronic
calculators also use it

z

(cos z, sin z)

(1, 0)

tan y

(1, y)

–1

start at (1, 0)
rotate by z
get cos z, sin z

start at (1, y)
rotate until y = 0
rotation amount is tan y –1

May 2015 Computer Arithmetic, Function Evaluation Slide 37

Rotating a Vector (x (i), y (i)) by the Angle  (i)

Fig. 22.1 A pseudorotation
step in CORDIC

x

y
Rotation

Pseudo-
rotation

O

R (i+1)

R (i) (i) 

E (i+1)
E(i+1)

E (i)

 y (i+1)

x (i+1)

 y (i)

x (i)

Our strategy: Eliminate
the terms (1 + tan2(i))1/2

and choose the angles (i))
so that tan (i) is a power
of 2; need two shift-adds

x(i+1) = x(i) cos (i) – y(i) sin (i) = (x(i) – y(i) tan (i)) / (1 + tan2(i))1/2

y(i+1) = y(i) cos (i) + x(i) sin (i) = (y(i) + x(i) tan (i)) / (1 + tan2(i))1/2

z(i+1) = z(i) – (i)

Recall that cos  = 1 / (1 + tan2)1/2

May 2015 Computer Arithmetic, Function Evaluation Slide 38

Pseudorotating a Vector (x (i), y (i)) by the Angle  (i)

Fig. 22.1 A pseudorotation
step in CORDIC

x

y
Rotation

Pseudo-
rotation

O

R (i+1)

R (i) (i) 

E (i+1)
E(i+1)

E (i)

 y (i+1)

x (i+1)

 y (i)

x (i)

Pseudorotation: Whereas a real rotation
does not change the length R(i) of the vector,
a pseudorotation step increases its length to:

R(i+1) = R(i) / cos (i) = R(i) (1 + tan2(i))1/2

x(i+1) = x(i) – y(i) tan (i)

y(i+1) = y(i) + x(i) tan (i)

z(i+1) = z(i) – (i)

May 2015 Computer Arithmetic, Function Evaluation Slide 39

A Sequence of Rotations or Pseudorotations

After m real rotations by
(1), (2) , . . . , (m) , given
x(0) = x, y(0) = y, and z(0) = z

x(m) = x cos((i)) – y sin((i))
y(m) = y cos((i)) + x sin((i))
z(m) = z – ((i))

x(m) = K(x cos((i)) – y sin((i)))
y(m) = K(y cos((i)) + x sin((i)))
z(m) = z – ((i))

where K = (1 + tan2(i))1/2 is
a constant if angles of rotation
are always the same, differing
only in sign or direction

After m pseudorotations by
(1), (2) , . . . , (m) , given
x(0) = x, y(0) = y, and z(0) = z

(1)

(2)

(3)

Question: Can we find a set of angles so
that any angle can be synthesized from
all of them with appropriate signs?

May 2015 Computer Arithmetic, Function Evaluation Slide 40

22.2 Basic CORDIC Iterations
CORDIC iteration: In step i, we pseudorotate
by an angle whose tangent is di 2–i (the angle
e(i) is fixed, only direction di is to be picked)

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

––––––––––––––––––––––––––––––––
i
––––––––––––––––––––––––––––––––
0 45.0 0.785 398 163
1 26.6 0.463 647 609
2 14.0 0.244 978 663
3 7.1 0.124 354 994
4 3.6 0.062 418 810
5 1.8 0.031 239 833
6 0.9 0.015 623 728
7 0.4 0.007 812 341
8 0.2 0.003 906 230
9 0.1 0.001 953 123
––––––––––––––––––––––––––––––––

e(i) in degrees
(approximate)

e(i) in radians
(precise)

Table 22.1 Value of
the function e(i) = tan–1 2–i,
in degrees and radians,
for 0  i  9

Example: 30 angle
30.0  45.0 – 26.6 + 14.0

– 7.1 + 3.6 + 1.8
– 0.9 + 0.4 – 0.2
+ 0.1

= 30.1

May 2015 Computer Arithmetic, Function Evaluation Slide 41

Choosing the Angles to Force z to Zero
x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

–––––––––––––––––––––––––––––––
i z(i) – di e(i) = z(i+1)

–––––––––––––––––––––––––––––––
+30.0

0 +30.0 – 45.0 = –15.0
1 –15.0 + 26.6 = +11.6
2 +11.6 – 14.0 = –2.4
3 –2.4 + 7.1 = +4.7
4 +4.7 – 3.6 = +1.1
5 +1.1 – 1.8 = –0.7
6 –0.7 + 0.9 = +0.2
7 +0.2 – 0.4 = –0.2
8 –0.2 + 0.2 = +0.0
9 +0.0 – 0.1 = –0.1
–––––––––––––––––––––––––––––––

Table 22.2 Choosing the
signs of the rotation angles
in order to force z to 0

y

x

x ,y

x
–45

+26.6

–14
30

(0) (0)

(10)

x ,y(1) (1)

x ,y(2) (2)

x ,y(3) (3)

Fig. 22.2 The first three
of 10 pseudorotations
leading from (x(0), y(0)) to
(x(10), 0) in rotating by +30.

May 2015 Computer Arithmetic, Function Evaluation Slide 42

Why Any Angle Can Be Formed from Our List
Analogy: Paying a certain amount while using all currency denominations
(in positive or negative direction) exactly once; red values are fictitious.

$20 $10 $5 $3 $2 $1 $.50 $.25 $.20 $.10 $.05 $.03 $.02 $.01

Example: Pay $12.50
$20 – $10 + $5 – $3 + $2 – $1 – $.50 + $.25 – $.20 – $.10 + $.05 + $.03 – $.02 – $.01

Convergence is possible as long as each denomination is no greater than
the sum of all denominations that follow it.
Domain of convergence: –$42.16 to +$42.16
We can guarantee convergence with actual denominations if we allow
multiple steps at some values:

$20 $10 $5 $2 $2 $1 $.50 $.25 $.10 $.10 $.05 $.01 $.01 $.01 $.01

Example: Pay $12.50
$20 – $10 + $5 – $2 – $2 + $1 + $.50+$.25–$.10–$.10–$.05+$.01–$.01+ $.01–$.01

We will see later that in hyperbolic CORDIC, convergence is guaranteed
only if certain “angles” are used twice.

May 2015 Computer Arithmetic, Function Evaluation Slide 43

Angle Recoding

The selection of angles during pseudorotations can be viewed as recoding
the angle in a specific number system

For example, an angle of 30 is recoded as the following digit string, with
each digit being 1 or –1:

45.0 26.6 14.0 7.1 3.6 1.8 0.9 0.4 0.2 0.1
1 –1 1 –1 1 1 –1 1 –1 1

The money-exchange analogy also lends itself to this recoding view

For example, a payment of $12.50 is recoded as:

$20 $10 $5 $3 $2 $1 $.50 $.25 $.20 $.10 $.05 $.03 $.02 $.01
1 –1 1 –1 1 –1 –1 1 –1 –1 1 1 –1 –1

May 2015 Computer Arithmetic, Function Evaluation Slide 44

Using CORDIC in Rotation Mode

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

For k bits of precision in results,
k CORDIC iterations are needed,
because tan–1 2–i  2–I for large i

x(m) = K(x cos z – y sin z)
y(m) = K(y cos z + x sin z)
z(m) = 0

where K = 1.646 760 258 121 . . .

Make z
converge to 0
by choosing
di = sign(z(i))

0

0

Start with
x = 1/K = 0.607 252 935 . . .
and y = 0
to find cos z and sin z

Convergence of z to 0 is possible because each of the angles
in our list is more than half the previous one or, equivalently,
each is less than the sum of all the angles that follow it

Domain of convergence is –99.7˚ ≤ z ≤ 99.7˚, where 99.7˚ is the sum
of all the angles in our list; the domain contains [–/2, /2] radians

May 2015 Computer Arithmetic, Function Evaluation Slide 45

Using CORDIC in Vectoring Mode

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

For k bits of precision in results,
k CORDIC iterations are needed,
because tan–1 2–i  2–I for large i

x(m) = K(x2 + y2)1/2

y(m) = 0
z(m) = z + tan–1(y /x)

where K = 1.646 760 258 121 . . .

Make y converge
to 0 by choosing
di = – sign(x(i)y(i))

0

Start with
x = 1 and z = 0
to find tan–1y

Even though the computation above always converges,
one can use the relationship tan –1(1/y) = /2 – tan–1y
to limit the range of fixed-point numbers encountered

Other trig functions: tan z obtained from sin z and cos z via division;
inverse sine and cosine (sin –1 z and cos–1 z) discussed later

May 2015 Computer Arithmetic, Function Evaluation Slide 46

22.3 CORDIC Hardware

x

y

z

Shift

Shift

±

±

±

Lookup
 Table

Fig. 22.3 Hardware elements needed for the CORDIC method.

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

If very high speed is
not needed (as in a
calculator), a single
adder and one shifter
would suffice

k table entries for
k bits of precision

May 2015 Computer Arithmetic, Function Evaluation Slide 47

22.4 Generalized CORDIC

Fig. 22.4 Circular, linear, and hyperbolic CORDIC.

x

y

O

B A

 F

 E

 C

 D

 = –1  = 1  = 0

U V W

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

 = 1 Circular rotations
(basic CORDIC)
e(i) = tan–1 2–i

 = 0 Linear rotations
e(i) = 2–i

 = –1 Hyperbolic rotations
e(i) = tanh–1 2–i

May 2015 Computer Arithmetic, Function Evaluation Slide 48

22.5 Using the CORDIC Method

Fig. 22.5
Summary of
generalized
CORDIC
algorithms.

For cos & sin, set x = 1/K, y = 0

 tan z = sin z / cos z

For tan , set x = 1, z = 0

–1

For multiplication, set y = 0

For division, set z = 0

In executing the iterations for = –1, steps 4, 13, 40, 121, . . . , j , 3j + 1, . . .


 must be repeated. These repetitions are incorporated in the constant K' below.

For cosh & sinh, set x = 1/K', y = 0

tanh z = sinh z / cosh z
 exp(z) = sinh z + cosh z

For tanh , set x = 1, z = 0

–1

w = exp(t ln w)

t

ln w = 2 tanh |(w – 1)/(w + 1)|

–1

Rotation: d = sign(z),

 i

z 0

(i)

(i)

e =

 = 1
 Circular

tan 2

–i



(i)
 –1

 = –1
 Hyperbolic



e =

(i)

tanh 2

–i

–1

Mode  Vectoring: d = –sign(x y),

 i

 (i)

 (i)

y 0

(i)

K(x cos z – y sin z)
 K(y cos z + x sin z)
 0

x
 y
 z

C
O
R
D
I
C

x
 y + xz
 0

x
 y
 z

C
O
R
D
I
C

x
 0

 z + y/x

x
 y
 z

C
O
R
D
I
C

K' (x cosh z – y sinh z)
 K' (y cosh z + x sinh z)
 0

x
 y
 z

C
O
R
D
I
C

0
 z + tan (y/x)

–1

x
 y
 z

C
O
R
D
I
C

K  x + y

2

2

0
 z + tanh (y/x)

–1

x
 y
 z

C
O
R
D
I
C

K'  x – y

2

 2

cos w = tan [1 – w / w]

2

–1

–1

sin w = tan [w / 1 – w]

 2

–1

–1

w = (w + 1/4) – (w – 1/4)

2

 2

cosh w = ln(w +  1 – w)

–1

 2

sinh w = ln(w +  1 + w)

–1

 2

Note 

e = 2

 = 0
 Linear



(i)

 –i

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

  {–1, 0, 1}
di  {–1, 1}
K = 1.646 760 258 121 ...
1/K = .607 252 935 009 ...
K' = .828159 360 960 2 ...
1/K' = 1.207497 067763 ...

May 2015 Computer Arithmetic, Function Evaluation Slide 49

CORDIC Speedup Methods

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

Skipping some rotations
Must keep track of expansion via the recurrence:

(K(i+1))2 = (K(i))2 (1 ± 2–2i)

This additional work makes variable-factor CORDIC
less cost-effective than constant-factor CORDIC

Early termination
Do the first k/2 iterations as usual, then combine
the remaining k/2 into a single multiplicative step:

For very small z, we have tan–1z  z  tan z

Expansion factor not an issue because contribution
of the ignored terms is provably less than ulp

x(k) = x(k/2) – y(k/2)z(k/2)

y(k) = y(i) + x(k/2) z(k/2)

z(k) = z(k/2) – z(k/2)

High-radix CORDIC
The hardware for the radix-4 version of CORDIC is
quite similar to Fig. 22.3

di  {–2, –1, 1, 2} or
{–2, –1, 0, 1, 2}

May 2015 Computer Arithmetic, Function Evaluation Slide 50

22.6 An Algebraic Formulation

Because

cos z + j sin z = e jz where j = –1

cos z and sin z can be computed via evaluating the complex
exponential function e jz

This leads to an alternate derivation of CORDIC iterations

Details in the text

May 2015 Computer Arithmetic, Function Evaluation Slide 51

23 Variations in Function Evaluation

Chapter Goals
Learning alternate computation methods
(convergence and otherwise) for some
functions computable through CORDIC

Chapter Highlights
Reasons for needing alternate methods:
Achieve higher performance or precision
Allow speed/cost tradeoffs
Optimizations, fit to diverse technologies

May 2015 Computer Arithmetic, Function Evaluation Slide 52

Variations in Function Evaluation: Topics

Topics in This Chapter

23.1 Normalization and Range Reduction

23.2 Computing Logarithms

23.3 Exponentiation

23.4 Division and Square-Rooting, Again

23.5 Use of Approximating Functions

23.6 Merged Arithmetic

May 2015 Computer Arithmetic, Function Evaluation Slide 53

23.1 Normalization and Range Reduction

u (i+1) = f(u (i), v (i), w (i))
v (i+1) = g(u (i), v (i), w (i))
w (i+1) = h(u (i), v (i), w (i))

u (i+1) = f(u (i), v (i))
v (i+1) = g(u (i), v (i))

Additive normalization: Normalize u via addition of terms to it

Constant

Desired
function

Guide the iteration such that one of the values converges to
a constant (usually 0 or 1); this is known as normalization

The other value then converges to the desired function

Multiplicative normalization: Normalize u via multiplication of terms

Additive normalization is more desirable, unless the multiplicative
terms are of the form 1 ± 2a (shift-add) or multiplication leads to
much faster convergence compared with addition

May 2015 Computer Arithmetic, Function Evaluation Slide 54

Convergence Methods You Already Know

CORDIC
Example of additive normalization

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

Division by repeated multiplications
Example of multiplicative normalization

d (i+1) = d (i) (2  d (i)) Set d (0) = d; iterate until d (m)  1

z (i+1) = z (i) (2  d (i)) Set z (0) = z; obtain z/d = q  z (m)

Force y or z to 0 by
adding terms to it

Force d to 1 by
multiplying terms with it

May 2015 Computer Arithmetic, Function Evaluation Slide 55

Range Reduction

Must be careful: A slight error in the value of  is amplified when a
large multiple of 2 is added to, or subtracted from, the argument

0–/2 /2
CORDIC’s conv. domain

–99.7 to 99.7

 3/2 2––3/2–2

cos(2j + z) = cos zcos(z – ) = –cos z
Subtracting multiples of 2
from the argument does not
change the function value

Adding  to the
argument flips
the function sign

Additive range reduction: see the CORDIC example above

Multiplicative range reduction: applicable to the log function, e.g.

Example: Compute cos(1.125  247)

May 2015 Computer Arithmetic, Function Evaluation Slide 56

23.2 Computing Logarithms

x (i+1) = x (i) c (i) = x (i) (1 + di 2–i)

y (i+1) = y (i) – ln c (i) = y (i) – ln(1 + di 2–i)
Read out from table

Force x (m) to 1

y (m) converges to y + ln x

di  {1, 0, 1}

0

Why does this multiplicative normalization method work?

x (m) = x c (i)  1  c (i)  1/x

y (m) = y –  ln c (i) = y – ln (c (i)) = y – ln(1/x)  y + ln x

Convergence domain: 1/(1+2–i)  x  1/(1–2–i) or 0.21  x  3.45

Number of iterations: k, for k bits of precision; for large i, ln(12–i)  2–i

Use directly for x  [1, 2). For x = 2qs, we have:
ln x = q ln 2 + ln s = 0.693 147 180 q + ln s

Radix-4 version
can be devised

May 2015 Computer Arithmetic, Function Evaluation Slide 57

Computing Binary Logarithms via Squaring

log x

Square
r

In itia lized to x

value 2 iff
th is b it is 1

2

Radix Shift
0 1

PointFig. 23.1 Hardware elements
needed for computing log2x.

For x  [1, 2), log2 x is a fractional number y = (.y–1y–2y–3 . . . y–l)two

x = 2y = 2

x2 = 22y = 2  y–1 = 1 iff x 2  2

(. y–1y–2y–3 . . . y–l)two

(y–1.y–2y–3 . . . y–l)two

Once y–1 has been determined, if y–1 = 0, we are back at the original
situation; otherwise, divide both sides of the equation above by 2 to get:

x2/2 = 2 /2 = 2(1 . y–2y–3 . . . y–l)two (. y–2y–3 . . . y–l)two

Generalization to base b:

x = b

y–1 = 1 iff x 2  b

(. y–1y–2y–3 . . . y–l)two

May 2015 Computer Arithmetic, Function Evaluation Slide 58

23.3 Exponentiation

x (i+1) = x (i) – ln c (i) = x (i) – ln(1 + di 2–i)

y (i+1) = y (i) c (i) = y (i) (1 + di 2–i)

Read out from table

Force x (m) to 0

y (m) converges to yex

di  {1, 0, 1} 1

Why does this additive normalization method work?

x (m) = x –  ln c (i)  0   ln c (i)  x

y (m) = y c (i) = y exp(ln c (i)) = y exp( ln c (i))  yex

Convergence domain:  ln (1– 2–i)  x   ln (1+2–i) or –1.24  x  1.56

Number of iterations: k, for k bits of precision; for large i, ln(12–i)  2–i

Can eliminate half the iterations because
ln(1 + ) =  – 2/2 + 3/3 – . . .   for 2 < ulp
and we may write y (k)= y (k/2) (1 + x (k/2))

Radix-4 version
can be devised

Computing ex

May 2015 Computer Arithmetic, Function Evaluation Slide 59

General Exponentiation, or Computing xy

xy = (e ln x) y = e y ln x So, compute natural log, multiply, exponentiate

When y is an integer, we can exponentiate by repeated multiplication
(need to consider only positive y; for negative y, compute reciprocal)

In particular, when y is a constant, the methods used are reminiscent
of multiplication by constants (Section 9.5)

Example: x 25 = ((((x)2x)2)2)2x [4 squarings and 2 multiplications]

Noting that 25 = (1 1 0 0 1)two, leads to a general procedure

Computing xy, when y is an unsigned integer

Initialize the partial result to 1
Scan the binary representation of y, starting at its MSB, and repeat
If the current bit is 1, multiply the partial result by x
If the current bit is 0, do not change the partial result
Square the partial result before the next step (if any)

Method is prone to inaccuracies

May 2015 Computer Arithmetic, Function Evaluation Slide 60

Faster Exponentiation via Recoding

Radix-4 example: 31 = (1 1 1 1 1)two = (1 0 0 0 01)two = (2 0 1)four

x 31 = (((x2)4)4 /x [Can you formulate the general procedure?]

Example: x 31 = ((((x)2x)2x)2x)2x [4 squarings and 4 multiplications]

Note that 31 = (1 1 1 1 1)two = (1 0 0 0 01)two

x 31 = (((((x)2)2)2)2)2 /x [5 squarings and 1 division]

Computing xy, when y is an integer encoded in BSD format

Initialize the partial result to 1
Scan the binary representation of y, starting at its MSB, and repeat
If the current digit is 1, multiply the partial result by x
If the current digit is 0, do not change the partial result
If the current digit is 1, divide the partial result by x
Square the partial result before the next step (if any)

May 2015 Computer Arithmetic, Function Evaluation Slide 61

23.4 Division and Square-Rooting, Again

s (i+1) = s (i) –  (i) d

q (i+1) = q (i) +  (i)

Computing q = z /d In digit-recurrence division,  (i) is the next
quotient digit and the addition for q turns into
concatenation; more generally,  (i) can be
any estimate for the difference between the
partial quotient q (i) and the final quotient q

Because s (i) becomes successively smaller as it converges to 0,
scaled versions of the recurrences above are usually preferred.
In the following, s (i) stands for s (i) r i and q (i) for q (i) r i :

s (i+1) = rs (i) –  (i) d Set s (0) = z and keep s (i) bounded

q (i+1) = rq (i) +  (i) Set q (0) = 0 and find q * = q (m) r –m

In the scaled version,  (i) is an estimate for r (r i–m q – q (i)) = r (r i q* - q (i)),
where q* = r –m q represents the true quotient

May 2015 Computer Arithmetic, Function Evaluation Slide 62

Square-Rooting via Multiplicative Normalization
Idea: If z is multiplied by a sequence of values (c (i))2, chosen so that the
product z(c (i))2 converges to 1, then z c (i) converges to z

x (i+1) = x (i) (1 + di 2–i)2 = x (i) (1 + 2di 2–i + di
2 2–2i) x (0) = z, x

(m) 1

y (i+1) = y (i) (1 + di 2–i) y (0) = z, y (m) z
What remains is to devise a scheme for choosing di values in {–1, 0, 1}

di = 1 for x (i) < 1 –  = 1 – 2–i di = –1 for x (i) > 1 +  = 1 + 2–i

To avoid the need for comparison with a different constant in each step,
a scaled version of the first recurrence is used in which u (i) = 2i (x (i) – 1):

u (i+1) = 2(u (i) + 2di) + 2–i+1(2di u (i) + di
2) + 2–2i+1di

2 u (i) u (0) = z –1, u (m) 0

y (i+1) = y (i) (1 + di 2–i) y (0) = z, y (m) z

Radix-4 version can be devised: Digit set [–2, 2] or {–1, –½, 0, ½, 1}

May 2015 Computer Arithmetic, Function Evaluation Slide 63

Square-Rooting via Additive Normalization
Idea: If a sequence of values c (i) can be obtained such that z – (c (i))2

converges to 0, then c (i) converges to z

x (i+1) = z – (y (i+1))2 = z – (y (i) +c (i))2 = x (i) +2di y (i) 2–i – di
2 2–2i x (0) =z, x (m)0

y (i+1) = y (i) + c (i) = y (i) – di 2–i y (0) =0, y (m)z

What remains is to devise a scheme for choosing di values in {–1, 0, 1}

di = 1 for x (i) < – = –2–i di = –1 for x (i) > + = +2–i

To avoid the need for comparison with a different constant in each step,
a scaled version of the first recurrence may be used in which u (i) = 2i x (i):

u (i+1) = 2(u (i) + 2di y (i) – di
2 2–i) u (0) = z , u (i) bounded

y (i+1) = y (i) – di 2–i y (0) = 0, y (m) z

Radix-4 version can be devised: Digit set [–2, 2] or {–1, –½, 0, ½, 1}

May 2015 Computer Arithmetic, Function Evaluation Slide 64

23.5 Use of Approximating Functions
Convert the problem of evaluating the function f to that of function g
approximating f, perhaps with a few pre- and postprocessing operations

Approximating polynomials need only additions and multiplications

Polynomial approximations can be derived from various schemes

The Taylor-series expansion of f(x) about x = a is

f(x) =  j=0 to  f (j) (a) (x – a) j / j!

The error due to omitting terms of degree > m is:

f (m+1) (a + (x – a)) (x – a)m+1 / (m + 1)! 0 <  < 1

Setting a = 0 yields the Maclaurin-series expansion

f(x) =  j=0 to  f (j) (0) x j / j!

and its corresponding error bound:

f (m+1) (x) xm+1 / (m + 1)! 0 <  < 1

Efficiency in
computation
can be
gained via
Horner’s
method and
incremental
evaluation

May 2015 Computer Arithmetic, Function Evaluation Slide 65

Some Polynomial Approximations (Table 23.1)
–––
Func Polynomial approximation Conditions
–––
1/x 1 + y + y 2 + y3 + . . . + y i + . . . 0<x<2, y=1–x

ex 1 + x /1! + x 2/2! + x 3/3! + . . . + x i /i ! + . . .

ln x –y – y2/2 – y 3/3 – y 4/4 – . . . – y i /i – . . . 0<x 2, y=1–x

ln x 2[z + z 3/3 + z 5/5 + . . . + z 2i+1/(2i+1) + . . .] x>0, z= x–1
x+1

sin x x –x 3/3!+x 5/5!–x 7/7!+ . . . +(–1)i x2i+1/(2i+1)!+ . . .

cos x 1– x 2/2!+x 4/4!– x 6/6!+ . . . +(–1)i x2i/(2i)! + . . .

tan–1x x –x 3/3+x 5/5–x 7/7+ . . . + (–1)i x2i+1/(2i+1)+ . . . –1 < x < 1

sinh x x +x 3/3!+x 5/5!+x 7/7!+ . . . +x2i+1/(2i+1)!+ . . .

cosh x 1+x 2/2!+x 4/4!+x 6/6!+ . . . +x2i/(2i)! + . . .

tanh–1x x +x 3/3+x 5/5+x 7/7+ . . . +x2i+1/(2i+1)+ . . . –1 < x < 1
–––

May 2015 Computer Arithmetic, Function Evaluation Slide 66

Function Evaluation via Divide-and-Conquer

Let x in [0, 4) be the (l +2)-bit significand of a floating-point number
or its shifted version. Divide x into two chunks xH and x L:

x = xH + 2–t x L

0  xH < 4 t + 2 bits

0  x L < 1 l – t bits
t bits

x H in [0, 4) x L in [0, 1)

The Taylor-series expansion of f(x) about x = xH is

f(x) =  j=0 to  f (j) (xH) (2–t x L) j / j!

A linear approximation is obtained by taking only the first two terms

f(x)  f (xH) + 2–t x L f (xH)

If t is not too large, f and/or f (and other derivatives of f, if needed)
can be evaluated via table lookup

May 2015 Computer Arithmetic, Function Evaluation Slide 67

Approximation by the Ratio of Two Polynomials

Example, yielding good results for many elementary functions

f(x)  a(5)x5 + a(4)x4 + a(3)x3 + a(2)x2 + a(1)x + a(0)

b(5)x5 + b(4)x4 + b(3)x3 + b(2)x2 + b(1)x + b(0)

Using Horner’s method, such a “rational approximation” needs
10 multiplications, 10 additions, and 1 division

May 2015 Computer Arithmetic, Function Evaluation Slide 68

23.6 Merged Arithmetic
Our methods thus far rely on word-level building-block operations
such as addition, multiplication, shifting, . . .

Sometimes, we can compute a function of interest directly without
breaking it down into conventional operations

Example: merged arithmetic for inner product computation

z = z (0) + x (1) y (1) + x (2) y (2) + x (3) y (3)        
   

   
   

   
   

   
   

   
   

   
   

   

x(1)y(1)

x(3)y(3)

x(2)y(2)

z(0)

Fig. 23.2 Merged-arithmetic computation of
an inner product followed by accumulation.

May 2015 Computer Arithmetic, Function Evaluation Slide 69

Example of Merged Arithmetic Implementation

Example: Inner product computation

z = z (0) + x (1) y (1) + x (2) y (2) + x (3) y (3)

       
   

   
   

   
   

   
   

   
   

   
   

   

x(1)y(1)

x(3)y(3)

x(2)y(2)

z(0)

Fig. 23.3 Tabular representation
of the dot matrix for inner-product
computation and its reduction.

1 4 7 10 13 10 7 4 16 FAs
2 4 6 8 8 6 4 2 10 FAs + 1 HA
3 4 4 6 6 3 3 1 9 FAs

1 2 3 4 4 3 2 1 1 4 FAs + 1 HA
1 3 2 3 3 2 1 1 1 3 FAs + 2 HAs
2 2 2 2 2 1 1 1 1 5-bit CPA

Fig. 23.2

May 2015 Computer Arithmetic, Function Evaluation Slide 70

Another Merged Arithmetic Example
Approximation of reciprocal (1/x) and reciprocal square root (1/x)
functions with 29-30 bits of precision, so that a long floating-point
result can be obtained with just one iteration at the end [Pine02]

u v w 1.

c
Table

b
Table

a
Table Squarer Radix-4

Booth

Radix-4
Booth

Partial products gen Partial products gen

9 bits 24 bits 19 bits

30 bits 20 bits 12 bits

16 bits

Multioperand adder

30 bits,
carry-save

Double-
precision
significand f(x) = c + bv + av 2

1 square

Comparable
to a multiplier

2 mult’s

2 adds

May 2015 Computer Arithmetic, Function Evaluation Slide 71

24 Arithmetic by Table Lookup

Chapter Goals
Learning table lookup techniques
for flexible and dense VLSI realization
of arithmetic functions

Chapter Highlights
We have used tables to simplify or speedup
q digit selection, convergence methods, . . .
Now come tables as primary computational
mechanisms (as stars, not supporting cast)

May 2015 Computer Arithmetic, Function Evaluation Slide 72

Arithmetic by Table Lookup: Topics

Topics in This Chapter

24.1 Direct and Indirect Table Lookup

24.2 Binary-to-Unary Reduction

24.3 Tables in Bit-Serial Arithmetic

24.4 Interpolating Memory

24.5 Piecewise Lookup Tables

24.6 Multipartite Table Methods

May 2015 Computer Arithmetic, Function Evaluation Slide 73

24.1 Direct and Indirect Table Lookup

2 by
table

Result(s)
 bits

Pre-
proces-
sing
logic

Post-
processing
logic

Smaller
table(s)

Operand(s)
 bitsu u v

v

Operand(s)
 bitsu

Result(s)
 bitsv

.

.

.

. . .

Fig. 24.1 Direct table lookup versus
table-lookup with pre- and post-processing.

May 2015 Computer Arithmetic, Function Evaluation Slide 74

Tables in Supporting and Primary Roles

Tables are used in two ways:

In supporting role, as in initial estimate for division

As main computing mechanism

Boundary between two uses is fuzzy

Pure logic Hybrid solutions Pure tabular

Previously, we started with the goal of designing logic circuits
for particular arithmetic computations and ended up using
tables to facilitate or speed up certain steps

Here, we aim for a tabular implementation and end up using
peripheral logic circuits to reduce the table size

Some solutions can be derived starting at either endpoint

May 2015 Computer Arithmetic, Function Evaluation Slide 75

Lx + +() Lx + ()

24.2 Binary-to-Unary Reduction
Strategy: Reduce the table size by using an auxiliary unary function
to evaluate a desired binary function

Example 1: Addition/subtraction in a logarithmic number system;
i.e., finding Lz = log(x  y), given Lx and Ly

Solution: Let  = Ly – Lx

Lz = log(x  y)

= log(x (1  y/x))

= log x + log(1  y/x)

= Lx + log(1  log –1)

Pre-
process

+ table  table

Postprocess

Lx

Ly

Lz

 = Ly – Lx

May 2015 Computer Arithmetic, Function Evaluation Slide 76

Another Example of Binary-to-Unary Reduction
Example 2: Multiplication via squaring, xy = (x + y)2/4 – (x – y)2/4

Simplification and implementation details
If x and y are k bits wide,
x + y and x – y are k + 1
bits wide, leading to two
tables of size 2k+12k
(total table size = 2k+3k bits)
(x  y)/2 = (x  y)/2 + /2   {0, 1} is the LSB
(x + y)2/4 – (x – y)2/4

= [(x + y)/2 + /2]2 – [(x – y)/2 + /2]2

= (x + y)/2 2 – (x – y)/2 2 + y
Pre-process: compute x + y and x – y; drop their LSBs
Table lookup: consult two squaring table(s) of size 2k (2k – 1)
Post-process: carry-save adder, followed by carry-propagate adder
(table size after simplification = 2k+1 (2k – 1)  2k+2k bits)

Preprocess
(two adds) Square

table
Square
table

Postprocess (add)

y

x

xy

x + y

x – y

Can be realized
with one adder
and one table

Fig. 24.2

May 2015 Computer Arithmetic, Function Evaluation Slide 77

24.3 Tables in Bit-Serial Arithmetic

Fig. 24.3 Bit-serial ALU
with two tables implemented
as multiplexers.

a
b c

f op-
code

g op-
code

f(a, b, c)

g(a, b, c)

 From
Memory

0
1
2
3
4
5
6
7

Mux
0
1
2
3
4
5
6
7

Mux

Flags

To Memory

Used in Connection Machine 2,
an MPP introduced in 1987

(64 Kb) 3 bits specify a
flag and a value
to conditionalize
the operation

Specified by
16-bit addresses Specified by

2-bit address

Specified by
2-bit address

Replaces a
in memory

8-bit opcode
(f truth table)

8-bit opcode
(g truth table)

0
0
0
1
0
1
1
1

Carry bit
for addition

0
1
0
1
0
1
0
1

Sum bit
for addition

May 2015 Computer Arithmetic, Function Evaluation Slide 78

Other Table-Based Bit-Serial Arithmetic Examples

See Section 4.3: Conversion from binary/decimal to RNS

Table
Modular

accumulator

x 0

x 1

x 2

xk–2...

x mod m

xk–1

. . .

Evaluation of linear expressions
(assume unsigned values)

z = ax + by = a xi 2i + b yi 2i

=  (axi+ byi) 2i

0

Address

4-entry table

b

a + b

a

xi

yi

Sum

Carry

CSA

Data

k
/

k–1
/

k–1
/

k
/

k–1
/

k–1
/

LSB
zi

CS residual
Fig. 24.4 Bit-serial evaluation
of z = ax + by.

May 2015 Computer Arithmetic, Function Evaluation Slide 79

24.4 Interpolating Memory
Linear interpolation: Computing f(x), x  [xlo, xhi], from f(xlo) and f(xhi)

x – xlof (x) = f (xlo) + [f (xhi) – f (xlo)] 4 adds, 1 divide, 1 multiplyxhi – xlo

If the xlo and xhi endpoints are consecutive multiples of a power of 2,
the division and two of the additions become trivial

Example: Evaluating log2x for x  [1, 2)

f(xlo) = log21 = 0, f(xhi) = log22 = 1; thus:

log2x  x – 1 = Fractional part of x

An improved linear interpolation formula
ln 2 – ln(ln 2) – 1

log2x  + (x – 1) = 0.043 036 + x2 ln 2

1 2
0

1

May 2015 Computer Arithmetic, Function Evaluation Slide 80

Hardware Linear Interpolation Scheme

Fig. 24.5 Linear interpolation for computing f(x)
and its hardware realization.

Add

a

f(x)

Multiply

b

x

x

x lo x hi x

f(x)

Initial linear
approximation

Improved linear
approximation

a + b x

May 2015 Computer Arithmetic, Function Evaluation Slide 81

Linear Interpolation with Four Subintervals

Fig. 24.6
Linear
interpolation
for computing
f(x) using 4
subintervals.

Add

a

f(x)

Multiply 4x

x

x min x max x

f(x)

i = 0

a + b x

 (i) b /4 (i)

4-entry tables
2-bit address

x

(i) (i)

i = 1
i = 2

i = 3

Table 24.1
Approximating
log2x for x in
[1,2) using linear
interpolation
within 4
subintervals.

––
i xlo xhi a (i) b (i)/4 Max error

––
0 1.00 1.25 0.004 487 0.321 928  0.004 487
1 1.25 1.50 0.324 924 0.263 034  0.002 996
2 1.50 1.75 0.587 105 0.222 392  0.002 142
3 1.75 2.00 0.808 962 0.192 645  0.001 607

––

May 2015 Computer Arithmetic, Function Evaluation Slide 82

Tradeoffs in Cost, Speed, and Accuracy

6 8 10
9

W
or

st
-c

as
e

ab
so

lu
te

 e
rro

r

Number of bits (h)

Linear

0 2 4 10

6
10

3
10

8
10

5
10

2
10

7
10

4
10

1
10

Second-
order

Third-
order

Fig. 24.7
Maximum
absolute error in
computing log2x
as a function of
number h of
address bits for
the tables with
linear, quadratic
(second-degree),
and cubic
(third-degree)
interpolations
[Noet89].

May 2015 Computer Arithmetic, Function Evaluation Slide 83

Interpolation with Nonuniform Intervals

The [0,1) range
divided into 4
nonuniform intervals

One way to use interpolation with nonuniform intervals to
successively divide ranges and subranges of interest into 2 parts,
with finer divisions used where the function exhibits greater
curvature (nonlinearity)

0 1

.0xx .10x .111.110

In this way, a number of leading bits can be used to decide
which subrange is applicable

May 2015 Computer Arithmetic, Function Evaluation Slide 84

24.5 Piecewise Lookup Tables
To compute a function of a short (single) IEEE floating-point number:

Divide the 26-bit significand x (2 whole + 24 fractional bits) into 4 sections

x = t + u + 2v + 3w
= t + 2–6u + 2–12v + 2–18w

where u, v, w are 6-bit fractions in [0, 1) and t, with up to 8 bits, is in [0, 4)

Taylor polynomial for f(x):

f(x) = i=0 to  f (i) (t + u) (2v + 3w)i / i !

Ignore terms smaller than 5 = 2–30

f(x)  f(t + u)
+ (/2) [f(t + u + v) – f(t + u – v)]
+ (2/2) [f(t + u + w) – f(t + u – w)]
+ 4 [(v2/2) f (2)(t) – (v 3/6) f (3)(t)]

t u v w

Use 4 additions to
form these terms

Read 5 values of f
from tables

Perform 6-operand
addition

Read this last term
from a table

May 2015 Computer Arithmetic, Function Evaluation Slide 85

Modular Reduction, or Computing z mod p

(x + y) mod p = (x mod p + y mod p) mod p

Table
 1

Table
 2

v

d d

Adder

Adder

–p

Mux+ –

d-bit output

b-bit input
b–g g

d d

d+1

dd

Sign

d+1

z

z mod p

LvH

Fig. 24.8a Two-table modular reduction
scheme based on divide-and-conquer.

Divide the argument z into
a (b – g)-bit upper part (x)
and a g-bit lower part (y),
where x ends with g zeros

May 2015 Computer Arithmetic, Function Evaluation Slide 86

Another Two-Table Modular Reduction Scheme

Fig. 24.8b Modular reduction
based on successive refinement.

Table
 2 m*

d

d-bit output

b–h h

z mod p

b-bit
input

z

Adder

Table
 1 v

d*

d*–h h d*

d*Explanation to be added

Divide the argument z into
a (b – h)-bit upper part (x)
and an h-bit lower part (y),
where x ends with h zeros

May 2015 Computer Arithmetic, Function Evaluation Slide 87

24.6 Multipartite Table Methods

Fig. 24.9 The bipartite
table method.

Total table size is 2a+b + 2k–b,
in lieu of 2k; width of table
entries has been ignored in
this comparison

a

k-bit input x

Add

u Table

v Table

b

k–a–b

k-bit output y

x0

x1

x2

u(x0, x1)

v(x0, x2)

f(x)

Subintervals

An interval

f(x)

x

(a) Hardware realization (b) Linear approximation

Common
Slope

Divide the domain of interest into
2a intervals, each of which is further
divided into 2b smaller subintervals

The trick: Use linear interpolation
with an initial value determined for
each subinterval and a common
slope for each larger interval

May 2015 Computer Arithmetic, Function Evaluation Slide 88

Generalizing to Tripartite and Higher-Order Tables

Source of figure: www.ens-lyon.fr/LIP/Arenaire/Ware/Multipartite/

Two-part tables have
been generalized to
multipart (3-part,
4-part, . . .) tables

