PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO

Plano de Ensino

DISCIPLINA: TE: Redes Complexas			CÓDIGO:	MEL02
Validade: A partir do 1º semestre de 2019. Carga Horária: 60 Çréditos: 04				
Área de Concentração/Módulo: Modelagem	e Control	e de Sistemas	/ Formação	Específica
Professor: Erivelton Geraldo Nepomuceno				
Página: www.ufsj.edu.br/nepomuceno				
Horário de atendimento: Sextas, 13h30 às 1	6h30, Sala	a 4.23 EL.		
Ementa:				
Teoria dos Grafos. Medidas de Centralidade Grafos aleatórios generalizados. Modelos de				
INTERDISCIPLINARIDADES Inter-relações desejáveis É desejável que os conhecimentos adquirido interação com as seguintes disciplinas:	·			
- Disciplinas □ Sistemas Dinâmicos Nã Otimização; Teoria e Projeto de Sistemas Li		; Metodos Ni	imencos; re	cnicas de
 Linhas de Pesquisa □ Análise e Modelage concentração: Modelagem e Controle de Sis 		emas; Sistema	as de Control	e (área de
Objetivos - Possibilitar ao estudante os seg Entender como um computador resolve prob perspectiva da computação aritmética.			necendo seus	limites na
Marque com um X no quadro: X Aula expositiva em quadro Aula com uso de transparência X Aula com uso de multimídia Aula prática Discussão de texto Filme	X X	Seminário Pesquisa Trabalho indi Trabalho em Visita técnica Outros:	grupo	

Uı	nidades de ensino	Carga-horária Horas-aula	
1	Graphs and Graph Theory	12	
	1.1. What Is a Graph?		
	1.2. Directed, Weighted and Bipartite Graphs		
	1.3. Basic Definitions		
	1.4. Trees		
	1.5. Graph Theory and the Bridges of Königsberg		
	1.6. How to Represent a Graph		
2	Centrality Measures	8	
	2.1. The Importance of Being Central		
	2.2. Connected Graphs and Irreducible Matrices		
	2.3. Degree and Eigenvector Centrality		
	2.4. Measures Based on Shortest Paths		
	2.5. Movie Actors		
	2.6. Group Centrality		
3	3. Random Graphs	8	
	3.1. Erdos and Rényi (ER) Models		
	3.2. Degree Distribution		
	3.3. Trees, Cycles and Complete Subgraphs		
	3.4. Giant Connected Component		
	3.5. Scientific Collaboration Networks		
	3.6. Characteristic Path Length		
4	4. Small-World Networks	8	
•	4.1. Six Degrees of Separation	J	
	4.2. The Brain of a Worm		
	4.3. Clustering Coefficient		
	4.4. The Watts–Strogatz (WS) Model		
	4.5. Variations to the Theme		
	4.6. Navigating Small-World Networks		
	5. Generalised Random Graphs	8	
	5.1. The World Wide Web	O	
	5.2. Power-Law Degree Distributions		
	5.3. The Configuration Model		
	5.4. Random Graphs with Arbitrary Degree Distribution		
	5.5. Scale-Free Random Graphs		
	5.6. Probability Generating Functions		
	6. Models of Growing Graphs	8	
	6.1. Citation Networks and the Linear Preferential	U	
	Attachment		
	6.2. The Barabási–Albert (BA) Model		
	6.3. The Importance of Being Preferential and Linear		
	6.4. Variations to the Theme		
	6.5. Can Latecomers Make It? The Fitness Model		
	6.6. Optimisation Models		
	7. Advanced Topics	4	
	Seminar	4	
	- Comman	'1	
_	Total	60	

Métodos de Avaliação

- 1. Itens de avaliação:
 - 1. T₁: Exercícios para entregar e em sala de aula.
 - 2. T₂: Elaboração da proposta do seminário.
 - 3. T₃: Fundamentação teórica e Metodologia do seminário.
 - 4. T₄: Resultados parciais para o seminário.
 - 5. T₅: Artigo científico de 6 a 8 páginas do seminário.
 - 6. T₆: Apresentação.
 - 7. Ps: Prova substitutiva (conteúdo de toda a disciplina).

2. Observações:

- 1. Cada item será avaliado em uma nota de 0 a 100.
- 2. A nota T₁ é a média das notas de cada exercício.
- As orientações para o seminário que compõe as notas N₂ a N₆ encontram-se na página do professor.

3. Cálculo das Notas:

1. A N₁ (escala de 0 a 10) é dada por:
$$N_1 = \frac{2T_1 + T_2 + T_3 + T_4 + 4T_5 + T_6}{100}$$
2. O aluno poderá realizar a prova substitutiva (Ps), sendo que:

$$N_2 = \frac{1}{2} \left(N_1 + \frac{P_S}{100} \right)$$

 $N_2=\frac{1}{2}\Big(N_1+\frac{P_S}{100}\Big)$ Para atender o § 3º do Art. 19 (Resolução Conep 12/2018), a nota final do aluno será a maior nota entre N_1 e N_2 dada por:

$$N_F = m\acute{a}ximo(N_1, N_2)$$

• O aluno será aprovado somente se $N_F \ge 6, 0$.

Bibliografia Básica

V. Latora, V. Nicosia, and G. Russo, Complex Networks: Principles, Methods and Applications. Cambridge University Press, 2017

Bibliografia Complementar

- R. Kinney, P. Crucitti, R. Albert, and V. Latora, "Modeling cascading failures in the North American power grid," Eur Phys J B, vol. 46, no. 1, pp. 101–107, 2005.
- S. Boccaletti et al., "Explosive transitions in complex networks' structure and [2] dynamics: Percolation and synchronization," Phys Rep, vol. 660, pp. 1–94, Nov. 2016.
- [3] P. Crucitti, V. Latora, and M. Marchiori, "Model for cascading failures in complex networks," Phys Rev E, vol. 69, no. 4, p. 045104, Apr. 2004.
- [4] S. H. Strogatz, "Exploring complex networks," Nature, vol. 410, no. 6825, pp. 268-276, Mar. 2001.
- [5] D. J. Watts and S. H. Strogatz, "Collective dynamics of 'small-world' networks," Nature, vol. 393, no. 6684, pp. 440-442, Jun. 1998.
- M. E. J. Newman, "The structure and function of complex networks," Soc Ind Appl [6] Math, vol. 45, no. 2, pp. 167-256, 2003.
- [7] A. Barabási and R. Albert, "Emergence of Scaling in Random Networks," Science (80-), vol. 286, no. 5439, pp. 509-512, Oct. 1999.
- S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, "Complex networks: [8] Structure and dynamics," Phys Rep. vol. 424, no. 4-5, pp. 175-308, Feb. 2006.

Elaborador por Prof. Erivelton Geraldo Nepomuceno em 13/03/2019.
Aprovado na reunião do colegiado em/

Coordenador do Programa de Pós-Graduação em Engenharia Elétrica