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Teaching Plan

Content

@ Graphs and Graph Theory
© Centrality Measures

© Random Graphs

© Small-World Networks

© Generalised Random Graphs
© Models of Growing Graphs
@ Advanced topics
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Reference

@ V. Latora, V. Nicosia, and G. Russo, Complex Networks:
Principles, Methods and Applications. Cambridge University

Press, 2017.
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Assessment

@ Ny = 80 points : Conference paper.
@ N, = 20 points : Activities

@ N = N; + N> points

e If N > 60 then Succeed.

@ If N < 60 then Failed.
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Introduction

@ A social system is a typical example of what is known today as a
complex system.
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Figure 1: A social system. Source: https://corefinder.dk/the-social-system/
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@ The study of complex systems is a new science, and so a
commonly accepted formal definition of a complex system is still
missing.

@ A complex system is a system made by a large number of single
units (individuals, components or agents) interacting in such a way
that the behaviour of the system is not a simple combination of the
behaviours of the single units.

@ Some collective behaviours emerge without the need for any
central control.

@ Over the years, the main focus of scientific research has been on
the characteristics of the individual components of a complex
system and to understand the details of their interactions.

@ Less explored: structure of the interactions among the units of a
complex system: which unit is connected to which others.

@ The most representative and beautiful complex system: the
human brain.
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Figure 2: Brain network. Source: Dr. Petra Vertes (University of Cambridge).

@ 100 billion neurons.
@ Each connected by synapses to several thousand other neurons.

@ Each node of the network represents a different brain region and
is colour-coded according to the larger area is located in. Pairs of
nodes are linked if the activity of the two regions is found to
synchronize a lot of the time during an fMRI brain scan.
[Video-01].

@ Social network [Video-02].
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https://youtu.be/f3P15X_62xQ
https://youtu.be/4fHufyIWmX0

@ Some sub-structures of a network propagate information faster
than others.

@ What also matters in a complex system is the architecture of the
network of interactions. It is precisely on these complex networks.
@ Complex networks are all around us.

@ Think in a typical day of any person.

@ Wake-up: Power grid.

© Family: Social network.

© Take a shower: Water distribution network.

©@ Go to work: street network

@ Take the underground: transportation network.
@ Use your laptop: network of logic gates.

@ Check your emails: email communication network.
© Meet a colleague: collaboration network.

@ Paper cited: citation network.

@ Lunch time - news on the web: World Wide Web.
@ Facebook: online social network.

@® Receive a phone call: phone call network.

@ |Invitation to go to a lake: food web network.
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@ Thoughts on lake: network of words association.

@ Book a flight to Prague for a conference: air transportation system

@ Drive back home - tired: network of blood vessels, metabolic
networks...

@ Dinner - news about economics: commercial relationship.

@ Relaxing time - moview : actor collaboration network.

@ Going to bed - think about the day using your brain network.
@ Why Study Complex Networks?

» In the following slides a couples of papers are going to testify the
importance of the Network Science.
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letters to nature

typically slower than ~1kms™) might differ significantly from
what is assumed by current modelling efforts”. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation®® through disruption and
v P2 e A P

|
Collective dynamics of
‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall,
Cornell University, Ithaca, New York 14853, USA

Networks of coupled dynamical systems have been used to model
biological oscillators'™, Josephson junction arrays™, excitable
media’, neural networks®, spatial games', genetic control
networks'> and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-

Figure 3: D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440-442, Jun. 1998. GS: 38306.
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For ALO and ALO/STO barriers, a predom-
inant tunneling of s-character electrons (see ar-
row in Fig. 2B) is the usual explanation of the
positive polarization (6—8). The rapid drop
with bias (Fig. 3B) is similar to what has been
observed in most junctions with ALO barriers,
and completely different from what is obtained
when the tunneling is predominantly by d-char-
acter electrons (Fig. 3A). The origin of this
rapid decrease of the TMR at relatively small
bias has never been clearly explained. This is
roughly consistent with the energy dependence
of the DOS induced by sp-d bonding effects on
the first atomic layer of ALO in the calculation
of Nguyen-Mahn et al. (8) for the Co-ALO
interface. But Zhang et al. (13) have also shown
that a large part of the TMR drop can be
attributed to the excitation of spin waves.

The experiments reported here and in sev-
eral recent publications (3, 4) demonstrate the
important role of the electronic structure of the
metal-oxide interface in determining the spin
polarization of the tunneling electrons. The neg-
ative polarization for the Co-STO interface has
been ascribed to d-d bonding effects between
Al and Ti (4). This interpretation is similar to

www.sciencemag.org SCIENCE VOL 286

Emergence of Scaling in
Random Networks

Albert-Laszl6 Barabasi* and Réka Albert

Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
large networks is that the vertex connectivities follow a scale-free power-law
distribution. This feature was found to be a consequence of two generic mech-
anisms: (i) networks expand continuously by the addition of new vertices, and
(i) new vertices attach preferentially to sites that are already well connected.
A model based on these two ingredients reproduces the observed stationary
scale-free distributions, which indicates that the development of large networks
is governed by robust self-organizing phenomena that go beyond the particulars

of the individual systems.

The inability of contemporary science to de-
scribe systems composed of nonidentical el-
ements that have diverse and nonlocal inter-

Department of Physics, University of Notre Dame,
Notre Dame, IN 46556, USA.

*To whom correspondence should be addressed. E-
mail: alb@nd.edu

actions currently limits advances in many
disciplines, ranging from molecular biology
to computer science (/). The difficulty of
describing these systems lies partly in their
topology: Many of them form rather complex
networks whose vertices are the elements of
the system and whose edges represent the
interactions between them. For example, liv-

15 OCTOBER 1999

Figure 4: A. Barabasi and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509-512, Oct. 1999. GS: 33041.
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SIAM REVIEW (© 2003 Society for Industrial and Applied Mathematics
Vol. 45, No. 2, pp. 167-256

The Structure and Function of
Complex Networks™

M. E. ). Newmanf

Abstract. Inspired by empirical studies of networked systems such as the Internet, social networks,
and biological networks, researchers have in recent years developed a variety of techniques
and models to help us understand or predict the behavior of these systems. Here we
review developments in this field, including such concepts as the small-world effect, degree
distributions, clustering, network correlations, random graph models, models of network
growth and preferential attachment, and dynamical processes taking place on networks.

Key words. networks, graph theory, complex systems, computer networks, social networks, random
graphs, percolation theory

AMS subject classifications. 05C75, 05C90, 94C15

PIl. S0036144503424804

Figure 5: M. E. J. Newman, “The structure and function of complex networks,”
Society for Industrial and Applied Mathematics, vol. 45, no. 2, pp. 167-256,
2003. GS: 18289.
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Available online at www.sciencedirect.com

SCIENCE DIRECT®
@ PHYSICS REPORTS

Physics Reports 424 (2006) 175-308 1
www.elsevier.com/locate/physrep

Complex networks: Structure and dynamics

S. Boccaletti®+*, V. Latora® ¢, Y. Moreno®-¢, M. Chavez’, D.-U. Hwang?*

ACNR-Istituto dei Sistemi Complessi, Largo E. Fermi, 6, 50125 Florence, Italy
bDiparlimento di Fisica e Astronomia, Universitd di Catania, Via S. Sofia, 64, 95123 Catania, Italy
CIstituto Nazionale di Fisica Nucleare, Sezione di Catania, Via S. Sofia, 64, 95123 Catania, Italy
nstituto de Biocomputacion y Fisica de Sistemas Complejos, Universidad de Zaragoza, Zaragoza 50009, Spain
€Departamento de Fisica Tedrica, Universidad de Zaragoza, Zaragoza 50009, Spain
f Laboratoire de Neurosciences Cognitives et Imagerie Cérébrale (LENA) CNRS UPR-640, Hépital de la Salpétriére. 47 Bd. de I'Hépital,
75651 Paris CEDEX 13, France

Accepted 27 October 2005
Available online 10 January 2006
editor: I. Procaccia

Figure 6: S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang,
“Complex networks: Structure and dynamics,” Physics Reports, vol. 424, no.
4-5, pp. 175-308, Feb. 2006. GS: 8842.
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ARTICLE
oPEN

Dynamically induced cascading failures in power
grids

Benjamin Schafer® "2, Dirk Witthaut® 34, Marc Timme'? & Vito Latora® >©

Reliable functioning of infrastructure networks is essential for our modern society. Cascading
failures are the cause of most large-scale network outages. Although cascading failures often
exhibit dynamical transients, the modeling of cascades has so far mainly focused on the
analysis of sequences of steady states. In this article, we focus on electrical transmission
networks and introduce a framework that takes into account both the event-based nature of
cascades and the essentials of the network dynamics. We find that transients of the order of
seconds in the flows of a power grid play a crucial role in the emergence of collective
behaviors. We finally propose a forecasting method to identify critical lines and components
in advance or during operation. Overall, our work highlights the relevance of dynamically
induced failures on the synchronization dynamics of national power grids of different
European countries and provides methods to predict and model cascading failures.

Figure 7: B. Schafer, D. Witthaut, M. Timme, and V. Latora, “Dynamically
induced cascading failures in power grids,” Nature Communications, vol. 9,
no. 1, p. 1975, Dec. 2018. GS: 9.
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Importance of topology

@ WS1998 and BA999 provided clear indications, from different
angles, that:

» the networks of real-world complex systems have non-trivial
structures and are very different from lattices or random graphs,
which were instead the standard networks commonly used in all the
current models of a complex system.

» some structural properties are universal, i.e. are common to
networks as diverse as those of biological, social and man-made
systems.

» the structure of the network plays a major role in the dynamicsof a
complex system and characterises both the emergence and the
properties of its collective behaviours.
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Datasets

Table 1 Alist of the real-world complex networks that will be studied in this book. For each network, we

report the chapter of the book where the corresponding data set will be introduced and analysed.

Complex networks Nodes Links Chapter
Elisa’s kindergarten Children Friendships 1
Actor collaboration networks Movie actors Co-acting in a film 2
Co-authorship networks Scientists Co-authoring a paper 3
Citation networks Scientific papers Citations 6
Zachary’s karate club Club members Friendships 9
C. elegans neural network Neurons Synapses 4
Transcription regulation networks Genes Transcription regulation 8
‘World Wide Web ‘Web pages Hyperlinks 5
Internet Routers Optical fibre cables 7
Urban street networks Street crossings Streets 8
Air transport network Airports Flights 10
Financial markets Stocks Time correlations 10

Figure 8: If there is no other mention, table and figures in these slides come
from the adopted textbook.
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Appendix

@ Contains a detailed description of all the main graph algorithms
discussed in the various chapters of the book, from those to find
shortest paths, components or community structures in a graph, to
those to generate random graphs or scale-free networks.

@ All the algorithms are presented in a C-like pseudocode format.

@ Access to both the most famous data sets of real-world networks
and to the numerical algorithms to compute network properties
and to construct networks.

@ Accompanying website of the textbook:
www.complex-networks.net.

@ Data Sets: (html).
@ Book’s Programs (NetBunch) in C Language: (html).
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http://www.complex-networks.net/
http://www.complex-networks.net/datasets.html
http://www.complex-networks.net/programs.html

Use of C code

ER_A(1) WWW.COMPLEX- ER_A(1)
NETWORKS.NET

NAME
er_A - sample a random graph from the Erdos-Renyi model A

SYNOPSIS
er_A N K [fileout]

DESCRIPTION
er_A samples a random graph with ¥ nodes and k edges from the Erdos-Renyi model A,
i.e. the ensemble of random graphs where K links are placed uniformly at random
among N nodes. The program dumps the edge list of the resulting graph on output.
If the optional fileout is provided, the output is written on a file with that
name.

PARAMETERS
N Number of nodes in the final graph.
K Number of edges in the final graph.

fileout The (optional) name of the filename where the edge list of the graph will
be saved.

Figure 9: Source: (Web textbook)

Prof. Erivelton (UFSJ) March 13, 2019 18/20


http://www.complex-networks.net/docs/er_A.1.html

Use of C code

EXAMPLES
The following command:

$ er_A 1000 3000
samples an undirected random network with N=1666 nodes and k=300¢ edges using the
Erdos-Renyl model A. The output of the command er_A will be the edge-list of the
resulting graph, where each (undirected) edge is reported only once. In order to
be useful, such edge-list should be saved into a file. The following command:

$ er_A 1000 3000 > er A _1000_3000.net

will save the resulting graph in the file er A 1e@e_32000.net. Notice the usage of

the symbol ">" to redirect the output of the program to a file.

SEE ALSO
er B(1), ws(l)

Figure 10: Source: (Web textbook)
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http://www.complex-networks.net/docs/er_A.1.html

Code in Matlab

@ Executable function in C: er_A.exe
@ Matlab call: system('er_A.exe 10 5');
@ Result:

>> system(’er_A.exe 10 5');

O W O 0 ©
0 oy O b W

@ system('er_A.exe 10 5 > er_A_10_5.net'");
@ A=load('er_ A 10_5.net'");
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