Complex Networks
 Master of Science in Electrical Engineering

Erivelton Geraldo Nepomuceno

Department of Electrical Engineering
Federal University of São João del-Rei

April 30, 2019

3. Random Graphs

- The term random graph refers to the disordered nature of the arrangement of links between different nodes.
- The systematic study of random graphs was initiated by Erdös and Rényi in the late 1950s.
- We focus our attention on the shape of the degree distributions and on how the average properties of a random graph change as we increase the number of links.

3.1 Erdös and Rényi (ER) Models

- A random graph is a graph in which the edges are randomly distributed.
- In the late 1950s, two Hungarian mathematicians, Paul Erdös and Alfréd Rényi came up with a formalism for random graphs that would led to modern graph theory.
- We shall deal with undirected graphs.
- This method is called Erdös and Rényi (ER) random graphs.

On random graphs I.

Dedicated to O. Varga, at the occasion of his $50^{\text {th }}$ birthday. By P. ERDŐS and A. RÉNYI (Budapest).

Let us consider a "random graph" $\Gamma_{n, v}$ having n possible (labelled) vertices and N edges; in other words, let us choose at random (with equal probabilities) one of the $\binom{\binom{n}{2}}{N}$ possible graphs which can be formed from

Figure 1: [1] P. Erdos and A. Rényi, "On random graphs I," Publ Math, vol. 6, pp. 290-297, 1959. GS: 14388.

Definition 1 (ER model A: uniform random graphs)

Let $0 \leq K \leq M$, where $M=N(N-1) / 2$. The model, denoted as $G_{N, K}^{E R}$, consists in the ensemble of graphs with N nodes generated by connecting K randomly selected pairs of nodes, uniformly among the M possible pairs. Each graph $G=(\mathcal{N}, \mathcal{L})$ with $|\mathcal{N}|=N$ and $K=|\mathcal{L}|$ is assigned the same probability.

- Consider N nodes and picks at random the first edge among the Mpossible edges, so that all these edges are equiprobable. Then one chooses the second edge at random with a uniform probability among the remaining $M-1$ possible edges, and continues this process until the K edges are fixed.

Steps to construct a random network ${ }^{1}$

(1) Start with N isolated nodes.
(2) Select a node pair and generate a random number between 0 and 1. If the number exceeds p, connect the selected node pair with a link, otherwise leave them disconnected.
(3) Repeat step (2) for each of the $N(N-1) / 2$ node pairs.

[^0]- How many different graphs with N nodes and K edges are there in the ensemble?
- This number is equal to the number of ways we can select K objects among M possible ones, namely:

$$
\frac{M!}{K!(M-K)!}
$$

- This is known as binomial coefficient denoted as

$$
C_{M}^{K}=\binom{K}{M}
$$

Figure 2: Six different realisations of model A with $N=16$ and $K=15$. $C_{120}^{15} \approx 4.73 \times 10^{18}$.

Definition 2 (ER model B: binomial random graphs)

Let $0 \leq p \leq 1$. The model, denoted as $G_{N, p}^{E R}$, consists in the ensemble of graphs with N nodes obtained by connecting each pair of nodes with a probability p. The probability P_{G} associated with a graph $G=(\mathcal{N}, \mathcal{L})$ with $|\mathcal{N}|=N$ and $|\mathcal{L}|=K$ is $P_{G}=p^{K}(1-p)^{M-K}$, where $M=N(N-1) / 2$.

- From $P_{G}=p^{K}(1-p)^{M-K}$, we can calculate that the probabilities of having an empty or a complete graph with N nodes are respectively equal to $(1-p)^{M}$ and p^{M}.
- However, while all the graphs in the first ensemble have 15 edges, the number of links in the second ensemble.

Figure 3: Six different realisations of model B, with $N=16$ and $p=0.125$. We have appropriately chosen the value of p, namely $p M=15$. Thus, we have $G_{N, p}^{E R} \equiv G_{N, K}^{E R}$.

Box 1 (Binomial Distribution)

In statistics, the binomial distribution is valid for processes where there are two mutually exclusive possibilities. The binomial distribution is the discrete probability distribution of the number k of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p :

$$
\operatorname{Bin}(n, p, k) \equiv\binom{n}{k} p^{k}(1-p)^{n-k}
$$

where k can take thevalues $1,2,3, \ldots, n$. A simple example is tossing ten coins and counting the number of heads. The distribution of this random number is a binomial distribution with $n=10$ and $p=1 / 2$ (if the coin is not biased). As another example, assume 5 per cent of a very large population to be green-eyed. You pick 100 people randomly.The number of green-eyed people you pick is a random variable which follows a binomial distribution with $n=100$ and $p=0.05$.

Example 1

Suppose a biased coin comes up heads with probability 0.3 when tossed. What is the probability of achieving $0,1, \ldots, 6$ heads after six tosses? ${ }^{a}$

- $\operatorname{Pr}(0$ heads $)=f(0)=\operatorname{Pr}(X=0)=\binom{6}{0} 0.3^{0}(1-0.3)^{6-0}=0.117649$
- $\operatorname{Pr}(1$ heads $)=f(1)=\operatorname{Pr}(X=1)=\binom{6}{1} 0.3^{1}(1-0.3)^{6-1}=0.302526$
- $\operatorname{Pr}(2$ heads $)=f(2)=\operatorname{Pr}(X=2)=\binom{6}{2} 0.3^{2}(1-0.3)^{6-2}=0.324135$
- $\operatorname{Pr}(3$ heads $)=f(3)=\operatorname{Pr}(X=3)=\binom{6}{3} 0.3^{3}(1-0.3)^{6-3}=0.185220$
- $\operatorname{Pr}(4$ heads $)=f(4)=\operatorname{Pr}(X=4)=\binom{6}{4} 0.3^{4}(1-0.3)^{6-4}=0.059535$
- $\operatorname{Pr}(5$ heads $)=f(5)=\operatorname{Pr}(X=5)=\binom{6}{5} 0.3^{5}(1-0.3)^{6-5}=0.010206$
- $\operatorname{Pr}(6$ heads $)=f(6)=\operatorname{Pr}(X=6)=\binom{6}{6} 0.3^{6}(1-0.3)^{6-6}=0.000729$

[^1]- Fluctuations of K in model B is

$$
\sigma_{K}^{2}=M p(1-p) .
$$

- The ratio between the standard deviation σ_{K} and the average number of links $\bar{K}=p M$ is given by:

$$
\frac{\sigma_{K}}{\bar{K}}=\sqrt{\frac{(1-p)}{p M}}
$$

- This proves that, in large graphs, the fluctuations in the value of K of model B can be neglected.

Example 2 (Fitting a real network with a random graph)

Suppose you are given a real world network G with N nodes and adjacency matrix $\{$ aij $\}$ and you want to model it with a binomial random graph ensemble. What is the ensemble of graphs $G_{N, p}^{E R}$ that best approximates the real network? We can infer the best value of the parameter p from maximum likelihood considerations. It is useful to work with the logarithm of P_{G}, the so-called log-likelihood $\mathcal{L}(p)$ that the network G belongs to the ensemble:

$$
\mathcal{L}(p)=\log P_{G}(p)=K \log p+[M-K] \log (1-p)
$$

Maximising the log-likelihood with respect to p, i.e. solving the equation $d \mathcal{L}(p) / d p=0$. The solution is $p=K / M=2 K /(N(N-1))$, where N and K are number of nodes and links in G.

3.2 Degree Distribution

- The nice property of random graphs is that they can be studied analytically.
- The degree distribution of ER random graphs can be easily derived analytically in model B in the following way.
- If p is the probability that there exists an edge between two generic vertices, the probability that a specific node i has degree k_{i} equal to k is given by the following expression:

$$
\operatorname{Prob}_{k_{i}=k}=C_{N-1}^{k} p^{k}(1-p)^{N-1-k} \quad 0 \leq k \leq N-1 .
$$

- The degree distribution in a random graph is a binomial distribution:

$$
p_{k}=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}=\operatorname{Bin}(N-1, p, k) \quad k=0,1,2, \ldots, N-1
$$

- Average degree of a randomly chosen node in a random graph:

$$
\begin{equation*}
\langle k\rangle=\sum_{k=0}^{N-1} k p_{k}=p(N-1) \tag{1}
\end{equation*}
$$

- The standard deviation around this quantity

$$
\begin{equation*}
\sigma_{k}=\sqrt{p(1-p)(N-1)} \tag{2}
\end{equation*}
$$

- Using the Poisson distribution

$$
\begin{equation*}
p_{k}=\operatorname{Pois}(z, k)=e^{-z} \frac{z^{k}}{k!} \quad k=0,1,2, \ldots \tag{3}
\end{equation*}
$$

Figure 4: The degree distribution (circles) that results from one realisation of a random graph with $N=10000$ nodes and $p=0.0015$ is compared to the corresponding binomial (solid line) and Poisson distributions (dashed line).

3.3 Trees, Cycles and Complete Subgraphs

- What are the salient features of a typical random graph with N nodes and K edges?
(a)

(b)

(c)

(d)

Figure 5: The typical graph of the ensemble $G_{40, p}^{E R}$ for four different values of p, namely $p=2 \times 10^{-3}, 5 \times 10^{-3}, 8 \times 10^{-3}, 3 \times 10^{-2}$

- A Random Graph growth. [Video-05].
- GraphStream 1.0 - Dynamics graphs. [Video-06].

ζ	∞	2	3/2	4/3	5/4		1	2/3	1/2	2/5
	\bigcirc	$0-0$		$\begin{array}{ll} 0 \\ 00 \\ 0 & 0 \end{array}$		$\begin{gathered} 0 \\ 0-0 \\ 0-0 \\ 0-0 \\ 0-0 \end{gathered}$	O_{0-0}^{0-0}	$\begin{aligned} & 0=1 \\ & 0=0 \end{aligned}$	$\begin{aligned} & 0,0 \\ & 0=0 \end{aligned}$	O

Figure 6: Threshold probabilities $p(N) \sim N^{-\zeta}$ for the appearance of different subgraphs in a random graph.

3.4 Giant Connected Component

- In their works, Erdös and Rényi also discovered a phase transition concerning the order of the largest component in the graph, namely the abrupt appearance of a macroscopic component known as a giant component.

Definition 3 (Giantcomponent)

A giant component in a graph G is a component containing a number of vertices which increases with the order of G as some positive power of N.

- They proved that a giant component appears at a critical probability function $p_{c}(N)=1 / N$. in model B, or analogously at a critical number of links $K_{c}(N)=N / 2$ in model A.

Figure 7: Plot of the largest component g_{1} obtained in an ER random graph with $N=1000$ nodes and with an average degree respectively below, $\langle k\rangle=0.9$ (a), and above, $\langle k\rangle=1.1$ (b), the critical value $\langle k\rangle=1$. The largest component g_{1} in the first case has $s_{1}=38$ nodes, while it contains $s_{1}=202$ nodes, i.e. 20 per cent of the graph nodes, in the second case.

Convertion of Vito's file to Pajek format

```
%Write a file.net for Pajek
%Number of Nodes
N=40;
%Probability
p=8e-3;
fileID = fopen('er.net','w');
fprintf(fileID,'*Vertices %d \n',N);
fprintf(fileID,'*Edges\n');
system(sprintf('er_B %d %f > teste.net',N,p))
A=load('teste.net');
E=[A+1 ones(length(A),1)];
fprintf(fileID,'%d %d %d\n',E');
fclose(fileID);
type er.net
```


Result

```
*Vertices 40
*Edges
6 38 1
640 1
10 13 1
10 37 1
14 15 1
16 36 1
24 27 1
```


Computational Exercise

(1) Use the algorithm in slide 23 to reproduce the results of slide 19.
(2) Use the option Fruchterman-Reingold to visualize your graphs.
(3) Explore the phase transitions properties to find the giant component.
(Develop a code to reproduce the results shown in slide 17.

[^0]: ${ }^{1}$ Source: Network Science Textbook - Albert-László Barabási. This is a textbook for network science, is freely available under the Creative Commons license.

[^1]: ${ }^{\text {a}}$ Source: $h t t p s: / / e n . w i k i p e d i a . o r g / w i k i / B i n o m i a l _d i s t r i b u t i o n ~$

