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3. Random Graphs

3. Random Graphs

The term random graph refers to the disordered nature of the
arrangement of links between different nodes.
The systematic study of random graphs was initiated by Erdös
and Rényi in the late 1950s.
We focus our attention on the shape of the degree distributions
and on how the average properties of a random graph change as
we increase the number of links.
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

3.1 Erdös and Rényi (ER) Models

A random graph is a graph in which the edges are randomly
distributed.
In the late 1950s, two Hungarian mathematicians, Paul Erdös and
Alfréd Rényi came up with a formalism for random graphs that
would led to modern graph theory.
We shall deal with undirected graphs.
This method is called Erdös and Rényi (ER) random graphs.
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

Figure 1: [1] P. Erdos and A. Rényi, “On random graphs I,” Publ Math, vol. 6,
pp. 290–297, 1959. GS: 14388.
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

Definition 1 (ER model A: uniform random graphs)

Let 0 ≤ K ≤ M, where M = N(N − 1)/2. The model, denoted as GER
N,K ,

consists in the ensemble of graphs with N nodes generated by
connecting K randomly selected pairs of nodes, uniformly among the
M possible pairs. Each graph G = (N ,L) with |N | = N and K = |L| is
assigned the same probability.

Consider N nodes and picks at random the first edge among the
Mpossible edges, so that all these edges are equiprobable. Then
one chooses the second edge at random with a uniform
probability among the remaining M − 1 possible edges, and
continues this process until the K edges are fixed.
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

Steps to construct a random network1

1 Start with N isolated nodes.
2 Select a node pair and generate a random number between 0 and

1. If the number exceeds p, connect the selected node pair with a
link, otherwise leave them disconnected.

3 Repeat step (2) for each of the N(N − 1)/2 node pairs.

1Source: Network Science Textbook - Albert-László Barabási. This is a textbook for
network science, is freely available under the Creative Commons license.
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

How many different graphs with N nodes and K edges are there in
the ensemble?
This number is equal to the number of ways we can select K
objects among M possible ones, namely:

M!

K !(M − K )!

.
This is known as binomial coefficient denoted as

CK
M =

(
K
M

)
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

Figure 2: Six different realisations of model A with N = 16 and K = 15.
C15

120 ≈ 4.73× 1018.
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

Definition 2 (ER model B: binomial random graphs)

Let 0 ≤ p ≤ 1. The model, denoted as GER
N,p, consists in the ensemble

of graphs with N nodes obtained by connecting each pair of nodes with
a probability p. The probability PG associated with a graph G = (N ,L)
with |N | = N and |L| = K is PG = pK (1− p)M−K , where
M = N(N − 1)/2.

From PG = pK (1− p)M−K , we can calculate that the probabilities
of having an empty or a complete graph with N nodes are
respectively equal to (1− p)M and pM .
However, while all the graphs in the first ensemble have 15 edges,
the number of links in the second ensemble.
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

Figure 3: Six different realisations of model B, with N = 16 and p = 0.125.
We have appropriately chosen the value of p, namely pM = 15. Thus, we
have GER

N,p ≡ GER
N,K .
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

Box 1 (Binomial Distribution)
In statistics, the binomial distribution is valid for processes where there
are two mutually exclusive possibilities. The binomial distribution is the
discrete probability distribution of the number k of successes in a
sequence of n independent yes/no experiments, each of which yields
success with probability p:

Bin(n,p, k) ≡
(

n
k

)
pk (1− p)n−k

where k can take thevalues 1,2,3, . . . ,n. A simple example is tossing
ten coins and counting the number of heads.The distribution of this
random number is a binomial distribution with n = 10 and p = 1/2 (if
the coin is not biased). As another example, assume 5 per cent of a
very large population to be green-eyed. You pick 100 people
randomly.The number of green-eyed people you pick is a random
variable which follows a binomial distribution with n = 100 and
p = 0.05.
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

Example 1
Suppose a biased coin comes up heads with probability 0.3 when
tossed. What is the probability of achieving 0,1, . . . ,6 heads after six
tosses?a

Pr(0 heads) = f (0) = Pr(X = 0) =
(6

0

)
0.30(1−0.3)6−0 = 0.117649

Pr(1 heads) = f (1) = Pr(X = 1) =
(6

1

)
0.31(1−0.3)6−1 = 0.302526

Pr(2 heads) = f (2) = Pr(X = 2) =
(6

2

)
0.32(1−0.3)6−2 = 0.324135

Pr(3 heads) = f (3) = Pr(X = 3) =
(6

3

)
0.33(1−0.3)6−3 = 0.185220

Pr(4 heads) = f (4) = Pr(X = 4) =
(6

4

)
0.34(1−0.3)6−4 = 0.059535

Pr(5 heads) = f (5) = Pr(X = 5) =
(6

5

)
0.35(1−0.3)6−5 = 0.010206

Pr(6 heads) = f (6) = Pr(X = 6) =
(6

6

)
0.36(1−0.3)6−6 = 0.000729

aSource: https://en.wikipedia.org/wiki/Binomial_distribution
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

Fluctuations of K in model B is

σ2
K = Mp(1− p).

The ratio between the standard deviation σK and the average
number of links K̄ = pM is given by:

σK

K̄
=

√
(1− p)

pM
.

This proves that, in large graphs, the fluctuations in the value of K
of model B can be neglected.
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3. Random Graphs 3.1 Erdös and Rényi (ER) Models

Example 2 (Fitting a real network with a random graph)
Suppose you are given a real world network G with N nodes and
adjacency matrix {aij} and you want to model it with a binomial
random graph ensemble. What is the ensemble of graphs GER

N,p that
best approximates the real network? We can infer the best value of the
parameter p from maximum likelihood considerations. It is useful to
work with the logarithm of PG, the so-called log-likelihood L(p) that the
network G belongs to the ensemble:

L(p) = log PG(p) = K log p + [M − K ]log(1− p)

Maximising the log-likelihood with respect to p, i.e. solving the
equation dL(p)/dp = 0. The solution is p = K/M = 2K/(N(N − 1)),
where N and K are number of nodes and links in G.
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3. Random Graphs 3.2 Degree Distribution

3.2 Degree Distribution

The nice property of random graphs is that they can be studied
analytically.
The degree distribution of ER random graphs can be easily
derived analytically in model B in the following way.
If p is the probability that there exists an edge between two
generic vertices, the probability that a specific node i has degree
ki equal to k is given by the following expression:

Probki=k = Ck
N−1pk (1− p)N−1−k 0 ≤ k ≤ N − 1.
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3. Random Graphs 3.2 Degree Distribution

The degree distribution in a random graph is a binomial
distribution:

pk =

(
N − 1

k

)
pk (1−p)N−1−k = Bin(N−1,p, k) k = 0,1,2, . . . ,N−1.

Average degree of a randomly chosen node in a random graph:

〈k〉 =
N−1∑
k=0

kpk = p(N − 1). (1)

The standard deviation around this quantity

σk =
√

p(1− p)(N − 1) (2)

Using the Poisson distribution

pk = Pois(z, k) = e−z zk

k !
k = 0,1,2, . . . (3)
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3. Random Graphs 3.2 Degree Distribution

Figure 4: The degree distribution (circles) that results from one realisation of
a random graph with N = 10000 nodes and p = 0.0015 is compared to the
corresponding binomial (solid line) and Poisson distributions (dashed line).
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3. Random Graphs 3.3 Trees, Cycles and Complete Subgraphs

3.3 Trees, Cycles and Complete Subgraphs

What are the salient features of a typical random graph with N
nodes and K edges?
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3. Random Graphs 3.3 Trees, Cycles and Complete Subgraphs

Figure 5: The typical graph of the ensemble GER
40,p for four different values of

p, namely p = 2× 10−3,5× 10−3,8× 10−3,3× 10−2

A Random Graph growth. [Video-05].
GraphStream 1.0 - Dynamics graphs. [Video-06].
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3. Random Graphs 3.3 Trees, Cycles and Complete Subgraphs

Figure 6: Threshold probabilities p(N) ∼ N−ζ for the appearance of different
subgraphs in a random graph.
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3. Random Graphs 3.4 Giant Connected Component

3.4 Giant Connected Component

In their works, Erdös and Rényi also discovered a phase transition
concerning the order of the largest component in the graph,
namely the abrupt appearance of a macroscopic component
known as a giant component.

Definition 3 (Giantcomponent)
A giant component in a graph G is a component containing a number
of vertices which increases with the order of G as some positive power
of N.

They proved that a giant component appears at a critical
probability function pc(N) = 1/N. in model B, or analogously at a
critical number of links Kc(N) = N/2 in model A.
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3. Random Graphs 3.4 Giant Connected Component

Figure 7: Plot of the largest component g1 obtained in an ER random graph
with N = 1000 nodes and with an average degree respectively below,
〈k〉 = 0.9 (a), and above, 〈k〉 = 1.1 (b), the critical value 〈k〉 = 1. The largest
component g1 in the first case has s1 = 38 nodes, while it contains s1 = 202
nodes, i.e. 20 per cent of the graph nodes, in the second case.
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3. Random Graphs 3.4 Giant Connected Component

Convertion of Vito’s file to Pajek format

%Write a file.net for Pajek

%Number of Nodes

N=40;

%Probability

p=8e-3;

fileID = fopen('er.net','w');

fprintf(fileID,'*Vertices %d \n',N);

fprintf(fileID,'*Edges\n');

system(sprintf('er_B %d %f > teste.net',N,p))

A=load('teste.net');

E=[A+1 ones(length(A),1)];

fprintf(fileID,'%d %d %d\n',E');

fclose(fileID);

type er.net
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3. Random Graphs 3.4 Giant Connected Component

Result

*Vertices 40

*Edges
6 38 1
6 40 1
10 13 1
10 37 1
14 15 1
16 36 1
24 27 1
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3. Random Graphs 3.4 Giant Connected Component

Computational Exercise

1 Use the algorithm in slide 23 to reproduce the results of slide 19.
2 Use the option Fruchterman-Reingold to visualize your graphs.
3 Explore the phase transitions properties to find the giant

component.
4 Develop a code to reproduce the results shown in slide 17.
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