Complex Networks
Master of Science in Electrical Engineering

Erivelton Geraldo Nepomuceno

Department of Electrical Engineering
Federal University of Sdo Jodo del-Rei

April 30, 2019

Prof. Erivelton (UFSJ) April 30, 2019 1/25



s RandomGraphs |
3. Random Graphs

@ The term random graph refers to the disordered nature of the
arrangement of links between different nodes.

@ The systematic study of random graphs was initiated by Erdds
and Rényi in the late 1950s.

@ We focus our attention on the shape of the degree distributions
and on how the average properties of a random graph change as
we increase the number of links.
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_ 3.1 Erdds and Rényi (ER) Models
3.1 Erdds and Rényi (ER) Models

@ A random graph is a graph in which the edges are randomly
distributed.

@ In the late 1950s, two Hungarian mathematicians, Paul Erdés and
Alfréd Rényi came up with a formalism for random graphs that
would led to modern graph theory.

@ We shall deal with undirected graphs.
@ This method is called Erdés and Rényi (ER) random graphs.
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On random graphs L

Dedicated to O. Varga, al the occasion of his 50" birthday.
By P. ERDOS and A. RENYI (Budapest).

Let us consider a “random graph” I, v having n possible (labelled)
vertices and N edges; in other words, let us choose at random (with equal

s
probabilities) one of the ((2‘) possible graphs which can be formed from
N )

Figure 1:[1] P. Erdos and A. Rényi, “On random graphs |,” Publ Math, vol. 6,
pp. 290-297, 1959. GS: 14388.
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Definition 1 (ER model A: uniform random graphs)

Let 0 < K < M, where M = N(N — 1)/2. The model, denoted as G§%,
consists in the ensemble of graphs with N nodes generated by 7
connecting K randomly selected pairs of nodes, uniformly among the
M possible pairs. Each graph G = (N, £) with [N] = Nand K = |L] is
assigned the same probability.

@ Consider N nodes and picks at random the first edge among the
Mpossible edges, so that all these edges are equiprobable. Then
one chooses the second edge at random with a uniform
probability among the remaining M — 1 possible edges, and
continues this process until the K edges are fixed.
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Steps to construct a random network'
@ Start with N isolated nodes.
©@ Select a node pair and generate a random number between 0 and

1. If the number exceeds p, connect the selected node pair with a
link, otherwise leave them disconnected.

© Repeat step (2) for each of the N(N — 1)/2 node pairs.

'Source: Network Science Textbook - Albert-Laszl6 Barabasi. This is a textbook for
network science, is freely available under the Creative Commons license.
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http://tinyw.in/K5Y9

@ How many different graphs with N nodes and K edges are there in
the ensemble?

@ This number is equal to the number of ways we can select K
objects among M possible ones, namely:

M!
KI(M = K)!

@ This is known as binomial coefficient denoted as

%= (w)
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Figure 2: Six different realisations of model A with N = 16 and K = 15.
Ci5 ~4.73 x 108
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Definition 2 (ER model B: binomial random graphs)

Let 0 < p < 1. The model, denoted as Gy}, consists in the ensemble
of graphs with N nodes obtained by connecting each pair of nodes with
a probability p. The probability Pg associated with a graph G = (N, £)
with |[N| = N and |£| = K is Pg = pX(1 — p)M-K, where

M= N(N-1)/2.

@ From Pg = pX(1 — p)M-K, we can calculate that the probabilities
of having an empty or a complete graph with N nodes are
respectively equal to (1 — p)” and pM.

@ However, while all the graphs in the first ensemble have 15 edges,
the number of links in the second ensemble.
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Figure 3: Six different realisations of model B, with N = 16 and p = 0.125.
We have appropriately chosen the value of p, namely pM = 15. Thus, we
have G{f}, = Gi/k-
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Box 1 (Binomial Distribution)

In statistics, the binomial distribution is valid for processes where there
are two mutually exclusive possibilities. The binomial distribution is the
discrete probability distribution of the number k of successes in a
sequence of n independent yes/no experiments, each of which yields
success with probability p:

Bin(n, p, k) = <Z>pk(1 _ p)n—k

where k can take thevalues 1,2,3,..., n. A simple example is tossing
ten coins and counting the number of heads.The distribution of this
random number is a binomial distribution with n =10 and p = 1/2 (if
the coin is not biased). As another example, assume 5 per cent of a
very large population to be green-eyed. You pick 100 people
randomly.The number of green-eyed people you pick is a random
variable which follows a binomial distribution with n = 100 and

p = 0.05.
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Example 1

Suppose a biased coin comes up heads with probability 0.3 when
tossed. What is the probability of achieving 0, 1,...,6 heads after six
tosses??

@ Pr(0 heads) = f(0) = Pr(X = 0) = (§)0.3°(1-0.3)%-% = 0.117649
@ Pr(1heads) = f(1) = Pr(X = 1) = (§)0.3"(1-0.3)%~" = 0.302526
@ Pr(2 heads) = f(2) = Pr(X = 2) = (5)0.3%(1-0.3)%~2 = 0.324135
@ Pr(3 heads) = f(3) = Pr(X = 3) = (§)0.3%(1-0.3)5-% = 0.185220
@ Pr(4 heads) = f(4) = Pr(X = 4) = (§)0.34(1-0.3)°~* = 0.059535
@ Pr(5 heads) = f(5) = Pr(X = 5) = (§)0.3%(1-0.3)%-5 = 0.010206
@ Pr(6 heads) = f(6) = Pr(X = 6) = (§)0.3%(1-0.3)%- = 0.000729

@Source: https://en.wikipedia.org/wiki/Binomial_distribution
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@ Fluctuations of K in model B is
o% = Mp(1 - p).

@ The ratio between the standard deviation ok and the average
number of links K = pM is given by:

ok _ (1 =P
K oM

@ This proves that, in large graphs, the fluctuations in the value of K
of model B can be neglected.
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Example 2 (Fitting a real network with a random graph)

Suppose you are given a real world network G with N nodes and
adjacency matrix {aij} and you want to model it with a binomial
random graph ensemble. What is the ensemble of graphs GE’Z that
best approximates the real network? We can infer the best value of the
parameter p from maximum likelihood considerations. It is useful to
work with the logarithm of Pg, the so-called log-likelihood £(p) that the
network G belongs to the ensembile:

L(p) = log Pg(p) = Klogp + [M — Kllog(1 — p)

Maximising the log-likelihood with respect to p, i.e. solving the
equation d£(p)/dp = 0. The solutionis p = K/M = 2K /(N(N — 1)),
where N and K are number of nodes and links in G.
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3.2 Degree Distribution

@ The nice property of random graphs is that they can be studied
analytically.

@ The degree distribution of ER random graphs can be easily
derived analytically in model B in the following way.

@ If pis the probability that there exists an edge between two
generic vertices, the probability that a specific node i has degree
ki equal to k is given by the following expression:

Proby—x = CK_1p*(1 —p)N"""F 0<k<N-1.
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@ The degree distribution in a random graph is a binomial
distribution:

D, = (N; 1>pk(1—p)N‘1‘k — Bin(N—1,p,k) k=0,1,2,...,N—"

@ Average degree of a randomly chosen node in a random graph:

N—1

=Y kpk =p(N—1). (1)

k=0

@ The standard deviation around this quantity

ok = /p(1 = p)(N - 1) ()

@ Using the Poisson distribution

Zk

px = Pois(z, k) = e *— T

k=0,1,2,... (3)
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Figure 4: The degree distribution (circles) that results from one realisation of
a random graph with N = 10000 nodes and p = 0.0015 is compared to the
corresponding binomial (solid line) and Poisson distributions (dashed line).
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_ 3.3 Trees, Cycles and Complete Subgraphs
3.3 Trees, Cycles and Complete Subgraphs

@ What are the salient features of a typical random graph with N
nodes and K edges?
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Figure 5: The typical graph of the ensemble Gz, for four different values of
p,namely p=2x10"35x1073,8 x 1073,3 x 1072

@ A Random Graph growth. [Video-05].

@ GraphStream 1.0 - Dynamics graphs. [Video-06].
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Figure 6: Threshold probabilities p(N) ~ N~=¢ for the appearance of different
subgraphs in a random graph.
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3.4 Giant Connected Component

@ In their works, Erdés and Rényi also discovered a phase transition
concerning the order of the largest component in the graph,
namely the abrupt appearance of a macroscopic component
known as a giant component.

Definition 3 (Giantcomponent)

A giant component in a graph G is a component containing a number
of vertices which increases with the order of G as some positive power

of N.

@ They proved that a giant component appears at a critical
probability function pc(N) = 1/N. in model B, or analogously at a
critical number of links K;(N) = N/2 in model A.
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3.4 Giant Connected Component
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Figure 7: Plot of the largest component g4 obtained in an ER random graph
with N = 1000 nodes and with an average degree respectively below,

(k) = 0.9 (a), and above, (k) = 1.1 (b), the critical value (k) = 1. The largest
component gy in the first case has s; = 38 nodes, while it contains s; = 202
nodes, i.e. 20 per cent of the graph nodes, in the second case.
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Convertion of Vito’s file to Pajek format

SWrite a file.net for Pajek
%Number of Nodes

N=40;

$Probability

p=8e-3;

fileID = fopen('er.net','w');

fprintf (fileID, '+Vertices %d \n',6N);

fprintf (filelID, '+*Edges\n');

system (sprintf('er_B %$d %f > teste.net',N,p))
A=load('teste.net'");

E=[A+1 ones(length(A),1)]1;

fprintf (filelID, '$d %d %d\n',E'");

fclose (filelID);

type er.net
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Result

*Vertices 40
*Edges
6 38 1
6 40 1
10 13
10 37
14 15
16 36
24 27

R
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Computational Exercise

@ Use the algorithm in slide 23 to reproduce the results of slide 19.
© Use the option Fruchterman-Reingold to visualize your graphs.

© Explore the phase transitions properties to find the giant
component.

© Develop a code to reproduce the results shown in slide 17.
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