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4. Small-World Networks

4. Small-World Networks

“It’s a small world!” This is the typical expression we use many
times in our lives when we discover, for example, that we
unexpectedly share a common acquaintance with a stranger
we’ve just met far from home.
This happens because social networks have a small characteristic
path length.
Social networks also have a large clustering coefficient, i.e. they
contain a large number of triangles.
The small-world model proposed in 1998 by Watts and Strogatz to
construct graphs having both the small-world property and also a
high clustering coefficient.
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4.1 Six Degrees of Separation

Stanley Milgram, a Harvard social psychologist, conducted a
series of experiments in late 1960s to show that, despite the very
large number of people living in the USA and the relatively small
number of a person’s acquaintances, two individuals chosen at
random are very closely connected to one another.

Table 1: Length distribution of the completed chains in Milgram small-world
experiment. The length of the chains varied from 2 to 10 intermediate
acquaintances, with the median of the distribution being equal to 5.5 and its
average to 5.43. Rounding up, the experiment suggests that we are all at six
steps of distance, the so-called six degrees of separation.
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Box 1 (The Erdös Number)
Paul Erdös,one of the fathers of random graph theory, was an
incredibly prolific mathematician. He wrote thousands of scientific
papers in different areas of mathematics, many of them in collaboration
with other mathematicians. Erdos number is based on a concept of
co-authoring. Erdös co-authors have Erdös number 1. Mathematicians
other than Erdös who have written a joint paper with someone with
Erdös number 1, but not with Erdös, have Erdös number 2, and so on.
Finding the Erdös number: https://www.csauthors.net/distance
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4. Small-World Networks 4.1 Six Degrees of Separation

Figure 1: The local clustering coefficient of the blue node is computed as the
proportion of connections among its neighbours which are actually realised
compared with the number of all possible connections. The blue node has
three neighbours, which can have a maximum of 3 connections among them.
In the first figure, the local clustering coefficient is 1. In the middle part of the
figure only one connection is realised (thick black line) and 2 connections are
missing (dotted red lines), giving a local cluster coefficient of 1/3. Finally, the
clustering coefficient value is 0.
Adaptaded from: https://en.wikipedia.org/wiki/Clustering_coefficient
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4. Small-World Networks 4.1 Six Degrees of Separation

Table 2: Characteristic path length and clustering coefficient of three real
networks (two social networks and a biological one) and of the
correspondingER random graphs with same number of nodes and links.
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4.2 The Brain of a Worm

In 1972 Sydney Brenner, a biologist then at Cambridge University,
decided to work out the connections of every cell in the nervous
system of the C. elegans. Dr. Brenner has won the Nobel Prize in
2002.
He picked this animal because its body has only 959 cells, of
which 302 are nerve cells.
In DATA SET Box 4.2 we introduce and describe the basic
features of the neural network of the C. elegans
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Figure 2: The normalised number p(d) of pairs of actors connected by a
shortest path of length d is plotted as a function of d (histogram). The
normalised number of actors at distance d from Bacon is also reported for
comparison (circles).

Prof. Erivelton (UFSJ) Complex Networks May 16, 2019 8 / 17



4. Small-World Networks 4.2 The Brain of a Worm

Figure 3: Graphical representation of the connections among the 279 nodes
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Figure 4: The average path length of real networks (symbols) is compared
with the prediction for ER random graphs of different orde(dashed line).
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4. Small-World Networks 4.2 The Brain of a Worm

Definition 1 (Small-world behaviour)
We say that a network exhibits a small-world behaviour if the
characteristic path length L grows proportionally to the logarithm of the
number of nodes N in the network.
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4.3 Clustering Coefficient

Important property of social networks: the presence of a large
number of triangles.
The clustering coefficient of Erdös–Renyí random graphs reads:
CER = p = 〈k〉/N.
We notice that in real networks the quantity C/〈k〉 appears to be
independent of N, instead of decreasing as N−1. Thus random
graphs are inadequate to describe some of the basic properties
observed empirically, and we will therefore need to explore other
models.
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Figure 5: The clustering coefficient of real networks (symbols) is compared to
the prediction for ER random graphs (dashed line).
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4.4 The Watts–Strogatz (WS) Model

ER random graph models have the small-world property, but their
clustering coefficient is negligible.
The first model to construct graphs having, at the same time, a
high clustering coefficient and a small characteristic path length
was proposed by two applied mathematicians at Cornell
University, Duncan Watts and Steven Strogatz, in a paper
published in Nature in 1998.
We will refer to the model as the Watts and Strogatz small-world
model, or, in short, the WS model.
Basically, the idea of Watts and Strogatz is to introduce a certain
amount of random connections in a lattice graph.

Prof. Erivelton (UFSJ) Complex Networks May 16, 2019 14 / 17



4. Small-World Networks 4.4 The Watts–Strogatz (WS) Model

Figure 6: Various examples of lattices: a two-dimensional triangular lattice, a
one-dimensional lattice and a two-dimensional square lattice
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Figure 7: Circle graph with N = 16 and m = 3. Consider a circular lattice of
size N, i.e. N nodes uniformly distributed on a circle, each node connected to
its two first neighbours. A(N,m) circle graph, with 1 < m < N/2, is obtained
by additionally linking each node of a circular lattice to the 2m − 2 closest
nodes in the lattice. This graph has a total of K = Nm = 48 links.
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Computational Exercises

1 Study the functions: clust, largest_component, ws
2 Develop a function that could be able to distinguish a model from

WS and other from ER with the same number of nodes. Use
N = 1000.
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