Complex Networks Master of Science in Electrical Engineering

Erivelton Geraldo Nepomuceno

Department of Electrical Engineering Federal University of São João del-Rei

June 6, 2019

5.2 Power-Law Degree Distributions

- We have seen that power laws are very particular distribution functions that appear in many situations.
- The most important property of a degree distribution is that it has to be normalisable.

$$I = p_0 + \sum_{k=1}^{\infty} p_k = p_0 + c \sum_{k=1}^{\infty} k^{-\gamma}$$
 (1)

where $p_0 = N_0/N$ is the fraction of isolated nodes in the network.

• Let
$$p_0 = 0$$
.

$$p_k = \frac{k^{-\gamma}}{\sum_{k=1}^{\infty} k^{-\gamma}} = \frac{k^{-\gamma}}{\xi(\gamma)} \quad \gamma > 1$$
(2)

where $c = 1/\xi(\gamma)$.

• Identifying a power-law behaviour and extracting the exponent γ can be a very tricky issue.

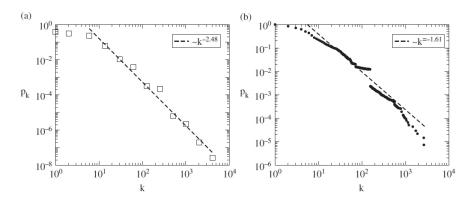


Figure 1: Out-degree distribution of Notre Dame WWW network. We report in (a) the histogram constructed by using a logarithmic binning, and in (b) the cumulative distribution.

5.2 Power-Law Degree Distributions

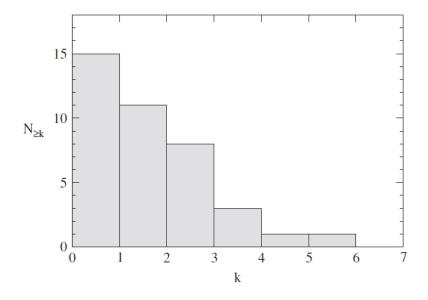


Figure 2: Consider the network of Florentine families.

Prof. Erivelton (UFSJ)

Complex Networks

5.2 Power-Law Degree Distributions

Network	Ν	$\langle k \rangle$	γ	Yout	γin
Notre Dame WWW	325729	4.51	-	2.06	1.91
Stanford WWW	281903	8.20	-	2.28	2.03
Berkley-Stanford WWW	685230	11.2	-	2.09	2.00
Google WWW	875713	5.83	-	3.63	2.57
AltaVista WWW from Ref. [59]	$2 \cdot 10^{8}$	7.5	-	2.72	2.1
Internet AS	11174	4.19	2.08	-	-
Internet routers	190914	6.36	2.54	-	-
Movie actor collaboration	225226	73.71	2.24	-	-
Cond-mat coauthorship	16726	5.69	3.57	-	-
Medline coauthorship	1520252	15.5	2.91	-	-
Sexual contacts from Ref.[208]	2810		2.6	-	-
Metabolic interactions from Ref.[166]	778	7.4	2.2	-	_
Protein interactions from Ref.[165]	1870	2.39	2.4	-	-

Figure 3: Power-law exponents characterising the degree distribution of real-world scale-free networks.

Computational Exercise

- Read and compare your thoughts with a colleague. After let us make some discussion together of the following paper:
 - Perc Matjaz. The Matthew effect in empirical data J. R. Soc. Interface http://doi.org/10.1098/rsif.2014.0378.
- 2 Do the graph of Figure 2.
- 3 Obtain the γ for this network.
- Explain to a colleague the meaning of this graph.
- Go to Web of Science and explore some reports for the most important papers and authors in your area.
- Study the h-index.
- Study the Impact Factor and its relation to Qualis (Capes).
- Study the current criteria to CNPq-PQ scholarship. Make some comparison with Network Science.