Mathematical Analysis

Master of Science in Electrical Engineering

Erivelton Geraldo Nepomuceno

August 2014

Teaching Plan Content

- 1. The Real and Complex Numbers Systems
- 2. Basic Topology
- 3. Numerical Sequences and Series
- 4. Continuity
- 5. Differentiation
- 6. Sequences and Series of Functions
- 7. IEEE Standard for Floating-Point Arithmetic
- 8. Interval Analysis

References

- Rudin, W. (1976), Principles of mathematical analysis, McGraw-Hill New York.
- Overton, M. L. (2001), Numerical Computing with IEEE floating point arithmetic, SIAM.
- Muller, J.-M.; Brisebarre, N.; De Dinechin, F.; Jeannerod, C.-P.; Lefevre, V.; Melquiond, G.; Revol, N.; Stehlé, D.; Torres, S. & others (2010), *Handbook of floating-point arithmetic*, Springer.
- Institute of Electrical and Electronic Engineering (2008), 754-2008 IEEE standard for floating-point arithmetic.
- Goldberg, D. (1991), What Every Computer Scientist Should Know About Floating-point Arithmetic, *Computing Surveys* 23(1), 5–48.
- Moore, R. E. (1979), Methods and Applications of Interval Analysis, Philadelphia: SIAM.

Assessment

• N1 = 30 points: Exam 1 - Chapters 1 to 4.

- Date: 17 September 2014.

- N2 = 30 points: Exam 2 Chapters 5 to 8.
 - Date: 19 November 2014.
- N3 = 40 points: an article of 8 pages and presentation.
 - Date: 26 November 2014 and 03 December 2014.
- N4 = 60 points. Special Exam: Chapters 1 to 8.
 - Date: 10 December 2014.
- Final Score: FS=N1+N2+N3.
 - If N1 \geq 18, N2 \geq 18 and FS \geq 60 then
 - * Succeed.
 - else if $N4 \ge 24$ and $(N4+N3) \ge 60$ then
 - * Succeed.
 - else
 - * Failed.

1 The real and complex number systems

1.1 Introduction

- A discussion of the main concepts of analysis (such as convergence, continuity, differentiation, and integration) must be based on an accurately defined *number concept*.
- *Number*: An arithmetical value expressed by a word, symbol, or figure, representing a particular quantity and used in counting and making calculations. (Oxford Dictionary).
- Cite three applications of numbers:
 - 1.
 - 2.
 - 3.
- Rational numbers (denoted by Q): numbers in the form ____, where __ and __ are integers and $\neq 0$.
- The rational numbers are inadequate for many purposes, both as a field and as an ordered set.
- For instance, there is no rational p such that $p^2 = 2$.
- An *irrational number* is written as infinite decimal expansion.

- The sequence 1, 1.4, 1.41, 1.414, 1.4142 tends to .
- What is it that this sequence *tends to*?

Example 1. We now show that the equation

$$p^2 = 2 \tag{1}$$

is not satisfied by any rational p. If there were such a p, we could write p = m/n where m and n are integers that are not both even. Let us assume this is done. Then (1) implies

$$m^2 = 2n^2. (2)$$

This shows that m^2 is even. Hence *m* is even (if *m* were odd, m^2 would be odd), and so m^2 is divisible by 4. It follows that the right of (2) is divisible by 4, so that n^2 is even, which implies that *n* is even.

Thus the assumption that (1) holds thus leads to the conclusion that both m and n are even, contrary to our choice of m and n. Hence (1) is impossible for rational p.

Remark 1. The rational number system has certain gaps, in spite the fact that between any two rational there is another: if r < s then r < < s. The real number system fill these gaps.

Definition 1. If A is any set, we write $x \in A$ to indicate that x is a member of A. If x is not a member of A, we write: $x _ A$.

Definition 2. The set which contains no element will be called the *empty set*. If a set has at least one element, it is called *nonempty*.

Definition 3. If every element of A is an element of B, we say that A is a subset of B. and write $A \subset B$, or $B \supset A$. If, in addition, there is an element of B which is not in A, then A is said to be a *proper* subset of B.

1.2 Ordered Sets

Definition 4. Let S be a set. An *order* on S is a relation, denote by <, with the following two properties:

1. If $x \in S$ and $y \in S$ then one and only one of the statements

$$x < y, \quad x = y, \quad y < x$$

is true.

- 2. If $x, y, z \in S$, if x < y and y < z, then x < z.
- The notation _____ indicates that x < y or x = y, without specifying which of these two is to hold.

Definition 5. An *ordered set* is a set S in which an order is defined.

Definition 6. Suppose S is an ordered set, and $E \subset S$. If there exists a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say that E is *bounded above*, and call β an *upper bound* of E. Lower bound are defined in the same way (with \geq in place of \leq).

Definition 7. Suppose S is an ordered set, $E \subset S$, and E is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- 1. α is an upper bound of E.
- 2. If $\gamma < \alpha$ then γ is not an upper bound of E.

Then α is called the *least upper bound of* E or the *supremum of* E, and we write

 $\alpha = \sup E.$

Definition 8. The greatest lower bound, or infimum, of a set E which is bounded below is defined in the same manner of Definition 7: The statement

 $\alpha = \inf E.$

means that α is a lower bound of E and that no β with is a lower bound of E.

Example 2. If $\alpha = \sup E$ exists, then α may or may not be a member of E. For instance, let E_1 be the set of all $r \in Q$ with r < 0. Let E_2 be the set of all $r \in Q$ with $r \leq 0$. Then

$$\sup E_1 = \sup E_2 = 0,$$

and $0 _ E_1, 0 _ E_2$.

Definition 9. An ordered set S is said to have the *least-upper-bound property* if the following is true: If $E \subset S$, E is not empty, and E is bounded above, then $\sup E$ exists $\inf S$.

Theorem 1. Suppose S is an ordered set with the least-upper-bound property, $B \subset S$, B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then

$$\alpha = \sup L$$

exists in S and $\alpha = \inf B$.

1.3 Fields

Definition 10. A *field* is a set F with two operations, called *addition* and *multiplication*, which satisfy the following so-called "field axioms" (A), (M) and (D):

(A) Axioms for addition

- (A1) If $x \in F$ and $y \in F$, then their sum x + y is in F.
- (A2) Addition is commutative: x + y = for all $x, y \in F$.
- (A3) Addition is associative: (x + y) + z = x + (y + z) for all $x, y, z \in F$.
- (A4) F contains an element 0 such that 0 + x = x for every $x \in F$.
- (A5) To every $x \in F$ corresponds an element $-x \in F$ such that

$$x + (-x) = 0.$$

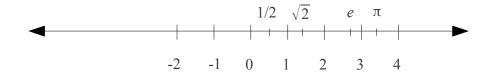


Figure 1: Real Line

(M) Axioms for multiplication

(M1) If $x \in F$ and $y \in F$, then their product xy is in F.

- (M2) Multiplication is commutative: xy = yx for all $x, y \in F$.
- (M3) Multiplicative is associative: (xy)z = x(yz) for all $x, y, z \in F$.
- (M4) F contains an element $1 \neq 0$ such that 1x = x for every $x \in F$.
- (M5) If $x \in F$ and $x \neq 0$ then there exists an element $1/x \in F$ such that

$$x \cdot (1/x) = 1.$$

(D) The distributive law

$$x(y+z) = xy + xz$$

holds for all $x, y, z \in F$.

Definition 11. An ordered field is a field F which is also an ordered set, such that

- 1. x + y < x + z if $x, y, z \in F$ and y < z.
- 2. xy > 0 if $x \in F$, $y \in F$, x > 0, and $y _ 0$.

1.4 The real field

Theorem 2. There exists an ordered field R which has the least-upper-bound property. Moreover, R contains Q as a subfield.

Theorem 3. (a) If $x \in R$, and x > 0, then there is a positive integer n such that nx > y.

(b) If $x \in R$, and x < y, then there exists a $p \in Q$ such that x .

Theorem 4. For every real x > 0 and every integer n > 0 there is one and only one real y such that $y^n = x$.

Proof of Theorem 4:

- That there is at most one such y is clear, since $0 < y_1 < y_2$, implies $y_1^n < y_2^n$.
- Let E be the set consisting of all positive real numbers t such that $t^n < x$.

- If t = x/(1+x) then _____. Hence $t^n < t < x$. Thus $t \in E$, and E is not empty. Thus 1+x is an upper bound of E.
- If t > 1 + x then $t^n > t > x$, so that $t \notin E$. Thus 1 + x is an upper bound of E and there is $y = \sup E$.
- To prove that $y^n = x$ we will show that each of the inequalities $y^n < x$ and $y^n > x$ leads to contradiction.
- The identity $b^n a^n = (b a)(b^{n-1} + b^{n-2}a + \cdots + a^{n-1})$ yields the inequality $b^n - a^n < (b - a)nb^{n-1}$

when 0 < a < b.

• Assume $y^n < x$. Choose h so that 0 < h < 1 and

$$h < \frac{x - y^n}{n(y+1)^{n-1}}.$$

• Put a = y, b = y + h. Then

$$(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)^{n-1} < x - y^n$$

- Thus $(y+h)^n < x$, and $y+h \in E$. Since y+h > y, this contradicts the fact that y is an upper bound of E.
- Assume $y^n > x$. Put

$$k = \frac{y^n - x}{ny^{n-1}}.$$

Then 0 < k < y. If $t \ge y - k$, we conclude that

$$y^{n} - t^{n} \ge y^{n} - (y - k)^{n} < kny^{n-1} = y^{n} - x.$$

- Thus $t^n > x$, and $t \notin E$. It follows that y k is an upper bound of E. But y k < y, which contradicts the fact that y is the *least* upper bound of E.
- Hence $y^n = x$, and the proof is complete.

Definition 12. Let x > 0 be real. Let n_o be the largest integer such that $n_0 \le x$. Having chosen $n_0, n_1, \ldots, n_{k-1}$, let n_k be the largest integer such that

$$n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \le x$$

Let E be the set of these numbers

$$n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \quad (k = 0, 1, 2, \dots).$$
 (3)

Then $x = \sup E$. The decimal expansion of x is

$$n_0 \cdot n_1 n_2 n_3 \cdots . \tag{4}$$

1.5 The extended real number system

Definition 13. The extended real number system consists of the real field R and two symbols: $+\infty$ and $-\infty$. We preserve the original order in R, and define

$$+\infty < x < -\infty$$

for every $x \in R$. An usual symbol for the extended real number system is \overline{R} .

- $+\infty$ is an upper bound of every subset of the extended real number system, and that every nonempty subset has a least upper bound.
- The same remarks apply to lower bounds.
- The extended real number system *does not form a field*.
- It is customary to make the following conventions:
 - (a) If x is real then

$$x + \infty = \infty$$
, $x - \infty = -\infty$, $\frac{x}{+\infty} = \frac{x}{-\infty} =$ ____.

(b) If x > 0 then $x \cdot (+\infty) = +\infty, x \cdot (-\infty) = -\infty$.

1.6 The complex field

(c) If x < 0 then $x \cdot (+\infty) = -\infty, x \cdot (-\infty) = +\infty$.

Definition 14. A *complex number* is an ordered pair (a, b) of real numbers. Let x = (a, b), y = (c, d) be two complex numbers. We define

$$x + y = (a + c, b + d),$$

$$xy = (ac - bd, ad + bc).$$

- i = (0, 1).
- $i^2 = -1$.
- If a and b are real, then (a, b) = a + bi.

1.7 Euclidean Space

Definition 15. For each positive integer k, let R^k be the set of all ordered k-tuples

$$\mathbf{x} = (x_1, x_2, \dots, x_k),$$

where x_1, \ldots, x_k are real numbers called the *coordinates* of **x**.

- Addition of vectors: $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_k + y_k).$
- Multiplication of a vector by a real number (scalar): $\alpha \mathbf{x} = (\alpha x_1, \dots, \alpha x_k)$.

- Inner product: $x \cdot y = \sum_{i=1}^{k} x_i y_i$.
- Norm: $|x| = (x \cdot x)^{1/2} = \left(\sum_{1}^{k} x_{i}^{2}\right)^{1/2}$.
- The structure now defined (the vector space \mathbb{R}^k with the above product and norm) is called *Euclidean k-space*.

Theorem 5. Suppose $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$ and α is real. Then

- 1. $|\mathbf{x}| \ge 0;$
- 2. $|\mathbf{x}| = 0$ if and only if $|\mathbf{x} = 0|$;
- 3. $|\alpha \mathbf{x}| = |\alpha| |\mathbf{x}|;$
- 4. $|\mathbf{x} \cdot \mathbf{y}| \leq |\mathbf{x}| |\mathbf{y}|;$
- 5. $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|;$
- $6. |\mathbf{x} \mathbf{z}| \le |\mathbf{x} \mathbf{y}| + |\mathbf{x} \mathbf{z}|.$
- Items 1,2 and 6 of Theorem 5 will allow us to regard R^k as a *metric space*.

Exercises Chapter 1

- (1) Let the sequence of numbers 1/n where $n \in \mathbb{N}$. Does this sequence have an infimum? If it has, what is it? Explain your result and show if it is necessary any other condition.
- (2) Comment the assumption: Every irrational number is the limit of monotonic increasing sequence of rational numbers (Ferrar, 1938, p.20).
- (3) Prove Theorem 1.
- (4) Prove the following statements
 - a) If x + y = x + z then y = z.
 - **b)** If x + y = x then y = 0.
 - c) If x + y = 0 then y = -x.
 - **d**) -(-x) = x.
- (5) Prove the following statements
 - a) If x > 0 then -x < 0, and vice versa.
 - **b)** If x > 0 and y < z then xy < xz.
 - c) If x < 0 and y < z then xy > xz.
 - d) If $x \neq 0$ then $x^2 > 0$.
 - e) If 0 < x < y then 0 < 1/y < 1/x.
- (6) Prove the Theorem 2. (Optional)

- (7) Prove the Theorem 3.
- (8) Write addition, multiplication and distribution law in the same manner of Definition 1.3 for the complex field.
- (9) What is the difference between R and \overline{R} ?
- (10) Prove the reverse triangle inequality: $||a| |b|| \le |a b|$.

2 Basic Topology

2.1 Finite, Countable, and Uncountable Sets

Definition 16. Consider two sets A and B, whose elements may be any objects whatsoever, and suppose that with each element x of A there is associated, in some manner, an element of B, which we denote by f(x). Then f is said to be a *function* from A to B (or a *mapping* of A into B). The set A is called the *domain* of f (we also say f is defined on A), and the elements of f(x) are called the *values* of f. The set of all values of f is called the *range* of f.

Definition 17. Let A and B be two sets and let f be a mapping of A into B. If $E \subset A$, f(E) is defined to be the set of all elements f(x), for $x \in E$. We call f(E) the *image* of E under f. In this notation, f(A) is the range of f. It is clear that $f(A) \subset B$. If f(A) = B, we say that f maps A onto B.

Definition 18. If $E \subset B$, f^{-1} denotes the set of all $x \in A$ such that $f(x) \in E$. We call $f^{-1}(E)$ the *inverse image* of E under f.

• f is a 1-1 mapping of A into B provided that $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2, x_1 \in A, x_2 \in A$.

Definition 19. If there exists a 1-1 mapping of A onto B, we say that A and B, can be put in 1-1 *correspondence*, or that A and B have the same *cardinal number*, or A and B are equivalent, and we write $A \sim B$.

- Properties of equivalence
 - It is reflexive: $A \sim A$.
 - It is symmetric: If $A \sim B$, then $B \sim A$.
 - It is transitive: If $A \sim B$ and $B \sim C$, then $A \sim C$.

Definition 20. Let $n \in N$ and J_n be the set whose elements are the integers $1, 2, \ldots, n$; let J be the set consisting of all positive integers. For any set A, we say:

- (a) A is finite if $A \sim J_n$ for some n.
- (b) A is *infinite* if A is not finite.
- (c) A is countable if $A \sim J$.
- (d) A is *uncountable* if A is neither finite nor countable.

(e) A is at most countable if A is finite or countable.

Remark 2. A is infinite if A is equivalent to one of its proper subsets.

Definition 21. By a sequence, we mean a function f defined on the set J of all positive integers. If $f(n) = x_n$, for $n \in J$, it is customary to denote the sequence f by the symbol $\{x_n\}$, or sometimes x_1, x_2, x_3, \ldots . The values of f are called *terms* of the sequence. If A is a set and if $x_n \in A$ for all $n \in J$, then $\{x_n\}$ is said to be a sequence in A, or a sequence of elements of A.

- Every infinite subset of a countable set A is countable.
- Countable sets represent the "smallest infinity.

Definition 22. Let A and Ω be sets, and suppose that with each element of α of A is associated a subset of Ω which denote by E_{α} . A collection of sets is denoted by $\{E_{\alpha}\}$.

Definition 23. The union of the sets E_{α} is defined to be the set S such that $x \in S$ if and only if $x \in E_{\alpha}$ for at least one $\alpha \in A$. It is denoted by

$$S = \bigcup_{\alpha \in A} E_{\alpha}.$$
 (5)

• If A consists of the integers $1, 2, \ldots, n$, one usually writes

$$S = \bigcup_{m=1}^{n} E_m = E_1 \cup E_2 \cup \dots \cup E_n.$$
(6)

• If A is the set of all positive integers, the usual notations is

$$S = \bigcup_{m=1}^{\infty} E_m.$$
(7)

• The symbol ∞ indicates that the union of a *countable collection* of sets is taken. It should not be confused with symbols $+\infty$ and $-\infty$ introduced in Definition 13.

Definition 24. The *intersection* of the sets E_{α} is defined to be the set P such that $x \in P$ if and only if $x \in E_{\alpha}$ for every $\alpha \in A$. It is denoted by

$$P = \bigcap_{\alpha \in A} E_{\alpha}.$$
 (8)

• *P* is also written such as

$$P = \bigcap_{m=1}^{n} = E_1 \cap E_2 \cap \cdots \in E_n.$$
(9)

• If A is the set of all positive integers, we have

$$P = \bigcap_{m=1}^{\infty} E_m.$$
⁽¹⁰⁾

Theorem 6. Let $\{E_n\}, n = 1, 2, 3, \ldots$, be a sequence of countable sets, and put

$$S = \bigcup_{n=1}^{\infty} E_n.$$
(11)

Then S is countable.

- The set of all rational numbers is countable.
- The set of all real numbers is uncountable.

2.2 Metric Spaces

Definition 25. A set X, whose elements we shall call *points*, is said to be a *metric space* if with any two points p and q of X there is associated a real number d(p,q) the *distance* from p to q, such that

(a) d(p,q) > 0 if ____; $d(p,p) = _$.

(b)
$$d(p,q) = d(q,p);$$

(c) $d(p,q) \le d(p,r) + d(r,q)$, for any $r \in X$.

Definition 26. By the segment (a, b) we mean the set of all real numbers x such that a < x < b.

Definition 27. By the *interval* [a, b] we mean the set of all real number x such that $a \le x \le b$.

Definition 28. If $\mathbf{x} \in \mathbb{R}^k$ and r > 0, the *open* (or *closed*) *ball* B with center at \mathbf{x} and radius r is defined to be the set of all $y \in \mathbb{R}^k$ such that $|\mathbf{y} - \mathbf{x}| < r$ (or $|\mathbf{y} - \mathbf{x}| \leq r$).

Definition 29. We call a set $E \subset R^k$ convex if $(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \in E$ whenever $\mathbf{x} \in E$, $\mathbf{y} \in E$ and $0 < \lambda < 1$.

Example 3. Balls are convex. For if $|\mathbf{y} - \mathbf{x}| < r$, $|\mathbf{z} - \mathbf{x}| < r$, and $0 < \lambda < 1$, we have

$$\begin{aligned} |\lambda \mathbf{y} + (1 - \lambda)\mathbf{z} - \mathbf{x}| &= |\lambda (\mathbf{y} - \mathbf{x}) + (1 - \lambda)(\mathbf{z} - \mathbf{x})| \\ &\leq \lambda |\mathbf{y} - \mathbf{x}| + (1 - \lambda)|\mathbf{z} - \mathbf{x}| < \lambda r + (1 - \lambda)r \\ &= r. \end{aligned}$$

Definition 30. Let X be a metric space. All points and sets are elements and subsets of X.

- (a) A neighbourhood of a point p is a set $N_r(p)$ consisting of all points q such that d(p,q) < r.
- (b) A point p is a *limit point* of the set E if every neighbourhood of p contains a point $q \neq p$ such that $q \in E$.
- (c) If $p \in E$ and p is not a limit point of E, then p is called an *isolated point* of E.
- (d) E is *closed* is very limit point of E is a point of E.
- (e) A point p is an *interior point* of E if there is a neighbourhood N of p such that $N \subset E$.
- (f) E is open is every point of E is an interior point of E.

(g) The complement of E (denoted by E^c) is the set of all points $p \in X$ such that $p \notin E$.

Definition 30. (h) *E* is *perfect* if *E* is closed and if every point of *E* is a limit point of *E*.

- (i) E is bounded if there is a real number M and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- (j) E is dense in X if every point of X is a limit point of E, or a point of E (or both).
 - If p is a limit point of a set E, then every neighbourhood of p contains infinitely many points of E.
 - A set E is open if and only if its complement is closed.

Definition 31. If X is a metric space, if $E \subset X$, and if E' denotes the set of all limit points of E in X, then the *closure* of E is the set $\overline{E} = E \cup E'$.

Theorem 7. If X is a metric space and $E \subset X$, then

- (a) \overline{E} is closed.
- (b) $E = \overline{E}$ if and only if E is closed.
- (c) $E \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

Theorem 8. Let E be a nonempty set of real numbers which is bounded above. Let $y = \sup E$. Then $y \in \overline{E}$. Hence $y \in E$ if E is closed.

2.3 Compact Sets

Definition 32. By an open cover of a set E in a metric space X we mean a collection $\{G_{\alpha}\}$ of open subsets of X such that $E \subset \bigcup_{\alpha} G_{\alpha}$.

Definition 33. A subset K of a metric space X is said to be *compact* if every open cover of K contains a *finite* subcover.

Definition 34. A set $X \subset R$ is compact if X is closed and bounded¹.

Definition 35. If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$ (n = 1, 2, 3...), then $\bigcap_{1}^{\infty} K_n$ is not empty.

Definition 36. If $\{I_n\}$ is a sequence of intervals in \mathbb{R}^1 , such that $I_n \supset I_{n+1}$ (n = 1, 2, 3...),then $\bigcap_{1}^{\infty} I_n$ is not empty.

Theorem 9. If a set E in \mathbb{R}^k has one of the following three properties, then it has the other two:

- 1. E is closed and bounded.
- 2. E is compact.
- 3. Every infinite subset of E has a limit point in E.

¹Lima, E. L. (2006) Análise Real volume 1. Funções de Uma Variável. Rio de Janeiro: IMPA, 2006.

Figure 2: Cantor Set. Source: Wikipedia.

Theorem 10. (Weierstrass) Every bounded subset of R^k has a limit point in R^k .

Theorem 11. Let P be a nonempty perfect set in \mathbb{R}^k . Then P is uncountable.

- Every interval [a, b](a < b) is uncountable. In particular, the set of all real numbers in uncountable.
- The Cantor ternary set is created by repeatedly deleting the open middle thirds of a set of line segments. One starts by deleting the open middle third (1/3, 2/3) from the interval [0, 1], leaving two line segments: [0, 1/3] ∪ [2/3, 1]. Next, the open middle third of each of these remaining segments is deleted, leaving four line segments: [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]. This process is continued ad infinitum, where the nth set is

$$C_n = \frac{C_{n-1}}{3} \cup \left(\frac{2}{3} + \frac{C_{n-1}}{3}\right) \cdot C_0 = [0, 1].$$

• The first six steps of this process are illustrated in Figure 40.

2.4 Connected Sets

Definition 37. Two subsets A and B of a metric space X are said to be *separated* if both $A \cap B$ and $\overline{A} \cap B$ are empty, i.e., if no point of A lies in the closure of B and no point of B lies in the closure of A.

A set $E \subset X$ is said to be *connected* if E is not a union of two nonempty separated sets.

Theorem 12. A subset E of the real line R^1 is connected if and only if it has the following property: If $x \in E$, $y \in E$, and x < z < y, then $z \in E$.

Exercises Chapter 2

- (1) Let A be the set of real numbers x such that $0 < x \leq 1$. For every $x \in A$, be the set of real numbers y, such that 0 < y < x. Complete the following statements
 - (a) $E_x \subset E_z$ if and only if .
 - (b) $\bigcup_{x \in A} E_x = _$.
 - (c) $\bigcap_{x \in A} E_x$ is _____.
- (2) Prove Theorem 6. Hint: put the elements of E_n in a matrix and count the diagonals.
- (3) Prove that the set of all real numbers is uncountable.

- (4) The most important examples of metric spaces are euclidean spaces R^k . Show that a Euclidean space is a metric space.
- (5) For $x \in R^1$ and $y \in R^1$, define

$$d_1(x,y) = (x-y)^2,$$

$$d_2(x,y) = \sqrt{|x-y|},$$

$$d_3(x,y) = |x^2 - y^2|,$$

$$d_4(x,y) = |x-2y|,$$

$$d_5(x,y) = \frac{|x-y|}{1+|x-y|}.$$

Determine for each of these, whether it is a metric or not.

Work 1. To find the square root of a positive number a, we start with some approximation, $x_0 > 0$ and then recursively define:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right). \tag{12}$$

Compute the square root using (12) for

- (a) a = 2;
- (b) $a = 2 \times 10^{-300}$
- (c) $a = 2 \times 10^{-310}$
- (d) $a = 2 \times 10^{-322}$
- (e) $a = 2 \times 10^{-324}$

Check your results by $x_n \times x_n$, after defining a suitable stop criteria for n. Develop a report with the following structure: Identification, Introduction, Methodology, Results, Conclusion, References, Appendix (where you should include an algorithm). **Deadline:** 10/09/2014.

3 Numerical Sequences and Series

3.1 Convergent Sequences

Definition 38. A sequence $\{p_n\}$ in a metric space X is said to *converge* if there is point $p \in X$ with the following property: For every $\varepsilon > 0$ there is an integer N such that $n \ge N$ implies that $d(p_n, p) < \varepsilon$. In this case we also say that p_n converges to p, or that p is the limit of $\{p_n\}$, and we write $p_n \to p$, or

$$\lim_{n \to \infty} p_n = p_n$$

- If $\{p_n\}$ does not converge, it is said to *diverge*.
- It might be well to point out that our definition of *convergent sequence* depends not only on $\{p_n\}$ but also on X.

- It is more precise to say *convergent in X*.
- The set of all points p_n (n = 1, 2, 3, ...) is the range of $\{p_n\}$.
- The sequence $\{p_n\}$ is said to be *bounded* if its range is bounded.

Example 4. Let $s \in R$. If $s_n = 1/n$, then

$$\lim_{n \to \infty} s_n = 0.$$

The range is infinite, and the sequence is bounded.

Example 5. Let $s \in R$. If $s_n = n^2$, the sequence $\{s_n\}$ is unbounded, is divergent, and has infinite range.

Example 6. Let $s \in R$. If $s_n = 1$ (n = 1, 2, 3, ...), then the sequence $\{s_n\}$ converges to 1, is bounded, and has finite range.

Theorem 13. Let $\{p_n\}$ be a sequence in a metric space X.

- (a) $\{p_n\}$ converges to $p \in X$ if and only if every neighbourhood of p contains all but finitely many of the terms of $\{p_n\}$.
- (b) If $p \in X$, $p' \in X$, and if $\{p_n\}$ converges to p and to p', then p' = p.
- (c) If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- (d) If $E \subset X$ and if p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $p = \lim_{n \to \infty} p_n$.

Theorem 14. Suppose $\{s_n\}$, $\{t_n\}$ are complex sequences, and $\lim_{n\to\infty} s_n = s$ and $\lim_{n\to\infty} t_n = t$. Then

- (a) $\lim_{n\to\infty}(s_n+t_n)=s+t;$
- (b) $\lim_{n\to\infty} cs_n = cs$, $\lim_{n\to\infty} (c+s_n) = c+s$, for any number c;
- (c) $\lim_{n\to\infty}(s_nt_n)=st;$
- (d) $\lim_{n\to\infty}\frac{1}{s_n}=\frac{1}{s};$

3.2 Subsequences

Definition 39. Given a sequence $\{p_n\}$, consider a sequence $\{n_k\}$ of positive integers, such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence $\{p_{n_i}\}$ is called a *subsequence* of $\{p_n\}$. If $\{p_{n_i}\}$, its limit is called a *subsequential limit* of $\{p_n\}$. It is clear that $\{p_n\}$ converges to p if and only if every subsequence of $\{p_n\}$ converges to p.

- **Theorem 15. (a)** If $\{p_n\}$ is a sequence in a compact metric space X, then some subsequence of $\{p_n\}$ converges to a point of X.
- (b) Every bounded sequence in \mathbb{R}^k contains a convergent subsequence.

Theorem 16. The subsequential limits of a sequence $\{p_n\}$ in a metric space X form a closed subset of X.

Figure 3: Augustin-Louis Cauchy (1789-1857), French mathematician who was an early pioneer of analysis. Source: Wikipedia.

3.3 Cauchy Sequence

Definition 40. A sequence $\{p_n\}$ is a metric space X is said to be a *Cauchy sequence* if for every $\varepsilon > 0$ there is an integer N such that $d(p_n, p_m) < \varepsilon$ if $n \ge N$ and $m \ge N$.

Definition 41. Let *E* be a subset of a metric space *X*, and let *S* be the set of all real number of the form d(p,q), with $p \in E$ and $q \in E$. The sup of *S* is called the *diameter* of *E*.

• If $\{p_n\}$ is a sequence in X and if E_N consists of the points $p_N, p_{N+1}, p_{N+2}, \ldots$, it is clear from the two preceding definitions that $\{p_n\}$ is a Cauchy sequence if and only if

$$\lim_{N \to \infty} \text{diam } E_N = 0.$$

Theorem 17. (a) If \overline{E} is the closure of a set E in a metric space X, then

diam \overline{E} = diam E.

(b) If K_a is a sequence of compact sets in X such that $K_n \supset K_{n+1}$ (n = 1, 2, 3, ...) and if

$$\lim_{n \to \infty} \operatorname{diam} K_n = 0,$$

then $\cap_1^{\infty} K_a$ consists of exactly one point.

Theorem 18. (a) In any metric space X, every convergent sequence is a Cauchy sequence.

- (b) If X is a compact metric space and if $\{p_n\}$ is a Cauchy sequence in X, then $\{p_n\}$ converges to some point X.
- (c) In \mathbb{R}^k , every Cauchy sequence converges.
 - A sequence converges in \mathbb{R}^k if and only if it is a Cauchy sequence is usually called the *Cauchy* criterion for convergence.

Definition 42. A sequence $\{s_n\}$ of real numbers is said to be

- (a) monotonically increasing if $s_n \leq s_{n+1}$ (n = 1, 2, 3, ...);
- (b) monotonically decreasing if $s_n \ge s_{n+1}$ (n = 1, 2, 3, ...);

3.4 Upper and Lower Limits

Theorem 19. Suppose $\{s_n\}$ is monotonic. Then $\{s_n\}$ converges if and only if it is bounded.

Definition 43. Let $\{s_n\}$ be a sequence of real numbers with the following property: For every real M there is an integer N such that $n \ge N$ implies $s_n \ge M$. We then write $s_n \to +\infty$.

Definition 44. Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of numbers $x \in \overline{R}$ such that $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$. This set E contains all subsequential limits plus possibly the numbers $+\infty$ and $-\infty$. Let $s^* = \sup E$, and $s_* = \inf E$. These numbers are called upper and lower limits of $\{s_n\}$.

• We can also write Definition 44 as

$$\lim_{n \to \infty} \sup s_n = s^*, \quad \lim_{n \to \infty} \inf s_n = s_*.$$

3.5 Some Special Sequences

• If $0 \le x_n \le s_n$ for $n \ge N$, where N is some fixed number, and if $s_n \to 0$, then $x_n \to 0$. This property help us to compute the following the limit of the following sequences:

(e) If
$$|x| < 1$$
, then $\lim_{n \to \infty} x^n =$

3.6 Series

Definition 45. Given a sequence $\{a_n\}$, we use the notation

$$\sum_{n=p}^{q} a_n \quad (p \le q)$$

to denote the sum $a_p + a_{p+1} + \cdots + a_q$. With $\{a_n\}$ we associate a sequence $\{s_n\}$, where

$$s_n = \sum_{k=1}^n a_k.$$

For $\{s_n\}$ we also use the symbolic expression $a_1 + a_2 + a_3 + \cdots$ or, more concisely,

$$\sum_{n=1}^{\infty} a_n. \tag{13}$$

The symbol (26) we call an *infinite series*, or just a *series*.

- The numbers s_n are called the *partial sums* of the series.
- If $\{s_n\}$ converges to s, we say that the series converges, and we write

$$\sum_{n=1}^{\infty} a_n = s. \tag{14}$$

- s is the *limit of a sequence of sums*, and is not obtained simply by addition.
- If $\{s_n\}$ diverges, the series is said to diverge.
- Every theorem about sequences can be stated in terms of series (putting $a_1 = s_1$, and $a_n = s_n s_{n-1}$ for n > 1), and vice versa.
- The Cauchy criterion can be restated as the following Theorem.

Theorem 20. $\sum a_n$ converges if and only if for every $\varepsilon > 0$ there is an integer N such that

$$\left|\sum_{k=n}^{m} a_n\right| \le \varepsilon \tag{15}$$

if $m \ge n \ge N$.

Theorem 21. If $\sum a_n$ converges, then $\lim_{n \to \infty} a_n = 0$.

Theorem 22. A series of nonnegative terms converges if and only if its partial sums form a bounded sequence.

- Comparison test
 - (a) If $|a_n| \leq c_n$ for $n \geq N_0$, where N_0 is some fixed integer, and if $\sum c_n$ converges, then $\sum a_n$ converges.
 - (b) If $a_n \ge d_n \ge 0$ for $n \ge N_0$, and if $\sum d_n$ diverges, then $\sum a_n$ diverges.
- Geometric series
 - If $0 \le x < 1$, then

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

- If $x \ge 1$, the series diverges.
- **Proof** If $x \neq 1$, we have

$$s_n = \sum_{k=0}^n x^k = 1 + x + x^2 + x^3 \dots + x^n.$$
(16)

If we multiply (16) by x we have

$$xs_n = x + x^2 + x^4 \cdots x^{n+1}.$$
 (17)

Applying (16)-(17) we have

$$s_n - xs_n = 1 - x^{n+1}$$

$$s_n(1-x) = 1 - x^{n+1}$$

$$s_n = \frac{1 - x^{n+1}}{1 - x}$$

The result follows if we let $n \to \infty$.

3.7 The Root and Ratio Tests

Theorem 23. (Root Test) Given $\sum a_n$, put $\alpha = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$. Then

- (a) If $\alpha < 1$, $\sum a_n$ converges;
- (b) If $\alpha > 1$, $\sum a_n$ diverges;
- (c) If $\alpha = 1$, the test gives no information.

Theorem 24. (*Ratio Test*) The series $\sum a_n$

- (a) converges if $\lim_{n\to\infty} \sup \left| \frac{a_{n+1}}{a_n} \right| < 1$,
- (b) diverges if $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for $n \ge n_0$, where n_0 is some fixed integer.
 - The ratio test is frequently easier to apply than the root test. However, the root test has wider scope.

Exercises Chapter 3

- (1) Let $s \in R$. and $s_n = 1 + [(-1)^n/n]$. $\{s_n\}$ is bounded and its range is finite? Which value $\{s_n\}$ converges to?
- (2) Write a Definition for $-\infty$ equivalent to Definition 43.
- (3) Apply the root and ratio tests in the following series
 - (a) $\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots$, (b) $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{3^2} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots$,

4 Continuity

4.1 Limit of Functions

Definition 46. Let X and Y be metric spaces: suppose $E \subset X$, f maps E into Y, and p is a limit point of E. We write $f(x) \to q$ as $x \to p$, or

$$\lim_{x \to p} f(x) = q \tag{18}$$

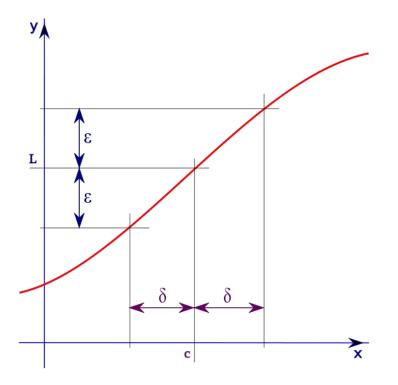


Figure 4: Whenever a point x is within δ of c, f(x) is within ε units of L. Source: Wikipedia.

if there is a point $q \in Y$ with the following property: For every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$d_Y(f(x),q) < \varepsilon \tag{19}$$

for all points $x \in E$ for which

$$0 < d_X(x, p) < \delta. \tag{20}$$

- d_X and d_Y refer to the distances in X and Y, respectively.
- $p \in X$, but p need not be a point of E. Moreover, even if $p \in E$, we may very well have $f(p) \lim_{x \to p} f(x)$.
- Alternative statement for Definition 46 based on (ε, δ) limit definition given by Bernard Bolzano in 1817. Its modern version is due to Karl Weierstrass²

Definition 47. The function f approaches the limit L near c means: for every ε there is some $\delta > 0$ such that, for all x, if $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

• f approaches L near c has the same meaning as the Equation (21)

$$\lim_{x \to c} f(x) = L. \tag{21}$$

²Addapted from Spivak, M. (1967) Calculus. Benjamin: New York.

Theorem 25. Let X, Y, E, f, and p be as in Definition 46. Then

$$\lim_{x \to p} f(x) = q \tag{22}$$

if and only if

$$\lim_{n \to \infty} f(p_n) = q \tag{23}$$

for every sequence $\{p_n\}$ in E such that

$$p_n \neq p, \quad \lim_{n \to \infty} p_n = p.$$
 (24)

Theorem 26. Suppose $E \subset X$, a metric space, p is a limit point of E, f and g are complex functions on E, and

$$\lim_{x \to p} f(x) = A, \quad \lim_{x \to p} g(x) = B.$$

Then

- (a) $\lim_{x \to p} (f+g)(x) = A + B;$
- (b) $\lim_{x \to p} (fg)(x) = AB;$
- (c) $\lim_{x \to p} \left(\frac{f}{g}\right)(x) = \frac{A}{B}$, if B____.

4.2 Continuous Functions

Definition 48. Suppose X and Y are metric spaces, $E \subset X, p \in E$, and f maps E into Y. Then f is said to be *continuous at* p if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$d_Y(f(x), f(p)) < \varepsilon$$

for all points $x \in E$ for which $d_X(x, p) < \delta$.

- If f is continuous at every point of E, then f is said to be *continuous on* E.
- f has to be defined at the point p in order to be continuous at p.
- f is continuous at p if and only if $\lim_{x\to p} f(x) = f(p)$.

Theorem 27. Suppose X, Y, Z are metric spaces, $E \subset X$, f maps E into Y, g maps the range of f, f(E), into Z, and h is the mapping of E into Z defined by

$$h(x) = g(f(x)) \quad (x \in E).$$

If f is continuous at a point $p \in E$ and if g is continuous at the point f(p), then h is continuous at p. The function $h = f \circ g$ is called the composite of f and g.

4.3 Continuity and Compactness

Definition 49. A mapping **f** of a set E into R^k is said to be *bounded* if there is a real number M such that $|\mathbf{f}(x)| \leq M$ for all $x \in E$.

Theorem 28. Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact.

Theorem 29. Suppose f is a continuous real function on a compact metric space X, and

$$M = \sup_{p \in X} f(p), \quad m = \inf_{p \in X} f(p).$$
(25)

Then there exist points $p, q \in X$ such that f(p) = M and f(q) = m.

• The conclusion may also be stated as follows: There exist points p and q in X such that $f(q) \leq f(x) \leq f(p)$ for all $x \in X$; that is, f attains its maximum (at p) and its minimum (at q).

Definition 50. Let f be a mapping of a metric space X into a metric space Y. We say that f is uniformly continuous on X if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$d_Y(f(p), f(q)) < \varepsilon \tag{26}$$

for all p and q in X for which $d_X(p,q) < \delta$.

Theorem 30. Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous on X.

4.4 Continuity and Connectedness

Theorem 31. If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then f(E) is connected.

Theorem 32. (Intermediate Value Theorem) Let f be a continuous real function on the interval [a,b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then there exists a point $x \in (a,b)$ such that f(x) = c.

4.5 Discontinuities

• If x is a point in the domain of definition of the function f at which f is not continuous, we say that f is discontinuous at x.

Definition 51. Let f be defined on (a, b). Consider any point x such that $a \le x < b$. We write f(x+) = q if $f(t_n) \to q$ as $n \to \infty$, for all sequences $\{t_n\}$ in (x, b) such that $t_n \to x$. To obtain the definition of f(x-), for $a < x \le b$, we restrict ourselves to sequences $\{t_n\}$ in (a, x).

• It is clear that any point x of (a, b), $\lim_{t \to x} f(t)$ exists if and only if

$$f(x+) = f(x-) = \lim_{t \to x} f(t).$$

Definition 52. Let f be defined on (a, b). If f is discontinuous at a point x and if f(x+) and f(x-) exist, then f is said to have a discontinuity of the *first kind*. Otherwise, it is of the *second kind*.

4.6 Monotonic Functions

Definition 53. Let f be real on (a, b). Then f is said to be monotonically increasing on (a, b) if a < x < y < b implies $f(x) \le f(y)$.

Theorem 33. Let f be monotonically increasing on (a, b). Then f(x+) and f(x-) exist at every point of x of (a, b). More precisely

$$\sup_{a < t < x} f(t) = f(x-) \le f(x) \le f(x+) = \inf_{x < t < b} f(t).$$
(27)

Furthermore, if a < x < y < b, then

$$f(x+) \le f(x-). \tag{28}$$

4.7 Infinite Limits and Limits at Infinity

• For any real number x, we have already defined a neighborhood of x to be any segment $(x - \delta, x + \delta)$.

Definition 54. For any real c, the set of real numbers x such that x > c is called a neighborhood of $+\infty$ and is written $(c, +\infty)$. Similarly, the set $(-\infty, c)$ is a neighborhood of $-\infty$.

Definition 55. Let f be a real function defined on E. We say that

$$f(t) \to A \text{ as } t \to x$$

where A and x are in the extended real number system, if for every neighborhood U of A there is a neighborhood V of x such that $V \cap E$ is not empty, and such that $f(t) \in U$ for all $t \in V \cap E, t \neq x$.

Exercises Chapter 4

(1) Prove the Theorem 27.