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• N2 = 30 points: Exam 2 - Chapters 5 to 8.

� Date: 19 November 2014.
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� Date: 26 November 2014 and 03 December 2014.
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� else if N4 ≥ 24 and (N4+N3) ≥ 60 then

∗ Succeed.

� else

∗ Failed.

1 The real and complex number systems

1.1 Introduction

• A discussion of the main concepts of analysis (such as convergence, continuity, di�erentiation,
and integration) must be based on an accurately de�ned number concept.

• Number: An arithmetical value expressed by a word, symbol,or �gure, representing a partic-
ular quantity and used in counting and making calculations. (Oxford Dictionary).

• Cite three applications of numbers:

1.

2.

3.

• Rational numbers (denoted by Q): numbers in the form m/n, where m and n are integers
and n 6= 0.

• The rational numbers are inadequate for many purposes, both as a �eld and as an ordered
set.

• For instance, there is no rational p such that p2 = 2.

• An irrational number is written as in�nite decimal expansion.
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• The sequence 1, 1.4, 1.41, 1.414, 1.4142 tends to
√

2 .

• What is it that this sequence tends to?

Example 1. We now show that the equation

p2 = 2 (1)

is not satis�ed by any rational p. If there were such a p, we could write p = m/n where m and n
are integers that are not both even. Let us assume this is done. Then (1) implies

m2 = 2n2. (2)

This shows that m2 is even. Hence m is even (if m were odd, m2 would be odd), and so m2 is
divisible by 4. It follows that the right side of (2) is divisible by 4, so that n2 is even, which implies
that n is even.

Thus the assumption that (1) holds thus leads to the conclusion that both m and n are even,
contrary to our choice of m and n. Hence (1) is impossible for rational p.

Remark 1. The rational number system has certain gaps, in spite the fact that between any two
rational there is another: if r < s then r < (r + s)/2 < s. The real number system �ll these gaps.

De�nition 1. If A is any set, we write x ∈ A to indicate that x is a member of A. If x is not a
member of A, we write: x /∈ A.

De�nition 2. The set which contains no element will be called the empty set. If a set has at least
one element, it is called nonempty.

De�nition 3. If every element of A is an element of B, we say that A is a subset of B. and write
A ⊂ B, or B ⊃ A. If, in addition, there is an element of B which is not in A, then A is said to be
a proper subset of B.

1.2 Ordered Sets

De�nition 4. Let S be a set. An order on S is a relation, denote by <, with the following two
properties:

1. If x ∈ S and y ∈ S then one and only one of the statements

x < y, x = y, y < x

is true.

2. If x, y, z ∈ S, if x < y and y < z, then x < z.

• The notation x ≤ y indicates that x < y or x = y, without specifying which of these two is
to hold.

De�nition 5. An ordered set is a set S in which an order is de�ned.

De�nition 6. Suppose S is an ordered set, and E ⊂ S. If there exists a β ∈ S such that x ≤ β
for every x ∈ E, we say that E is bounded above, and call β an upper bound of E. Lower bound

are de�ned in the same way (with ≥ in place of ≤).
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De�nition 7. Suppose S is an ordered set, E ⊂ S, and E is bounded above. Suppose there exists
an α ∈ S with the following properties:

1. α is an upper bound of E.

2. If γ < α then γ is not an upper bound of E.

Then α is called the least upper bound of E or the supremum of E, and we write

α = supE.

De�nition 8. The greatest lower bound, or in�mum, of a set E which is bounded below is de�ned
in the same manner of De�nition 7: The statement

α = inf E.

means that α is a lower bound of E and that no β with β > α is a lower bound of E.

Example 2. If α = supE exists, then α may or may not be a member of E. For instance, let E1

be the set of all r ∈ Q with r < 0. Let E2 be the set of of all r ∈ Q with r ≤ 0. Then

supE1 = supE2 = 0,

and 0 /∈ E1, 0 in E2.

De�nition 9. An ordered set S is said to have the least-upper-bound property if the following is
true: If E ⊂ S, E is not empty, and E is bounded above, then supE exists inS.

Theorem 1. Suppose S is an ordered set with the least-upper-bound property, B ⊂ S, B is not

empty, and B is bounded below. Let L be the set of all lower bounds of B. Then

α = supL

exists in S and α = inf B.

1.3 Fields

De�nition 10. A �eld is a set F with two operations, called addition and multiplication, which
satisfy the following so-called ��eld axioms� (A), (M) and (D):

(A) Axioms for addition

(A1) If x ∈ F and y ∈ F, then their sum x+ y is in F.

(A2) Addition is commutative: x+ y = y + x for all x, y ∈ F.

(A3) Addition is associative: (x+ y) + z = x+ (y + z) for all x, y, z ∈ F.

(A4) F contains an element 0 such that 0 + x = x for every x ∈ F.

(A5) To every x ∈ F corresponds an element −x ∈ F such that

x+ (−x) = 0.
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(M) Axioms for multiplication

(M1) If x ∈ F and y ∈ F, then their product xy is in F.

(M2) Multiplication is commutative: xy = yx for all x, y ∈ F.

(M3) Multiplicative is associative: (xy)z = x(yz) for all x, y, z ∈ F.

(M4) F contains an element 1 6= 0 such that 1x = x for every x ∈ F.

(M5) If x ∈ F and x 6= 0 then there exists an element 1/x ∈ F such that

x · (1/x) = 1.

(D) The distributive law
x(y + z) = xy + xz

holds for all x, y, z ∈ F.

De�nition 11. An ordered �eld is a �eld F which is also an ordered set, such that

1. x+ y < x+ z if x, y, z ∈ F and y < z.

2. xy > 0 if x ∈ F, y ∈ F, x > 0, and y > 0.

1.4 The real �eld

Theorem 2. There exists an ordered �eld R which has the least-upper-bound property. Moreover,

R contains Q as a sub�eld.

Theorem 3. (a) If x ∈ R, and x > 0, then there is a positive integer n such that nx > y.

(b) If x ∈ R, and x < y, then there exists a p ∈ Q such that x < p < y.

Theorem 4. For every real x > 0 and every integer n > 0 there is one and only one real y such

that yn = x.

Proof of Theorem 4:

• That there is at most one such y is clear, since 0 < y1 < y2, implies yn1 < yn2 .

• Let E be the set consisting of all positive real numbers t such that tn < x.
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• If t = x/(1 + x) then 0 < t < 1. Hence tn < t < x. Thus t ∈ E, and E is not empty. Thus
1 + x is an upper bound of E.

• If t > 1 + x then tn > t > x, so that t /∈ E. Thus 1 + x is an upper bound of E and there is
y = supE.

• To prove that yn = x we will show that each of the inequalities yn < x and yn > x leads to
contradiction.

• The identity bn − an = (b− a)(bn−1 + bn−2a+ · · · an−1) yields the inequality

bn − an < (b− a)nbn−1

when 0 < a < b.

• Assume yn < x. Choose h so that 0 < h < 1 and

h <
x− yn

n(y + 1)n−1
.

• Put a = y, b = y + h. Then

(y + h)n − yn < hn(y + h)n−1 < hn(y + 1)n−1 < x− yn.

• Thus (y + h)n < x, and y + h ∈ E. Since y + h > y, this contradicts the fact that y is an
upper bound of E.

• Assume yn > x. Put

k =
yn − x
nyn−1

.

Then 0 < k < y. If t ≥ y − k, we conclude that

yn − tn ≥ yn − (y − k)n < knyn−1 = yn − x.

• Thus tn > x, and t /∈ E. It follows that y − k is an upper bound of E. But y − k < y, which
contradicts the fact that y is the least upper bound of E.

• Hence yn = x, and the proof is complete.

De�nition 12. Let x > 0 be real. Let no be the largest integer such that n0 ≤ x. Having chosen
n0, n1, . . . , nk−1, let nk be the largest integer such that

n0 +
n1

10
+ · · ·+ nk

10k
≤ x.

Let E be the set of these numbers

n0 +
n1

10
+ · · ·+ nk

10k
(k = 0, 1, 2, . . .). (3)

Then x = supE. The decimal expansion of x is

n0 · n1n2n3 · · · . (4)
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1.5 The extended real number system

De�nition 13. The extended real number system consists of the real �eld R and two symbols:
+∞ and −∞. We preserve the original order in R, and de�ne

+∞ < x < −∞

for every x ∈ R. An usual symbol for the extended real number system is R̄.

• +∞ is an upper bound of every subset of the extended real number system, and that every
nonempty subset has a least upper bound.

• The same remarks apply to lower bounds.

• The extended real number system does not form a �eld.

• It is customary to make the following conventions:

(a) If x is real then

x+∞ =∞, x−∞ = −∞, x

+∞
=

x

−∞
= 0 .

(b) If x > 0 then x · (+∞) = +∞, x · (−∞) = −∞.

1.6 The complex �eld

(c) If x < 0 then x · (+∞) = −∞, x · (−∞) = +∞.

De�nition 14. A complex number is an ordered pair (a, b) of real numbers. Let x = (a, b), y =
(c, d) be two complex numbers. We de�ne

x+ y = (a+ c, b+ d),

xy = (ac− bd, ad+ bc).

• i = (0, 1).

• i2 = −1.

• If a and b are real, then (a, b) = a+ bi.

1.7 Euclidean Space

De�nition 15. For each positive integer k, let Rk be the set of all ordered k-tuples

x = (x1, x2, . . . , xk),

where x1, . . . , xk are real numbers called the coordinates of x.

• Addition of vectors: x + y = (x1 + y1, . . . , xk + yk).

• Multiplication of a vector by a real number (scalar): αx = (αx1, . . . , αxk).
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• Inner product: x · y =
∑k

i=1 xiyi.

• Norm: |x| = (x · x)1/2 =
(∑k

1 x
2
i

)1/2
.

• The structure now de�ned (the vector space Rk with the above product and norm) is called
Euclidean k-space.

Theorem 5. Suppose x,y, z ∈ Rk and α is real. Then

1. |x| ≥ 0;

2. |x| = 0 if and only if |x = 0|;

3. |αx| = |α||x|;

4. |x · y| ≤ |x||y|;

5. |x + y| ≤ |x|+ |y|;

6. |x− z| ≤ |x− y|+ |x− z|.

• Items 1,2 and 6 of Theorem 5 will allow us to regard Rk as a metric space.

Exercises Chapter 1

(1) Let the sequence of numbers 1/n where n ∈ N. Does this sequence have an in�mum? If it
has, what is it? Explain your result and show if it is necessary any other condition.

(2) Comment the assumption: Every irrational number is the limit of monotonic increasing se-
quence of rational numbers (Ferrar, 1938, p.20).

(3) Prove Theorem 1.

(4) Prove the following statements

a) If x+ y = x+ z then y = z.

b) If x+ y = x then y = 0.

c) If x+ y = 0 then y = −x.
d) −(−x) = x.

(5) Prove the following statements

a) If x > 0 then −x < 0, and vice versa.

b) If x > 0 and y < z then xy < xz.

c) If x < 0 and y < z then xy > xz.

d) If x 6= 0 then x2 > 0.

e) If 0 < x < y then 0 < 1/y < 1/x.

(6) Prove the Theorem 2. (Optional)
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(7) Prove the Theorem 3.

(8) Write addition, multiplication and distribution law in the same manner of De�nition 1.3 for
the complex �eld.

(9) What is the di�erence between R and R̄?

(10) Prove the reverse triangle inequality: ||a| − |b|| ≤ |a− b|.

2 Basic Topology

2.1 Finite, Countable, and Uncountable Sets

De�nition 16. Consider two sets A and B , whose elements may be any objects whatsoever, and
suppose that with each element x of A there is associated, in some manner, an element of B, which
we denote by f(x). Then f is said to be a function from A to B (or a mapping of A into B). The
set A is called the domain of f (we also say f is de�ned on A), and the elements of f(x) are called
the values of f. The set of all values of f is called the range of f.

De�nition 17. Let A and B be two sets and let f be a mapping of A into B. If E ⊂ A, f(E) is
de�ned to be the set of all elements f(x), for x ∈ E. We call f(E) the image of E under f. In this
notation, f(A) is the range of f . It is clear that f(A) ⊂ B. If f(A) = B, we say that f maps A
onto B.

De�nition 18. If E ⊂ B, f−1 denotes the set of all x ∈ A such that f(x) ∈ E. We call f−1(E)
the inverse image of E under f.

• f is a 1-1 mapping of A into B provided that f(x1) 6= f(x2) whenever x1 6= x2, x1 ∈ A, x2 ∈ A.

De�nition 19. If there exists a 1-1 mapping of A onto B, we say that A and B, can be put in
1-1 correspondence, or that A and B have the same cardinal number, or A and B are equivalent,
and we write A ∼ B.

• Properties of equivalence

� It is re�exive: A ∼ A.

� It is symmetric: If A ∼ B, then B ∼ A.

� It is transitive: If A ∼ B and B ∼ C, then A ∼ C.

De�nition 20. Let n ∈ N and Jn be the set whose elements are the integers 1, 2, . . . , n; let J be
the set consisting of all positive integers. For any set A, we say:

(a) A is �nite if A ∼ Jn for some n.

(b) A is in�nite if A is not �nite.

(c) A is countable if A ∼ J.

(d) A is uncountable if A is neither �nite nor countable.
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(e) A is at most countable if A is �nite or countable.

Remark 2. A is in�nite if A is equivalent to one of its proper subsets.

De�nition 21. By a sequence, we mean a function f de�ned on the set J of all positive integers.
If f(n) = xn, for n ∈ J , it is customary to denote the sequence f by the symbol {xn}, or sometimes
x1, x2, x3, . . . . The values of f are called terms of the sequence. If A is a set and if xn ∈ A for all
n ∈ J, then {xn} is said to be a sequence in A, or a sequence of elements of A.

• Every in�nite subset of a countable set A is countable.

• Countable sets represent the �smallest in�nity.

De�nition 22. Let A and Ω be sets, and suppose that with each element of α of A is associated
a subset of Ω which denote by Eα. A collection of sets is denoted by {Eα}.

De�nition 23. The union of the sets Eα is de�ned to be the set S such that x ∈ S if and only if

x ∈ Eα for at least one α ∈ A. It is denoted by

S =
⋃
α∈A

Eα. (5)

• If A consists of the integers 1, 2, . . . , n, one usually writes

S =
n⋃

m=1

Em = E1 ∪ E2 ∪ · · · ∪ En. (6)

• If A is the set of all positive integers, the usual notations is

S =
∞⋃
m=1

Em. (7)

• The symbol ∞ indicates that the union of a countable collection of sets is taken. It should
not be confused with symbols +∞ and −∞ introduced in De�nition 13.

De�nition 24. The intersection of the sets Eα is de�ned to be the set P such that x ∈ P if and

only if x ∈ Eα for every α ∈ A. It is denoted by

P =
⋂
α∈A

Eα. (8)

• P is also written such as

P =
n⋂

m=1

= E1 ∩ E2 ∩ · · ·En. (9)

• If A is the set of all positive integers, we have

P =
∞⋂
m=1

Em. (10)
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Theorem 6. Let {En}, n = 1, 2, 3, . . . , be a sequence of countable sets, and put

S =
∞⋃
n=1

En. (11)

Then S is countable.

• The set of all rational numbers is countable.

• The set of all real numbers is uncountable.

2.2 Metric Spaces

De�nition 25. A set X, whose elements we shall call points, is said to be a metric space if with
any two points p and q of X there is associated a real number d(p, q) the distance from p to q,
such that

(a) d(p, q) > 0 if p 6= q; d(p, p) = 0 .

(b) d(p, q) = d(q, p);

(c) d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X.

De�nition 26. By the segment (a, b) we mean the set of all real numbers x such that a < x < b.

De�nition 27. By the interval [a, b] we mean the set of all real number x such that a ≤ x ≤ b.

De�nition 28. If x ∈ Rk and r > 0, the open (or closed) ball B with center at x and radius r is
de�ned to be the set of all y ∈ Rk such that |y − x| < r (or |y − x| ≤ r).

De�nition 29. We call a set E ⊂ Rk convex if (λx + (1− λ)y) ∈ E whenever x ∈ E, y ∈ E and
0 < λ < 1.

Example 3. Balls are convex. For if |y − x| < r, |z− x| < r, and 0 < λ < 1, we have

|λy + (1− λ)z− x| = |λ(y − x) + (1− λ)(z− x)|
≤ λ|y − x|+ (1− λ)|z− x| < λr + (1− λ)r

= r.

De�nition 30. Let X be a metric space. All points and sets are elements and subsets of X.

(a) A neighbourhood of a point p is a set Nr(p) consisting of all points q such that d(p, q) < r.

(b) A point p is a limit point of the set E if every neighbourhood of p contains a point q 6= p such
that q ∈ E.

(c) If p ∈ E and p is not a limit point of E, then p is called an isolated point of E.

(d) E is closed is very limit point of E is a point of E.

(e) A point p is an interior point of E if there is a neighbourhood N of p such that N ⊂ E.

(f) E is open is every point of E is an interior point of E.
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(g) The complement of E (denoted by Ec) is the set of all points p ∈ X such that p /∈ E.

De�nition 30. (h) E is perfect if E is closed and if every point of E is a limit point of E.

(i) E is bounded if there is a real number M and a point q ∈ X such that d(p, q) < M for all
p ∈ E.

(j) E is dense in X if every point of X is a limit point of E, or a point of E (or both).

• If p is a limit point of a set E, then every neighbourhood of p contains in�nitely many points
of E.

• A set E is open if and only if its complement is closed.

De�nition 31. If X is a metric space, if E ⊂ X, and if E ′ denotes the set of all limit points of E
in X, then the closure of E is the set Ē = E ∪ E ′.

Theorem 7. If X is a metric space and E ⊂ X, then

(a) Ē is closed.

(b) E = Ē if and only if E is closed.

(c) E ⊂ F for every closed set F ⊂ X such that E ⊂ F.

Theorem 8. Let E be a nonempty set of real numbers which is bounded above. Let y = supE.
Then y ∈ Ē. Hence y ∈ E if E is closed.

2.3 Compact Sets

De�nition 32. By an open cover of a set E in a metric space X we mean a collection {Gα} of
open subsets of X such that E ⊂

⋃
αGα.

De�nition 33. A subset K of a metric space X is said to be compact if every open cover of K
contains a �nite subcover.

De�nition 34. A set X ⊂ R is compact if X is closed and bounded1.

De�nition 35. If {Kn} is a sequence of nonempty compact sets such that Kn ⊃ Kn+1 (n =
1, 2, 3 . . .),, then

⋂∞
1 Kn is not empty.

De�nition 36. If {In} is a sequence of intervals in R1, such that In ⊃ In+1 (n = 1, 2, 3 . . .),,
then

⋂∞
1 In is not empty.

Theorem 9. If a set E in Rk has one of the following three properties, then it has the other two:

1. E is closed and bounded.

2. E is compact.

3. Every in�nite subset of E has a limit point in E.

1Lima, E. L. (2006) Análise Real volume 1. Funções de Uma Variável. Rio de Janeiro: IMPA, 2006.
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Figure 2: Cantor Set. Source: Wikipedia.

Theorem 10. (Weierstrass) Every bounded subset of Rk has a limit point in Rk.

Theorem 11. Let P be a nonempty perfect set in Rk. Then P is uncountable.

• Every interval [a, b](a < b) is uncountable. In particular, the set of all real numbers in
uncountable.

• The Cantor ternary set is created by repeatedly deleting the open middle thirds of a set of
line segments. One starts by deleting the open middle third (1/3, 2/3) from the interval [0, 1],
leaving two line segments: [0, 1/3] ∪ [2/3, 1] . Next, the open middle third of each of these
remaining segments is deleted, leaving four line segments: [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪
[8/9, 1] . This process is continued ad in�nitum, where the nth set is

Cn =
Cn−1

3
∪
(

2

3
+
Cn−1

3

)
.C0 = [0, 1].

• The �rst six steps of this process are illustrated in Figure 40.

2.4 Connected Sets

De�nition 37. Two subsets A and B of a metric space X are said to be separated if both A ∩ B̄
and Ā ∩ B are empty, i.e., if no point of A lies in the closure of B and no point of B lies in the
closure of A.

A set E ⊂ X is said to be connected if E is not a union of two nonempty separated sets.

Theorem 12. A subset E of the real line R1 is connected if and only if it has the following

property: If x ∈ E, y ∈ E, and x < z < y, then z ∈ E.

Exercises Chapter 2

(1) Let A be the set of real numbers x such that 0 < x ≤ 1. For every x ∈ A, be the set of real
numbers y, such that 0 < y < x. Complete the following statements

(a) Ex ⊂ Ez if and only if 0 < x ≤ z ≤ 1.

(b)
⋃
x∈AEx = E1.

(c)
⋂
x∈AEx is empty.

(2) Prove Theorem 6. Hint: put the elements of En in a matrix and count the diagonals.

(3) Prove that the set of all real numbers is uncountable.
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(4) The most important examples of metric spaces are euclidean spaces Rk. Show that a Euclidean
space is a metric space.

(5) For x ∈ R1 and y ∈ R1, de�ne

d1(x, y) = (x− y)2,

d2(x, y) =
√
|x− y|,

d3(x, y) = |x2 − y2|,
d4(x, y) = |x− 2y|,

d5(x, y) =
|x− y|

1 + |x− y|
.

Determine for each of these, whether it is a metric or not.

Work 1. To �nd the square root of a positive number a, we start with some approximation, x0 > 0
and then recursively de�ne:

xn+1 =
1

2

(
xn +

a

xn

)
. (12)

Compute the square root using (12) for

(a) a = 2;

(b) a = 2× 10−300

(c) a = 2× 10−310

(d) a = 2× 10−322

(e) a = 2× 10−324

Check your results by xn×xn, after de�ning a suitable stop criteria for n. Develop a report with the
following structure: Identi�cation, Introduction, Methodology, Results, Conclusion, References,
Appendix (where you should include an algorithm). Deadline: 10/09/2014.

3 Numerical Sequences and Series

3.1 Convergent Sequences

De�nition 38. A sequence {pn} in a metric space X is said to converge if there is point p ∈ X
with the following property: For every ε > 0 there is an integer N such that n ≥ N implies that
d(pn, p) < ε. In this case we also say that pn converges to p, or that p is the limit of {pn}, and we
write pn → p, or

lim
n→∞

pn = p.

• If {pn} does not converge, it is said to diverge.

• It might be well to point out that our de�nition of convergent sequence depends not only on
{pn} but also on X.
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• It is more precise to say convergent in X.

• The set of all points pn (n = 1, 2, 3, . . .) is the range of {pn}.

• The sequence {pn} is said to be bounded if its range is bounded.

Example 4. Let s ∈ R. If sn = 1/n, then

lim
n→∞

sn = 0.

The range is in�nite, and the sequence is bounded.

Example 5. Let s ∈ R. If sn = n2, the sequence {sn} is unbounded, is divergent, and has in�nite
range.

Example 6. Let s ∈ R. If sn = 1 (n = 1, 2, 3, . . .), then the sequence {sn} converges to 1, is
bounded, and has �nite range.

Theorem 13. Let {pn} be a sequence in a metric space X.

(a) {pn} converges to p ∈ X if and only if every neighbourhood of p contains all but �nitely many

of the terms of {pn}.

(b) If p ∈ X, p′ ∈ X, and if {pn} converges to p and to p′ , then p′ = p.

(c) If {pn} converges, then {pn} is bounded.

(d) If E ⊂ X and if p is a limit point of E, then there is a sequence {pn} in E such that

p = lim
n→∞

pn.

Theorem 14. Suppose {sn}, {tn} are complex sequences, and limn→∞sn = s and limn→∞tn = t.
Then

(a) lim
n→∞

(sn + tn) = s+ t;

(b) lim
n→∞

csn = cs, lim
n→∞

(c+ sn) = c+ s, for any number c;

(c) lim
n→∞

(sntn) = st;

(d) lim
n→∞

1

sn
=

1

s
;

3.2 Subsequences

De�nition 39. Given a sequence {pn}, consider a sequence {nk} of positive integers, such that
n1 < n2 < n3 < · · · . Then the sequence {pni

} is called a subsequence of {pn}. If {pni
}, its limit

is called a subsequential limit of {pn}. It is clear that {pn} converges to p if and only if every
subsequence of {pn} converges to p.
Theorem 15. (a) If {pn} is a sequence in a compact metric space X, then some subsequence of

{pn} converges to a point of X.

(b) Every bounded sequence in Rk contains a convergent subsequence.

Theorem 16. The subsequential limits of a sequence {pn} in a metric spaceX form a closed subset

of X.
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Figure 3: Augustin-Louis Cauchy (1789-1857), French mathematician who was an early pioneer of
analysis. Source: Wikipedia.

3.3 Cauchy Sequence

De�nition 40. A sequence {pn} is a metric space X is said to be a Cauchy sequence if for every
ε > 0 there is an integer N such that d(pn, pm) < ε if n ≥ N and m ≥ N.

De�nition 41. Let E be a subset of a metric space X, and let S be the set of all real number of
the form d(p, q), with p ∈ E and q ∈ E. The sup of S is called the diameter of E.

• If {pn} is a sequence in X and if EN consists of the points pN , pN+1, pN+2, . . . , it is clear from
the two preceding de�nitions that {pn} is a Cauchy sequence if and only if

lim
N→∞

diam EN = 0.

Theorem 17. (a) If Ē is the closure of a set E in a metric space X, then

diam Ē = diam E.

(b) If Ka is a sequence of compact sets in X such that Kn ⊃ Kn+1 (n = 1, 2, 3, . . .) and if

lim
n→∞

diam Kn = 0,

then ∩∞1 Ka consists of exactly one point.

Theorem 18. (a) In any metric space X, every convergent sequence is a Cauchy sequence.

(b) If X is a compact metric space and if {pn} is a Cauchy sequence in X, then {pn} converges
to some point X.

(c) In Rk, every Cauchy sequence converges.

• A sequence converges in Rk if and only if it is a Cauchy sequence is usually called the Cauchy
criterion for convergence.

De�nition 42. A sequence {sn} of real numbers is said to be

(a) monotonically increasing if sn ≤ sn+1 (n = 1, 2, 3, . . .);

(b) monotonically decreasing if sn ≥ sn+1 (n = 1, 2, 3, . . .);
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3.4 Upper and Lower Limits

Theorem 19. Suppose {sn} is monotonic. Then {sn} converges if and only if it is bounded.

De�nition 43. Let {sn} be a sequence of real numbers with the following property: For every
real M there is an integer N such that n ≥ N implies sn ≥M. We then write sn → +∞.

De�nition 44. Let {sn} be a sequence of real numbers. Let E be the set of numbers x ∈ R̄
such that snk

→ x for some subsequence {snk
}. This set E contains all subsequential limits plus

possibly the numbers +∞ and −∞. Let s∗ = supE, and s∗ = inf E. These numbers are called
upper and lower limits of {sn}.

• We can also write De�nition 44 as

lim
n→∞

sup sn = s∗, lim
n→∞

inf sn = s∗.

3.5 Some Special Sequences

• If 0 ≤ xn ≤ sn for n ≥ N, where N is some �xed number, and if sn → 0, then xn → 0. This
property help us to compute the following the limit of the following sequences:

(a) If p > 0, then lim
n→∞

1

np
= 0.

(b) If p > 0, then lim
n→∞

n
√
p = 1.

(c) lim
n→∞

n
√
n = 1.

(d) If p > 0 and α is real, then lim
n→∞

nα

(1 + p)n
= 0.

(e) If |x| < 1, then lim
n→∞

xn = 0.

3.6 Series

De�nition 45. Given a sequence {an}, we use the notation
q∑

n=p

an (p ≤ q)

to denote the sum ap + ap+1 + · · ·+ aq. With {an} we associate a sequence {sn}, where

sn =
n∑
k=1

ak.

For {sn} we also use the symbolic expression a1 + a2 + a3 + · · · or, more concisely,

∞∑
n=1

an. (13)

The symbol (26) we call an in�nite series, or just a series.
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• The numbers sn are called the partial sums of the series.

• If {sn} converges to s, we say that the series converges, and we write

∞∑
n=1

an = s. (14)

• s is the limit of a sequence of sums, and is not obtained simply by addition.

• If {sn} diverges, the series is said to diverge.

• Every theorem about sequences can be stated in terms of series (putting a1 = s1, and
an = sn − sn−1 for n > 1), and vice versa.

• The Cauchy criterion can be restated as the following Theorem.

Theorem 20.
∑
an converges if and only if for every ε > 0 there is an integer N such that∣∣∣∣∣

m∑
k=n

an

∣∣∣∣∣ ≤ ε (15)

if m ≥ n ≥ N.

Theorem 21. If
∑
an converges, then lim

n→∞
an = 0.

Theorem 22. A series of nonnegative terms converges if and only if its partial sums form a

bounded sequence.

• Comparison test

(a) If |an| ≤ cn for n ≥ N0, where N0 is some �xed integer, and if
∑
cn converges, then∑

an converges.

(b) If an ≥ dn ≥ 0 for n ≥ N0, and if
∑
dn diverges, then

∑
an diverges.

• Geometric series

� If 0 ≤ x < 1, then
∞∑
n=0

xn =
1

1− x
.

If x ≥ 1, the series diverges.

� Proof If x 6= 1, we have

sn =
n∑
k=0

xk = 1 + x+ x2 + x3 · · ·+ xn. (16)

If we multiply (16) by x we have

xsn = x+ x2 + x4 · · ·xn+1. (17)

Applying (16)−(17) we have

18



sn − xsn = 1− xn+1

sn(1− x) = 1− xn+1

sn =
1− xn+1

1− x
.

The result follows if we let n→∞.

3.7 The Root and Ratio Tests

Theorem 23. (Root Test) Given
∑
an, put α = limn→∞ sup n

√
|an|. Then

(a) If α < 1,
∑
an converges;

(b) If α > 1,
∑
an diverges;

(c) If α = 1, the test gives no information.

Theorem 24. (Ratio Test) The series
∑
an

(a) converges if lim
n→∞

sup

∣∣∣∣an+1

an

∣∣∣∣ < 1,

(b) diverges if

∣∣∣an+1

an

∣∣∣ ≥ 1 for n ≥ n0, where n0 is some �xed integer.

• The ratio test is frequently easier to apply than the root test. However, the root test has
wider scope.

Exercises Chapter 3

(1) Let s ∈ R. and sn = 1 + [(−1)n/n]. {sn} is bounded and its range is �nite? Which value {sn}
converges to?

(2) Write a De�nition for −∞ equivalent to De�nition 43.

(3) Apply the root and ratio tests in the following series

(a) 1
2

+ 1
3

+ 1
22

+ 1
32

+ 1
23

+ 1
33

+ 1
24

+ 1
34

+ · · · ,
(b) 1

2
+ 1 + 1

8
+ 1

4
+ 1

32
+ 1

16
+ 1

128
+ 1

64
+ · · · ,

4 Continuity

4.1 Limit of Functions

De�nition 46. Let X and Y be metric spaces: suppose E ⊂ X, f maps E into Y , and p is a
limit point of E. We write f(x)→ q as x→ p, or

lim
x→p

f(x) = q (18)
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Figure 4: Whenever a point x is within δ of c, f(x) is within ε units of L. Source: Wikipedia.

if there is a point q ∈ Y with the following property: For every ε > 0 there exists a δ > 0 such
that

dY (f(x), q) < ε (19)

for all points x ∈ E for which
0 < dX(x, p) < δ. (20)

• dX and dY refer to the distances in X and Y , respectively.

• p ∈ X, but p need not be a point of E. Moreover, even if p ∈ E, we may very well have
f(p)6= limx→p f(x).

• Alternative statement for De�nition 46 based on (ε, δ) limit de�nition given by Bernard

Bolzano in 1817. Its modern version is due to Karl Weierstrass 2

De�nition 47. The function f approaches the limit L near c means: for every ε there is some
δ > 0 such that, for all x, if 0 < |x− c| < δ, then |f(x)− L| < ε.

• f approaches L near c has the same meaning as the Equation (21)

lim
x→c

f(x) = L. (21)

2Addapted from Spivak, M. (1967) Calculus. Benjamin: New York.
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Theorem 25. Let X, Y,E, f , and p be as in De�nition 46. Then

lim
x→p

f(x) = q (22)

if and only if

lim
n→∞

f(pn) = q (23)

for every sequence {pn} in E such that

pn 6= p, lim
n→∞

pn = p. (24)

Theorem 26. Suppose E ⊂ X, a metric space, p is a limit point of E, f and g are complex

functions on E, and
lim
x→p

f(x) = A, lim
x→p

g(x) = B.

Then

(a) lim
x→p

(f + g)(x) = A+B;

(b) lim
x→p

(fg)(x) = AB;

(c) lim
x→p

(
f

g

)
(x) =

A

B
, ifB 6= 0.

4.2 Continuous Functions

De�nition 48. Suppose X and Y are metric spaces, E ⊂ X, p ∈ E, and f maps E into Y. Then
f is said to be continuous at p if for every ε > 0 there exists a δ > 0 such that

dY (f(x), f(p)) < ε

for all points x ∈ E for which dX(x, p) < δ.

• If f is continuous at every point of E, then f is said to be continuous on E.

• f has to be de�ned at the point p in order to be continuous at p.

• f is continous at p if and only if limx→p f(x) = f(p).

Theorem 27. Suppose X, Y, Z are metric spaces, E ⊂ X, f maps E into Y , g maps the range of

f , f(E), into Z, and h is the mapping of E into Z de�ned by

h(x) = g(f(x)) (x ∈ E).

If f is continuous at a point p ∈ E and if g is continuous at the point f(p), then h is continuous

at p. The function h = f ◦ g is called the composite of f and g.
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4.3 Continuity and Compactness

De�nition 49. A mapping f of a set E into Rk is said to be bounded if there is a real number M
such that |f(x)| ≤M for all x ∈ E.

Theorem 28. Suppose f is a continuous mapping of a compact metric space X into a metric

space Y . Then f(X) is compact.

Theorem 29. Suppose f is a continuous real function on a compact metric space X, and

M = sup
p∈X

f(p), m = inf
p∈X

f(p). (25)

Then there exist points p, q ∈ X such that f(p) = M and f(q) = m.

• The conclusion may also be stated as follows: There exist points p and q in X such that
f(q) ≤ f(x) ≤ f(p) for all x ∈ X; that is, f attains its maximum (at p) and its minimum
(at q).

De�nition 50. Let f be a mapping of a metric space X into a metric space Y . We say that f is
uniformly continuous on X if for every ε > 0 there exists δ > 0 such that

dY (f(p), f(q)) < ε (26)

for all p and q in X for which dX(p, q) < δ.

Theorem 30. Let f be a continuous mapping of a compact metric space X into a metric space Y.
Then f is uniformly continuous on X.

4.4 Continuity and Connectedness

Theorem 31. If f is a continuous mapping of a metric space X into a metric space Y, and if E
is a connected subset of X, then f(E) is connected.

Theorem 32. (Intermediate Vaalue Theorem) Let f be a continuous real function on the

interval [a, b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then there exists a

point x ∈ (a, b) such that f(x) = c.

4.5 Discontinuities

• If x is a point in the domain of de�nition of the function f at which f is not continuous, we
say that f is discontinuous at x.

De�nition 51. Let f be de�ned on (a, b). Consider any point x such that a ≤ x < b. We write
f(x+) = q if f(tn)→ q as n→∞, for all sequences {tn} in (x, b) such that tn → x. To obtain the
de�nition of f(x−), for a < x ≤ b, we restrict ourselves to sequences {tn} in (a, x).

• It is clear that any point x of (a, b), lim
t→x

f(t) exists if and only if

f(x+) = f(x−) = lim
t→x

f(t).

De�nition 52. Let f be de�ned on (a, b). If f is discontinuous at a point x and if f(x+) and
f(x−) exist, then f is said to have a discontinuity of the �rst kind. Otherwise, it is of the second
kind.
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4.6 Monotonic Functions

De�nition 53. Let f be real on (a, b). Then f is said to be monotonically increasing on (a, b) if
a < x < y < b implies f(x) ≤ f(y).

Theorem 33. Let f be monotonically increasing on (a, b). Then f(x+) and f(x−) exist at every
point of x of (a, b). More precisely

sup
a<t<x

f(t) = f(x−) ≤ f(x) ≤ f(x+) = inf
x<t<b

f(t). (27)

Furthermore, if a < x < y < b, then
f(x+) ≤ f(x−). (28)

4.7 In�nite Limits and Limits at In�nity

• For any real number x, we have already de�ned a neighborhood of x to be any segment
(x− δ, x+ δ).

De�nition 54. For any real c, the set of real numbers x such that x > c is called a neighborhood
of +∞ and is written (c,+∞). Similarly, the set (−∞, c) is a neighborhood of −∞.

De�nition 55. Let f be a real function de�ned on E. We say that

f(t)→ A as t→ x

where A and x are in the extended real number system, if for every neighborhood U of A there is a
neighborhood V of x such that V ∩E is not empty, and such that f(t) ∈ U for all t ∈ V ∩E, t 6= x.

Exercises Chapter 4

(1) Prove the Theorem 27.
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