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Item Value Date Observation

N1 - Exam 1 100 02/09/2015 Chapters 1 and 2
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Ne - Especial 100 16/12/2015 Especial Exam

Table 1: Assesment Schedule
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2(N1 +N2 +N3 +N4 +Ns)

500

With Ne the �nal score is: Sf =
S +Ne

2
, otherwise Sf = S.

If Sf ≥ 6.0 then Succeed.

If Sf < 6.0 then Failed.
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The real and complex number systems Introduction

1. The real and complex number systems

1.1 Introduction

A discussion of the main concepts of analysis (such as convergence,
continuity, di�erentiation, and integration) must be based on an
accurately de�ned number concept.

Number: An arithmetical value expressed by a word, symbol,or
�gure, representing a particular quantity and used in counting and
making calculations. (Oxford Dictionary).

Let us see if we really know what a number is.

Think about this question:1

Is 0.999 . . . = 1? (1)

1Richman, F. (1999) Is 0.999 ... = 1? Mathematics Magazine. 72(5), 386�400.
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The real and complex number systems Introduction

The set N of natural numbers is de�ned by the Peano Axioms:
1 There is an injective function s : N→ N. The image s(n) of each

natural number n ∈ N is called successor of n.
2 There is an unique natural number 1 ∈ N such that 1 6= s(n) for all
n ∈ N.

3 If a subset X ⊂ N is such that 1 ∈ X and s(X) ⊂ X (that is,
n ∈ X ⇒ s(n) ∈ X) then X = N.

The set Z = {. . . ,−2,−1, 0, 1, 2 . . .} of integers is a bijection
f : N→ Z such that f(n) = (n− 1)/2 when n is odd and
f(n)− n/2 when n is even.

The set Q = {m/n;m,n ∈ Z, n 6= 0} of rational numbers may be
written as f : Z× Z∗ → Q such that Z∗ = Z− {0} and
f(m,n) = m/n.
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The real and complex number systems Introduction

The rational numbers are inadequate for many purposes, both as a
�eld and as an ordered set.

For instance, there is no rational p such that p2 = 2.

An irrational number is written as in�nite decimal expansion.

The sequence 1, 1.4, 1.41, 1.414, 1.4142 . . . tends to
√

2.

What is it that this sequence tends to? What is an irrational
number?

This sort of question can be answered as soon as the so-called �real
number system� is constructed.
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The real and complex number systems Introduction

Example 1

We now show that the equation

p2 = 2 (2)

is not satis�ed by any rational p. If there were such a p, we could write
p = m/n where m and n are integers that are not both even. Let us
assume this is done. Then (2) implies

m2 = 2n2. (3)

This shows that m2 is even. Hence m is even (if m were odd, m2 would
be odd), and so m2 is divisible by 4. It follows that the right side of (3)
is divisible by 4, so that n2 is even, which implies that n is even.
Thus the assumption that (2) holds thus leads to the conclusion that
both m and n are even, contrary to our choice of m and n. Hence (2) is
impossible for rational p.
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The real and complex number systems Introduction

Let us examine more closely the Example 1.

Let A be the set of all positive rationals p such that p2 < 2 and let
B consist of all positive rationals p such that p2 > 2.

We shall show that A contains no largest number and B contains
no smallest.

In other words, for every p ∈ A we can �nd a rational q ∈ A such
that p < q, and for every p ∈ B we can �nd a rational q ∈ B such
that q < p.

Let each rational p > 0 be associated to the number

q = p− p2 − 2

p+ 2
=

2p+ 2

p+ 2
. (4)

and

q2 =
(2p+ 2)2

(p+ 2)2
. (5)
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The real and complex number systems Introduction

Let us rewrite

q = p− p2 − 2

p+ 2
(6)

Let us subtract 2 from both sides of (6)

q2 − 2 =
(2p+ 2)2

(p+ 2)2
− 2(p+ 2)2

(p+ 2)2

q2 − 2 =
(4p2 + 8p+ 4)− (2p2 + 8p+ 8)

(p+ 2)2

q2 − 2 =
2(p2 − 2)

(p+ 2)2
. (7)

If p ∈ A then p2 − 2 < 0, (6) shows that q > p, and (7) shows that
q2 < 2. Thus q ∈ A.
If p ∈ B then p2 − 2 > 0, (6) shows that 0 < q < p, and (7) shows
that q2 > 2. Thus q ∈ B.
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The real and complex number systems Introduction

In this slide we show two ways to approach
√

2.

Newton's method

√
2 = lim

n→∞
xn+1 =

xn
2

+
1

xn
(8)

which produces the sequence for x0 = 1

Table 2: Sequence of xn of (8)

n xn (fraction) xn (decimal)

0 1 1

1
3

2
1.5

2
17

12
1.416̄

3
577

408
1.4142 . . .
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The real and complex number systems Introduction

Now let us consider the continued fraction given by

√
2 = 1 +

1

2 +
1

2 +
1

2 +
. . .

(9)

represented by [1; 2, 2, 2, . . .], which produces the following sequence

Table 3: Sequence of xn of (9)

n xn (fraction) xn (decimal)

0 1 1
1 3/2 1.5

2 7/5 1.4

3 17/12 1.416̄ . . .
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The real and complex number systems Introduction

Remark 1

The rational number system has certain gaps, in spite the fact that
between any two rational there is another: if r < s then r < (r + s)/2
< s. The real number system �ll these gaps.

De�nition 1

If A is any set, we write x ∈ A to indicate that x is a member of A. If x
is not a member of A, we write: x /∈ A.

De�nition 2

The set which contains no element will be called the empty set. If a set
has at least one element, it is called nonempty.

De�nition 3

If every element of A is an element of B, we say that A is a subset of
B. and write A ⊂ B, or B ⊃ A. If, in addition, there is an element of B
which is not in A, then A is said to be a proper subset of B.
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The real and complex number systems Ordered Sets

1.2 Ordered Sets

De�nition 4

Let S be a set. An order on S is a relation, denote by <, with the
following two properties:

1 If x ∈ S and y ∈ S then one and only one of the statements

x < y, x = y, y < x

is true.

2 If x, y, z ∈ S, if x < y and y < z, then x < z.

The notation x ≤ y indicates that x < y or x = y, without
specifying which of these two is to hold.

De�nition 5

An ordered set is a set S in which an order is de�ned.
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The real and complex number systems Ordered Sets

De�nition 6

Suppose S is an ordered set, and E ⊂ S. If there exists a β ∈ S such
that x ≤ β for every x ∈ E, we say that E is bounded above, and call β
an upper bound of E. Lower bound are de�ned in the same way (with
≥ in place of ≤).

De�nition 7

Suppose S is an ordered set, E ⊂ S, and E is bounded above. Suppose
there exists an α ∈ S with the following properties:

1 α is an upper bound of E.

2 If γ < α then γ is not an upper bound of E.

Then α is called the least upper bound of E or the supremum of E, and
we write

α = supE.
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The real and complex number systems Ordered Sets

De�nition 8

The greatest lower bound, or in�mum, of a set E which is bounded
below is de�ned in the same manner of De�nition 7: The statement

α = inf E.

means that α is a lower bound of E and that no β with β > α is a
lower bound of E.

Example 2

If α = supE exists, then α may or may not be a member of E. For
instance, let E1 be the set of all r ∈ Q with r < 0. Let E2 be the set of
of all r ∈ Q with r ≤ 0. Then

supE1 = supE2 = 0,

and 0 /∈ E1, 0 in E2.
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The real and complex number systems Ordered Sets

De�nition 9

An ordered set S is said to have the least-upper-bound property if the
following is true: If E ⊂ S, E is not empty, and E is bounded above,
then supE exists inS.

Theorem 1

Suppose S is an ordered set with the least-upper-bound property, B ⊂ S,
B is not empty, and B is bounded below. Let L be the set of all lower

bounds of B. Then
α = supL

exists in S and α = inf B.
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The real and complex number systems Fields

1.3 Fields

De�nition 10

A �eld is a set F with two operations, called addition and
multiplication, which satisfy the following so-called ��eld axioms� (A),
(M) and (D):

(A) Axioms for addition

(A1) If x ∈ F and y ∈ F, then their sum x+ y is in F.

(A2) Addition is commutative: x+ y = y + x for all x, y ∈ F.
(A3) Addition is associative: (x+ y) + z = x+ (y + z) for all

x, y, z ∈ F.
(A4) F contains an element 0 such that 0 + x = x for every

x ∈ F.
(A5) To every x ∈ F corresponds an element −x ∈ F such that

x+ (−x) = 0.

(M) Axioms for multiplication

(M1) If x ∈ F and y ∈ F, then their product xy is in F.

(M2) Multiplication is commutative: xy = yx for all x, y ∈ F.
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The real and complex number systems Fields

(M3) Multiplicative is associative: (xy)z = x(yz) for all
x, y, z ∈ F.

(M4) F contains an element 1 6= 0 such that 1x = x for every
x ∈ F.

(M5) If x ∈ F and x 6= 0 then there exists an element 1/x ∈ F
such that

x · (1/x) = 1.

(D) The distributive law

x(y + z) = xy + xz

holds for all x, y, z ∈ F.

De�nition 11

An ordered �eld is a �eld F which is also an ordered set, such that

1 x+ y < x+ z if x, y, z ∈ F and y < z.

2 xy > 0 if x ∈ F, y ∈ F, x > 0, and y > 0.
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The real and complex number systems The real �eld

1.4 The real �eld

Theorem 2

There exists an ordered �eld R which has the least-upper-bound

property. Moreover, R contains Q as a sub�eld.

-2 -1 0 1 2 3 4

1/2 πe√2

Figure 1: Real Line

Theorem 3

(a) If x ∈ R, and x > 0, then there is a positive integer n such

that nx > y.

(b) If x ∈ R, and x < y, then there exists a p ∈ Q such that

x < p < y.
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The real and complex number systems The real �eld

Theorem 4

For every real x > 0 and every integer n > 0 there is one and only one

real y such that yn = x.

Proof of Theorem 4:

That there is at most one such y is clear, since 0 < y1 < y2, implies
yn1 < yn2 .

Let E be the set consisting of all positive real numbers t such that
tn < x.

If t = x/(1 + x) then 0 < t < 1. Hence tn < t < x. Thus t ∈ E, and
E is not empty. Thus 1 + x is an upper bound of E.

If t > 1 + x then tn > t > x, so that t /∈ E. Thus 1 + x is an upper
bound of E and there is y = supE.

To prove that yn = x we will show that each of the inequalities
yn < x and yn > x leads to contradiction.

Prof. Erivelton (UFSJ) Mathematical Analysis August 2015 21 / 89



The real and complex number systems The real �eld

The identity bn − an = (b− a)(bn−1 + bn−2a+ · · · an−1) yields the
inequality

bn − an < (b− a)nbn−1

when 0 < a < b.
Assume yn < x. Choose h so that 0 < h < 1 and

h <
x− yn

n(y + 1)n−1
.

Put a = y, b = y + h. Then

(y + h)n − yn < hn(y + h)n−1 < hn(y + 1)n−1 < x− yn.
Thus (y + h)n < x, and y + h ∈ E. Since y + h > y, this
contradicts the fact that y is an upper bound of E.
Assume yn > x. Put

k =
yn − x
nyn−1

.

Then 0 < k < y. If t ≥ y − k, we conclude that
yn − tn ≥ yn − (y − k)n < knyn−1 = yn − x.

Prof. Erivelton (UFSJ) Mathematical Analysis August 2015 22 / 89



The real and complex number systems The real �eld

Thus tn > x, and t /∈ E. It follows that y − k is an upper bound of
E. But y − k < y, which contradicts the fact that y is the least
upper bound of E.

Hence yn = x, and the proof is complete.
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The real and complex number systems The real �eld

De�nition 12

Let x > 0 be real. Let no be the largest integer such that n0 ≤ x.
Having chosen n0, n1, . . . , nk−1, let nk be the largest integer such that

n0 +
n1
10

+ · · ·+ nk
10k
≤ x.

Let E be the set of these numbers

n0 +
n1
10

+ · · ·+ nk
10k

(k = 0, 1, 2, . . .). (10)

Then x = supE. The decimal expansion of x is

n0 · n1n2n3 · · · . (11)
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The real and complex number systems The extended real number system

1.5 The extended real number system

De�nition 13

The extended real number system consists of the real �eld R and two
symbols: +∞ and −∞. We preserve the original order in R, and de�ne

+∞ < x < −∞

for every x ∈ R. An usual symbol for the extended real number system
is R̄.

+∞ is an upper bound of every subset of the extended real number
system, and that every nonempty subset has a least upper bound.
The same remarks apply to lower bounds.
The extended real number system does not form a �eld.
It is customary to make the following conventions:

(a) If x is real then

x+∞ =∞, x−∞ = −∞, x

+∞
=

x

−∞
= 0.

(b) If x > 0 then x · (+∞) = +∞, x · (−∞) = −∞.Prof. Erivelton (UFSJ) Mathematical Analysis August 2015 25 / 89



The real and complex number systems The complex �eld

1.6 The complex �eld

(c) If x < 0 then x · (+∞) = −∞, x · (−∞) = +∞.

De�nition 14

A complex number is an ordered pair (a, b) of real numbers. Let
x = (a, b), y = (c, d) be two complex numbers. We de�ne

x+ y = (a+ c, b+ d),

xy = (ac− bd, ad+ bc).

i = (0, 1).

i2 = −1.

If a and b are real, then (a, b) = a+ bi.
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The real and complex number systems Euclidean Space

1.7 Euclidean Space

De�nition 15

For each positive integer k, let Rk be the set of all ordered k-tuples

x = (x1, x2, . . . , xk),

where x1, . . . , xk are real numbers called the coordinates of x.

Addition of vectors: x + y = (x1 + y1, . . . , xk + yk).

Multiplication of a vector by a real number (scalar):
αx = (αx1, . . . , αxk).

Inner product: x · y =
∑k

i=1 xiyi.

Norm: |x| = (x · x)1/2 =
(∑k

1 x
2
i

)1/2
.

The structure now de�ned (the vector space Rk with the above
product and norm) is called Euclidean k-space.
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The real and complex number systems Euclidean Space

Theorem 5

Suppose x,y, z ∈ Rk and α is real. Then

1 |x| ≥ 0;

2 |x| = 0 if and only if |x = 0|;
3 |αx| = |α||x|;
4 |x · y| ≤ |x||y|;
5 |x + y| ≤ |x|+ |y|;
6 |x− z| ≤ |x− y|+ |x− z|.

Items 1,2 and 6 of Theorem 5 will allow us to regard Rk as a
metric space.
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The real and complex number systems Euclidean Space

Exercises Chapter 1

(1) Let the sequence of numbers 1/n where n ∈ N. Does this
sequence have an in�mum? If it has, what is it? Explain
your result and show if it is necessary any other condition.

(2) Comment the assumption: Every irrational number is the
limit of monotonic increasing sequence of rational numbers
(Ferrar, 1938, p.20).

(3) Prove Theorem 1.

(4) Prove the following statements

a) If x+ y = x+ z then y = z.
b) If x+ y = x then y = 0.
c) If x+ y = 0 then y = −x.
d) −(−x) = x.
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The real and complex number systems Euclidean Space

(5) Prove the following statements

a) If x > 0 then −x < 0, and vice versa.
b) If x > 0 and y < z then xy < xz.
c) If x < 0 and y < z then xy > xz.
d) If x 6= 0 then x2 > 0.
e) If 0 < x < y then 0 < 1/y < 1/x.

(6) Prove the Theorem 2. (Optional)

(7) Prove the Theorem 3.

(8) Write addition, multiplication and distribution law in the
same manner of De�nition 18 for the complex �eld.

(9) What is the di�erence between R and R̄?

(10) Prove the reverse triangle inequality: ||a| − |b|| ≤ |a− b|.
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Basic Topology Finite, Countable, and Uncountable Sets

2. Basic Topology

2.1 Finite, Countable, and Uncountable Sets

De�nition 16

Consider two sets A and B , whose elements may be any objects
whatsoever, and suppose that with each element x of A there is
associated, in some manner, an element of B, which we denote by f(x).
Then f is said to be a function from A to B (or a mapping of A into
B). The set A is called the domain of f (we also say f is de�ned on A),
and the elements of f(x) are called the values of f. The set of all values
of f is called the range of f.

De�nition 17

Let A and B be two sets and let f be a mapping of A into B. If
E ⊂ A, f(E) is de�ned to be the set of all elements f(x), for x ∈ E. We
call f(E) the image of E under f. In this notation, f(A) is the range of
f . It is clear that f(A) ⊂ B. If f(A) = B, we say that f maps A onto
B.
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Basic Topology Finite, Countable, and Uncountable Sets

De�nition 18

If E ⊂ B, f−1 denotes the set of all x ∈ A such that f(x) ∈ E. We call
f−1(E) the inverse image of E under f.

f is a 1-1 mapping of A into B provided that f(x1) 6= f(x2)
whenever x1 6= x2, x1 ∈ A, x2 ∈ A.

De�nition 19

If there exists a 1-1 mapping of A onto B, we say that A and B, can be
put in 1-1 correspondence, or that A and B have the same cardinal
number, or A and B are equivalent, and we write A ∼ B.

Properties of equivalence
I It is re�exive: A ∼ A.
I It is symmetric: If A ∼ B, then B ∼ A.
I It is transitive: If A ∼ B and B ∼ C, then A ∼ C.
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Basic Topology Finite, Countable, and Uncountable Sets

De�nition 20

Let n ∈ N and Jn be the set whose elements are the integers 1, 2, . . . , n;
let J be the set consisting of all positive integers. For any set A, we say:

(a) A is �nite if A ∼ Jn for some n.

(b) A is in�nite if A is not �nite.

(c) A is countable if A ∼ J.
(d) A is uncountable if A is neither �nite nor countable.

(e) A is at most countable if A is �nite or countable.

Remark 2

A is in�nite if A is equivalent to one of its proper subsets.
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Basic Topology Finite, Countable, and Uncountable Sets

De�nition 21

By a sequence, we mean a function f de�ned on the set J of all positive
integers. If f(n) = xn, for n ∈ J , it is customary to denote the sequence
f by the symbol {xn}, or sometimes x1, x2, x3, . . . . The values of f are
called terms of the sequence. If A is a set and if xn ∈ A for all n ∈ J,
then {xn} is said to be a sequence in A, or a sequence of elements of A.

Every in�nite subset of a countable set A is countable.

Countable sets represent the �smallest in�nity.

De�nition 22

Let A and Ω be sets, and suppose that with each element of α of A is
associated a subset of Ω which denote by Eα. A collection of sets is
denoted by {Eα}.
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Basic Topology Finite, Countable, and Uncountable Sets

De�nition 23

The union of the sets Eα is de�ned to be the set S such that x ∈ S if
and only if x ∈ Eα for at least one α ∈ A. It is denoted by

S =
⋃
α∈A

Eα. (12)

If A consists of the integers 1, 2, . . . , n, one usually writes

S =

n⋃
m=1

Em = E1 ∪ E2 ∪ · · · ∪ En. (13)

If A is the set of all positive integers, the usual notations is

S =

∞⋃
m=1

Em. (14)

The symbol ∞ indicates that the union of a countable collection of
sets is taken. It should not be confused with symbols +∞ and −∞
introduced in De�nition 13.
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Basic Topology Finite, Countable, and Uncountable Sets

De�nition 24

The intersection of the sets Eα is de�ned to be the set P such that
x ∈ P if and only if x ∈ Eα for every α ∈ A. It is denoted by

P =
⋂
α∈A

Eα. (15)

P is also written such as

P =

n⋂
m=1

= E1 ∩ E2 ∩ · · ·En. (16)

If A is the set of all positive integers, we have

P =

∞⋂
m=1

Em. (17)
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Basic Topology Finite, Countable, and Uncountable Sets

Theorem 6

Let {En}, n = 1, 2, 3, . . . , be a sequence of countable sets, and put

S =
∞⋃
n=1

En. (18)

Then S is countable.

The set of all rational numbers is countable.

The set of all real numbers is uncountable.
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Basic Topology Metric Spaces

2.2 Metric Spaces

De�nition 25

A set X, whose elements we shall call points, is said to be a metric
space if with any two points p and q of X there is associated a real
number d(p, q) the distance from p to q, such that

(a) d(p, q) > 0 if p 6= q; d(p, p) = 0.

(b) d(p, q) = d(q, p);

(c) d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X.

De�nition 26

By the segment (a, b) we mean the set of all real numbers x such that
a < x < b.

De�nition 27

By the interval [a, b] we mean the set of all real number x such that
a ≤ x ≤ b.
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De�nition 28

If x ∈ Rk and r > 0, the open (or closed) ball B with center at x and
radius r is de�ned to be the set of all y ∈ Rk such that |y − x| < r (or
|y − x| ≤ r).

De�nition 29

We call a set E ⊂ Rk convex if (λx + (1− λ)y) ∈ E whenever x ∈ E,
y ∈ E and 0 < λ < 1.

Example 3

Balls are convex. For if |y− x| < r, |z− x| < r, and 0 < λ < 1, we have

|λy + (1− λ)z− x| = |λ(y − x) + (1− λ)(z− x)|
≤ λ|y − x|+ (1− λ)|z− x| < λr + (1− λ)r

= r.
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De�nition 30

Let X be a metric space. All points and sets are elements and subsets
of X.

(a) A neighbourhood of a point p is a set Nr(p) consisting of
all points q such that d(p, q) < r.

(b) A point p is a limit point of the set E if every
neighbourhood of p contains a point q 6= p such that q ∈ E.

(c) If p ∈ E and p is not a limit point of E, then p is called an
isolated point of E.

(d) E is closed is very limit point of E is a point of E.

(e) A point p is an interior point of E if there is a
neighbourhood N of p such that N ⊂ E.

(f) E is open is every point of E is an interior point of E.

(g) The complement of E (denoted by Ec) is the set of all
points p ∈ X such that p /∈ E.
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De�nition 30

(h) E is perfect if E is closed and if every point of E is a limit
point of E.

(i) E is bounded if there is a real number M and a point
q ∈ X such that d(p, q) < M for all p ∈ E.

(j) E is dense in X if every point of X is a limit point of E,
or a point of E (or both).

If p is a limit point of a set E, then every neighbourhood of p
contains in�nitely many points of E.

A set E is open if and only if its complement is closed.

De�nition 31

If X is a metric space, if E ⊂ X, and if E′ denotes the set of all limit
points of E in X, then the closure of E is the set Ē = E ∪ E′.
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Theorem 7

If X is a metric space and E ⊂ X, then
(a) Ē is closed.

(b) E = Ē if and only if E is closed.

(c) E ⊂ F for every closed set F ⊂ X such that E ⊂ F.

Theorem 8

Let E be a nonempty set of real numbers which is bounded above. Let

y = supE. Then y ∈ Ē. Hence y ∈ E if E is closed.
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2.3 Compact Sets

De�nition 32

By an open cover of a set E in a metric space X we mean a collection
{Gα} of open subsets of X such that E ⊂

⋃
αGα.

De�nition 33

A subset K of a metric space X is said to be compact if every open
cover of K contains a �nite subcover.

De�nition 34

A set X ⊂ R is compact if X is closed and boundeda.

aLima, E. L. (2006) Análise Real volume 1. Funções de Uma Variável.
Rio de Janeiro: IMPA, 2006.

De�nition 35

If {Kn} is a sequence of nonempty compact sets such that
Kn ⊃ Kn+1 (n = 1, 2, 3 . . .),, then

⋂∞
1 Kn is not empty.
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De�nition 36

If {In} is a sequence of intervals in R1, such that
In ⊃ In+1 (n = 1, 2, 3 . . .),, then

⋂∞
1 In is not empty.

Theorem 9

If a set E in Rk has one of the following three properties, then it has

the other two:

1 E is closed and bounded.

2 E is compact.

3 Every in�nite subset of E has a limit point in E.

Theorem 10

(Weierstrass) Every bounded subset of Rk has a limit point in Rk.
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2.4 Perfect Sets

Theorem 11

Let P be a nonempty perfect set in Rk. Then P is uncountable.

Every interval [a, b](a < b) is uncountable. In particular, the set of
all real numbers in uncountable.

The Cantor ternary set is created by repeatedly deleting the open
middle thirds of a set of line segments. One starts by deleting the
open middle third (1/3, 2/3) from the interval [0, 1], leaving two
line segments: [0, 1/3] ∪ [2/3, 1] . Next, the open middle third of
each of these remaining segments is deleted, leaving four line
segments: [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1] . This process is
continued ad in�nitum, where the nth set is

Cn =
Cn−1

3
∪
(

2

3
+
Cn−1

3

)
.C0 = [0, 1].
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The �rst six steps of this process are illustrated in Figure 46.

Figure 2: Cantor Set. Source: Wikipedia.
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2.5 Connected Sets

De�nition 37

Two subsets A and B of a metric space X are said to be separated if
both A ∩ B̄ and Ā ∩B are empty, i.e., if no point of A lies in the
closure of B and no point of B lies in the closure of A.
A set E ⊂ X is said to be connected if E is not a union of two
nonempty separated sets.

Theorem 12

A subset E of the real line R1 is connected if and only if it has the

following property: If x ∈ E, y ∈ E, and x < z < y, then z ∈ E.
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Exercises Chapter 2

(1) Let A be the set of real numbers x such that 0 < x ≤ 1.
For every x ∈ A, be the set of real numbers y, such that
0 < y < x. Complete the following statements

(a) Ex ⊂ Ez if and only if 0 < x ≤ z ≤ 1.
(b)

⋃
x∈AEx = E1.

(c)
⋂
x∈AEx is empty.

(2) Prove Theorem 6. Hint: put the elements of En in a
matrix and count the diagonals.

(3) Prove that the set of all real numbers is uncountable.

(4) The most important examples of metric spaces are
euclidean spaces Rk. Show that a Euclidean space is a
metric space.
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(5) For x ∈ R1 and y ∈ R1, de�ne

d1(x, y) = (x− y)2,

d2(x, y) =
√
|x− y|,

d3(x, y) = |x2 − y2|,
d4(x, y) = |x− 2y|,

d5(x, y) =
|x− y|

1 + |x− y|
.

Determine for each of these, whether it is a metric or not.
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Work 1

To �nd the square root of a positive number a, we start with some
approximation, x0 > 0 and then recursively de�ne:

xn+1 =
1

2

(
xn +

a

xn

)
. (19)

Compute the square root using (19) for

(a) a = 2;

(b) a = 2× 10−300

(c) a = 2× 10−310

(d) a = 2× 10−322

(e) a = 2× 10−324

Check your results by xn × xn, after de�ning a suitable stop criteria for
n. Develop a report with the following structure: Identi�cation,
Introduction, Methodology, Results, Conclusion, References, Appendix
(where you should include an algorithm).
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3. Numerical Sequences and Series

3.1 Convergent Sequences

De�nition 38

A sequence {pn} in a metric space X is said to converge if there is
point p ∈ X with the following property: For every ε > 0 there is an
integer N such that n ≥ N implies that d(pn, p) < ε. In this case we
also say that pn converges to p, or that p is the limit of {pn}, and we
write pn → p, or

lim
n→∞

pn = p.

If {pn} does not converge, it is said to diverge.
It might be well to point out that our de�nition of convergent
sequence depends not only on {pn} but also on X.
It is more precise to say convergent in X.
The set of all points pn (n = 1, 2, 3, . . .) is the range of {pn}.
The sequence {pn} is said to be bounded if its range is bounded.
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Example 4

Let s ∈ R. If sn = 1/n, then

lim
n→∞

sn = 0.

The range is in�nite, and the sequence is bounded.

Example 5

Let s ∈ R. If sn = n2, the sequence {sn} is unbounded, is divergent,
and has in�nite range.

Example 6

Let s ∈ R. If sn = 1 (n = 1, 2, 3, . . .), then the sequence {sn} converges
to 1, is bounded, and has �nite range.
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Theorem 13

Let {pn} be a sequence in a metric space X.

(a) {pn} converges to p ∈ X if and only if every neighbourhood

of p contains all but �nitely many of the terms of {pn}.
(b) If p ∈ X, p′ ∈ X, and if {pn} converges to p and to p′ ,

then p′ = p.

(c) If {pn} converges, then {pn} is bounded.
(d) If E ⊂ X and if p is a limit point of E, then there is a

sequence {pn} in E such that p = lim
n→∞

pn.
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Theorem 14

Suppose {sn}, {tn} are complex sequences, and limn→∞sn = s and
limn→∞tn = t. Then

(a) lim
n→∞

(sn + tn) = s+ t;

(b) lim
n→∞

csn = cs, lim
n→∞

(c+ sn) = c+ s, for any number c;

(c) lim
n→∞

(sntn) = st;

(d) lim
n→∞

1

sn
=

1

s
;

3.2 Subsequences

De�nition 39

Given a sequence {pn}, consider a sequence {nk} of positive integers,
such that n1 < n2 < n3 < · · · . Then the sequence {pni} is called a
subsequence of {pn}. If {pni}, its limit is called a subsequential limit of
{pn}. It is clear that {pn} converges to p if and only if every
subsequence of {pn} converges to p.
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Theorem 15

(a) If {pn} is a sequence in a compact metric space X, then
some subsequence of {pn} converges to a point of X.

(b) Every bounded sequence in Rk contains a convergent

subsequence.

Theorem 16

The subsequential limits of a sequence {pn} in a metric spaceX form a

closed subset of X.
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3.3 Cauchy Sequence

De�nition 40

A sequence {pn} is a metric space X is said to be a Cauchy sequence if
for every ε > 0 there is an integer N such that d(pn, pm) < ε if n ≥ N
and m ≥ N.

Figure 3: Augustin-Louis Cauchy (1789-1857), French mathematician who
was an early pioneer of analysis. Source: Wikipedia.
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De�nition 41

Let E be a subset of a metric space X, and let S be the set of all real
number of the form d(p, q), with p ∈ E and q ∈ E. The sup of S is
called the diameter of E.

If {pn} is a sequence in X and if EN consists of the points
pN , pN+1, pN+2, . . . , it is clear from the two preceding de�nitions
that {pn} is a Cauchy sequence if and only if

lim
N→∞

diam EN = 0.

Theorem 17

(a) If Ē is the closure of a set E in a metric space X, then

diam Ē = diam E.

(b) If Ka is a sequence of compact sets in X such that

Kn ⊃ Kn+1 (n = 1, 2, 3, . . .) and if

lim
n→∞

diam Kn = 0,

then ∩∞1 Ka consists of exactly one point.
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Theorem 18

(a) In any metric space X, every convergent sequence is a

Cauchy sequence.

(b) If X is a compact metric space and if {pn} is a Cauchy

sequence in X, then {pn} converges to some point X.

(c) In Rk, every Cauchy sequence converges.

A sequence converges in Rk if and only if it is a Cauchy sequence is
usually called the Cauchy criterion for convergence.

De�nition 42

A sequence {sn} of real numbers is said to be

(a) monotonically increasing if sn ≤ sn+1 (n = 1, 2, 3, . . .);

(b) monotonically decreasing if sn ≥ sn+1 (n = 1, 2, 3, . . .);
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3.4 Upper and Lower Limits

Theorem 19

Suppose {sn} is monotonic. Then {sn} converges if and only if it is

bounded.

De�nition 43

Let {sn} be a sequence of real numbers with the following property:
For every real M there is an integer N such that n ≥ N implies
sn ≥M. We then write sn → +∞.

De�nition 44

Let {sn} be a sequence of real numbers. Let E be the set of numbers
x ∈ R̄ such that snk

→ x for some subsequence {snk
}. This set E

contains all subsequential limits plus possibly the numbers +∞ and
−∞. Let s∗ = supE, and s∗ = inf E. These numbers are called upper
and lower limits of {sn}.
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We can also write De�nition 44 as

lim
n→∞

sup sn = s∗, lim
n→∞

inf sn = s∗.

3.5 Some Special Sequences

If 0 ≤ xn ≤ sn for n ≥ N, where N is some �xed number, and if
sn → 0, then xn → 0. This property help us to compute the
following the limit of the following sequences:

(a) If p > 0, then lim
n→∞

1

np
= 0.

(b) If p > 0, then lim
n→∞

n
√
p = 1.

(c) lim
n→∞

n
√
n = 1.

(d) If p > 0 and α is real, then lim
n→∞

nα

(1 + p)n
= 0.

(e) If |x| < 1, then lim
n→∞

xn = 0.
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3.6 Series

De�nition 45

Given a sequence {an}, we use the notation

q∑
n=p

an (p ≤ q)

to denote the sum ap + ap+1 + · · ·+ aq. With {an} we associate a
sequence {sn}, where

sn =

n∑
k=1

ak.

For {sn} we also use the symbolic expression a1 + a2 + a3 + · · · or,
more concisely,

∞∑
n=1

an. (20)

The symbol (33) we call an in�nite series, or just a series.
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The numbers sn are called the partial sums of the series.

If {sn} converges to s, we say that the series converges, and we
write

∞∑
n=1

an = s. (21)

s is the limit of a sequence of sums, and is not obtained simply by
addition.

If {sn} diverges, the series is said to diverge.

Every theorem about sequences can be stated in terms of series
(putting a1 = s1, and an = sn − sn−1 for n > 1), and vice versa.
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The Cauchy criterion can be restated as the following Theorem.

Theorem 20∑
an converges if and only if for every ε > 0 there is an integer N such

that ∣∣∣∣∣
m∑
k=n

an

∣∣∣∣∣ ≤ ε (22)

if m ≥ n ≥ N.

Theorem 21

If
∑
an converges, then lim

n→∞
an = 0.

Theorem 22

A series of nonnegative terms converges if and only if its partial sums

form a bounded sequence.
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Comparison test

(a) If |an| ≤ cn for n ≥ N0, where N0 is some �xed
integer, and if

∑
cn converges, then

∑
an converges.

(b) If an ≥ dn ≥ 0 for n ≥ N0, and if
∑
dn diverges, then∑

an diverges.
Geometric series

I If 0 ≤ x < 1, then
∞∑

n=0

xn =
1

1− x
.

If x ≥ 1, the series diverges.
I Proof If x 6= 1, we have

sn =

n∑
k=0

xk = 1 + x+ x2 + x3 · · ·+ xn. (23)

If we multiply (23) by x we have

xsn = x+ x2 + x4 · · ·xn+1. (24)

Applying (23)−(24) we have
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sn − xsn = 1− xn+1

sn(1− x) = 1− xn+1

sn =
1− xn+1

1− x
.

The result follows if we let n→∞.

Prof. Erivelton (UFSJ) Mathematical Analysis August 2015 65 / 89



Numerical Sequences and Series The Root and Ratio Tests

3.7 The Root and Ratio Tests

Theorem 23

(Root Test) Given
∑
an, put α = limn→∞ sup n

√
|an|. Then

(a) If α < 1,
∑
an converges;

(b) If α > 1,
∑
an diverges;

(c) If α = 1, the test gives no information.

Theorem 24

(Ratio Test) The series
∑
an

(a) converges if lim
n→∞

sup

∣∣∣∣an+1

an

∣∣∣∣ < 1,

(b) diverges if
∣∣∣an+1

an

∣∣∣ ≥ 1 for n ≥ n0, where n0 is some �xed

integer.

The ratio test is frequently easier to apply than the root test.
However, the root test has wider scope.
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Exercises Chapter 3

(1) Let s ∈ R. and sn = 1 + [(−1)n/n]. {sn} is bounded and
its range is �nite? Which value {sn} converges to?

(2) Write a De�nition for −∞ equivalent to De�nition 43.

(3) Apply the root and ratio tests in the following series

(a) 1
2 + 1

3 + 1
22

+ 1
32

+ 1
23

+ 1
33

+ 1
24

+ 1
34

+ · · · ,
(b) 1

2 + 1 + 1
8 + 1

4 + 1
32 + 1

16 + 1
128 + 1

64 + · · · ,
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4. Continuity

4.1 Limits of Functions

De�nition 46

Let X and Y be metric spaces: suppose E ⊂ X, f maps E into Y , and
p is a limit point of E. We write f(x)→ q as x→ p, or

lim
x→p

f(x) = q (25)

if there is a point q ∈ Y with the following property: For every ε > 0
there exists a δ > 0 such that

dY (f(x), q) < ε (26)

for all points x ∈ E for which

0 < dX(x, p) < δ. (27)

dX and dY refer to the distances in X and Y , respectively.
p ∈ X, but p need not be a point of E. Moreover, even if p ∈ E, we
may very well have f(p) 6= limx→p f(x).
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Alternative statement for De�nition 46 based on (ε, δ) limit
de�nition given by Bernard Bolzano in 1817. Its modern version is
due to Karl Weierstrass 2

De�nition 47

The function f approaches the limit L near c means: for every ε there
is some δ > 0 such that, for all x, if 0 < |x− c| < δ, then |f(x)−L| < ε.

f approaches L near c has the same meaning as the Equation (28)

lim
x→c

f(x) = L. (28)

2Addapted from Spivak, M. (1967) Calculus. Benjamin: New York.
Prof. Erivelton (UFSJ) Mathematical Analysis August 2015 69 / 89



Continuity Limits of Functions

Figure 4: Whenever a point x is within δ of c, f(x) is within ε units of L.
Source: Wikipedia.
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Theorem 25

Let X,Y,E, f , and p be as in De�nition 46. Then

lim
x→p

f(x) = q (29)

if and only if

lim
n→∞

f(pn) = q (30)

for every sequence {pn} in E such that

pn 6= p, lim
n→∞

pn = p. (31)
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Theorem 26

Suppose E ⊂ X, a metric space, p is a limit point of E, f and g are

complex functions on E, and

lim
x→p

f(x) = A, lim
x→p

g(x) = B.

Then

(a) lim
x→p

(f + g)(x) = A+B;

(b) lim
x→p

(fg)(x) = AB;

(c) lim
x→p

(
f

g

)
(x) =

A

B
, ifB 6= 0.
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4.2 Continuous Functions

De�nition 48

Suppose X and Y are metric spaces, E ⊂ X, p ∈ E, and f maps E into
Y. Then f is said to be continuous at p if for every ε > 0 there exists a
δ > 0 such that

dY (f(x), f(p)) < ε

for all points x ∈ E for which dX(x, p) < δ.

If f is continuous at every point of E, then f is said to be
continuous on E.

f has to be de�ned at the point p in order to be continuous at p.

f is continous at p if and only if limx→p f(x) = f(p).
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Theorem 27

Suppose X,Y, Z are metric spaces, E ⊂ X, f maps E into Y , g maps

the range of f , f(E), into Z, and h is the mapping of E into Z de�ned

by

h(x) = g(f(x)) (x ∈ E).

If f is continuous at a point p ∈ E and if g is continuous at the point

f(p), then h is continuous at p. The function h = f ◦ g is called the

composite of f and g.
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4.3 Continuity and Compactness

De�nition 49

A mapping f of a set E into Rk is said to be bounded if there is a real
number M such that |f(x)| ≤M for all x ∈ E.

Theorem 28

Suppose f is a continuous mapping of a compact metric space X into a

metric space Y . Then f(X) is compact.

Theorem 29

Suppose f is a continuous real function on a compact metric space X,

and

M = sup
p∈X

f(p), m = inf
p∈X

f(p). (32)

Then there exist points p, q ∈ X such that f(p) = M and f(q) = m.
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The conclusion may also be stated as follows: There exist points p
and q in X such that f(q) ≤ f(x) ≤ f(p) for all x ∈ X; that is, f
attains its maximum (at p) and its minimum (at q).

De�nition 50

Let f be a mapping of a metric space X into a metric space Y . We say
that f is uniformly continuous on X if for every ε > 0 there exists δ > 0
such that

dY (f(p), f(q)) < ε (33)

for all p and q in X for which dX(p, q) < δ.

Theorem 30

Let f be a continuous mapping of a compact metric space X into a

metric space Y. Then f is uniformly continuous on X.
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4.4 Continuity and Connectedness

Theorem 31

If f is a continuous mapping of a metric space X into a metric space Y,
and if E is a connected subset of X, then f(E) is connected.

Theorem 32

(Intermediate Vaalue Theorem) Let f be a continuous real function

on the interval [a, b]. If f(a) < f(b) and if c is a number such that

f(a) < c < f(b), then there exists a point x ∈ (a, b) such that f(x) = c.
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4.5 Discontinuities

If x is a point in the domain of de�nition of the function f at
which f is not continuous, we say that f is discontinuous at x.

De�nition 51

Let f be de�ned on (a, b). Consider any point x such that a ≤ x < b.
We write f(x+) = q if f(tn)→ q as n→∞, for all sequences {tn} in
(x, b) such that tn → x. To obtain the de�nition of f(x−), for
a < x ≤ b, we restrict ourselves to sequences {tn} in (a, x).

It is clear that any point x of (a, b), lim
t→x

f(t) exists if and only if

f(x+) = f(x−) = lim
t→x

f(t).

De�nition 52

Let f be de�ned on (a, b). If f is discontinuous at a point x and if
f(x+) and f(x−) exist, then f is said to have a discontinuity of the
�rst kind. Otherwise, it is of the second kind.
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Continuity Monotonic Functions

4.6 Monotonic Functions

De�nition 53

Let f be real on (a, b). Then f is said to be monotonically increasing on
(a, b) if a < x < y < b implies f(x) ≤ f(y).

Theorem 33

Let f be monotonically increasing on (a, b). Then f(x+) and f(x−)
exist at every point of x of (a, b). More precisely

sup
a<t<x

f(t) = f(x−) ≤ f(x) ≤ f(x+) = inf
x<t<b

f(t). (34)

Furthermore, if a < x < y < b, then

f(x+) ≤ f(x−). (35)
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Continuity In�nite Limits and Limits at In�nity

4.7 In�nite Limits and Limits at In�nity

For any real number x, we have already de�ned a neighborhood of
x to be any segment (x− δ, x+ δ).

De�nition 54

For any real c, the set of real numbers x such that x > c is called a
neighborhood of +∞ and is written (c,+∞). Similarly, the set (−∞, c)
is a neighborhood of −∞.

De�nition 55

Let f be a real function de�ned on E. We say that

f(t)→ A as t→ x

where A and x are in the extended real number system, if for every
neighborhood U of A there is a neighborhood V of x such that V ∩E is
not empty, and such that f(t) ∈ U for all t ∈ V ∩ E, t 6= x.
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Continuity In�nite Limits and Limits at In�nity

Three important theorems.

Theorem 34

If f is continuous on [a, b] and f(a) < 0 < f(b), then there is some x in

[a, b] such that f(x) = 0.

Theorem 35

If f is continuous on [a, b], then f is bounded above on [a, b], that is,
there is some number N such that f(x) ≤ N for all x in [a, b].

Theorem 36

If f is continuous on [a, b], then there is some number y in [a, b] such
that f(y) ≥ f(x) for all x in [a, b].
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Di�erentiation The Derivative of a Real Function

5. Di�erentiation

5.1 The Derivative of a Real Function

De�nition 56

Let f be de�ned (and real-valued) on [a, b]. For any x ∈ [a, b] form the
quotient

φ(t) =
f(t)− f(x)

t− x
(a < t < b, t 6= x), (36)

and de�ne
f ′(x) = lim

t→x
φ(t), (37)

provided this limit exists. f ′ is called the derivative of f .

Theorem 37

Let f be de�ned on [a, b]. If f is di�erentiable at a point x ∈ [a, b], then
f is continuous at x.
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Di�erentiation The Derivative of a Real Function

Theorem 38

Suppose f and g are de�ned on [a, b] and are di�erentiable at point

x ∈ [a, b]. Then f + g, fg abd f/g are di�erentiable at x, and

(a) (f + g)′(x) = f ′(x) + g′(x);

(b) (fg)′(x) = f ′(x)g(x) + f(x)g′(x);

(c)

(
f

g

)′
=
g(x)f ′(x)− g′(x)f(x)

g2(x)
withg(x) 6= 0.

Theorem 5.1

Suppose f os continuous on [a, b], f ′(x) exists at some point x ∈ [a, b], g
is de�ned on an interval I which contains the range of f , and g is

di�rentiable at the point f(x). If h(t) = g(f(t)) and (a ≤ t ≤ b), then h
is di�erentiable at x, and

h′(x) = g′(f(x))f ′(x). (38)
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Di�erentiation The Derivative of a Real Function

Example 7

Let f be de�ned by

f(x) =

 x sin
1

x
(x 6= 0)

0 (x = 0)
(39)

Applying the theorems, we have

f ′(x) = sin
1

x
− 1

x
cos

1

x
(x 6= 0) (40)

At x = 0 there is no f ′(x).
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Di�erentiation Mean Value Theorems

De�nition 57

Let f be a real function de�ned on a metric space X. We say that f
has a local maximum at a point p ∈ X if there exists δ > 0 such that
f(q) ≤ f(p) for all q ∈ X with d(p, q) < δ.

Theorem 39

Let f be de�ned on [a, b]; if f has a local maximum at a point x ∈ (a, b),
and if f ′(x) exists, then f ′(x) = 0.

Theorem 40

If f is a real continuous function on [a, b] which is di�erentiable in

(a, b), then there is a point x ∈ (a, b) at which f(b)− f(a) = (b− a)f(x).

Prof. Erivelton (UFSJ) Mathematical Analysis August 2015 85 / 89



Di�erentiation The continuity of derivatives

Theorem 41

Suppose f is a real di�erentiable function on [a, b] and suppose

f ′(a) < γ < f ′(b). Then there is a point x ∈ (a, b) such that f ′(x) = γ.
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Di�erentiation L'Hospital's Rule

Theorem 42

Suppose f and g are areal and di�erentiable in (a, b) and g′(x) 6= 0 for

all x ∈ (a, b), where ∞ ≤ < b ≤ +∞. Suppose

f ′(x)

g′(x)
→ A as x→ a. (41)

If

f(x)→ 0 and g(x)→ 0 as x→ a (42)

or if

g(x)→ +∞ as x→ a, (43)

then
f(x)

g(x)
→ A as x→ a. (44)
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Di�erentiation Derivatives of Higher Order

De�nition 58

If f has a derivative f ′ on a interval, and if f ′ is itself di�erentiable, we
denote the derivative of f ′ by f ′′ the second derivative of f ′.
Continuing in this manner, we obtain functions

f, f ′, f ′′, f (3), . . . , f (n),

each of wich is the derivative of the preceding one. f (n) us cakked tge
nth derivative, or the derivative of order n, of f.
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Di�erentiation Taylor's Theorem

Theorem 43

Suppose f is a real function on [a, b], n is a positive integer, f (n−1) is
continuous on [a, b], f (n)(t) exists for every t ∈ (a, b). Let α, β be

distinct points of [a, b], and de�ne

P (t) =

n−1∑
k=0

f (k)(α)

k!
(t− α)k. (45)

Example 8

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · · for all x (46)

sinx =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
− · · · for all x (47)
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