Mathematical Analysis Master of Science in Electrical Engineering

Erivelton Geraldo Nepomuceno

Department of Electrical Engineering Federal University of São João del-Rei

August 2015

Teaching Plan

Content

- The Real and Complex Numbers Systems
- Basic Topology
- Numerical Sequences and Series
- Continuity
- Oifferentiation
- Sequences and Series of Functions
- IEEE Standard for Floating-Point Arithmetic
- Interval Analysis

References

- Rudin, W. (1976), Principles of mathematical analysis, McGraw-Hill New York.
- Lima, E. L. (2014). Análise Real Volume 1 Funções de Uma Variável. 12 ed. Rio de Janeiro: IMPA.
- Overton, M. L. (2001), Numerical Computing with IEEE floating point arithmetic, SIAM.
- Institute of Electrical and Electronic Engineering (2008), 754-2008
 IEEE standard for floating-point arithmetic.
- Goldberg, D. (1991), What Every Computer Scientist Should Know About Floating-point Arithmetic, *Computing Surveys* 23(1), 5–48.
- Moore, R. E. (1979), Methods and Applications of Interval Analysis, Philadelphia: SIAM.
- Nepomuceno, E. G (2014). Convergence of recursive functions on computers. The Journal of Engineering q, Institution of Engineering and Technology, 1-3.

Assessment

Item	Value	Date	Observation
N_1 - Exam 1	100	02/09/2015	Chapters 1 and 2
N_2 - Exam 2	100	14/10/2015	Chapters 3 and 4.
N_3 - Exam 3	100	04/11/2015	Chapters 5 and 6.
N_4 - Exam 4	100	02/12/2015	Chapters 7 and 8.
N_s - Seminar	100	09/12/2015	Paper + Presentation.
N_e - Especial	100	16/12/2015	Especial Exam

Table 1: Assesment Schedule

• Score:
$$S = \frac{2(N_1 + N_2 + N_3 + N_4 + N_s)}{500}$$

- With N_e the final score is: $S_f = \frac{S + N_e}{2}$, otherwise $S_f = S$.
- If $S_f \geq 6.0$ then Succeed.
- If $S_f < 6.0$ then Failed.

1. The real and complex number systems

1.1 Introduction

- A discussion of the main concepts of analysis (such as convergence, continuity, differentiation, and integration) must be based on an accurately defined number concept.
- Number: An arithmetical value expressed by a word, symbol, or figure, representing a particular quantity and used in counting and making calculations. (Oxford Dictionary).
- Let us see if we really know what a number is.
- Think about this question:¹

Is
$$0.999... = 1$$
? (1)

Prof. Erivelton (UFSJ)

¹Richman, F. (1999) Is 0.999 ... = 1? Mathematics Magazine. 72(5), 386-400.

- The set \mathbb{N} of natural numbers is defined by the Peano Axioms:
 - There is an injective function $s : \mathbb{N} \to \mathbb{N}$. The image s(n) of each natural number $n \in \mathbb{N}$ is called successor of n.
 - ② There is an unique natural number $1 \in \mathbb{N}$ such that $1 \neq s(n)$ for all $n \in \mathbb{N}$.
 - **③** If a subset $X \subset \mathbb{N}$ is such that $1 \in X$ and $s(X) \subset X$ (that is, $n \in X \Rightarrow s(n) \in X$) then $X = \mathbb{N}$.
- The set $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2 \ldots\}$ of integers is a bijection $f: \mathbb{N} \to \mathbb{Z}$ such that f(n) = (n-1)/2 when n is odd and f(n) n/2 when n is even.
- The set $\mathbb{Q} = \{m/n; m, n \in \mathbb{Z}, n \neq 0\}$ of rational numbers may be written as $f : \mathbb{Z} \times \mathbb{Z}^* \to \mathbb{Q}$ such that $\mathbb{Z}^* = \mathbb{Z} \{0\}$ and f(m,n) = m/n.

- The rational numbers are inadequate for many purposes, both as a field and as an ordered set.
- For instance, there is no rational p such that $p^2 = 2$.
- An irrational number is written as infinite decimal expansion.
- The sequence 1, 1.4, 1.41, 1.414, 1.4142 ... tends to $\sqrt{2}$.
- What is it that this sequence *tends to*? What is an irrational number?
- This sort of question can be answered as soon as the so-called "real number system" is constructed.

Example 1

We now show that the equation

$$p^2 = 2 (2)$$

is not satisfied by any rational p. If there were such a p, we could write p = m/n where m and n are integers that are not both even. Let us assume this is done. Then (2) implies

$$m^2 = 2n^2. (3)$$

This shows that m^2 is even. Hence m is even (if m were odd, m^2 would be odd), and so m^2 is divisible by 4. It follows that the right side of (3) is divisible by 4, so that n^2 is even, which implies that n is even. Thus the assumption that (2) holds thus leads to the conclusion that both m and n are even, contrary to our choice of m and n. Hence (2) is impossible for rational p.

- Let us examine more closely the Example 1.
- Let A be the set of all positive rationals p such that $p^2 < 2$ and let B consist of all positive rationals p such that $p^2 > 2$.
- We shall show that A contains no largest number and B contains no smallest.
- In other words, for every $p \in A$ we can find a rational $q \in A$ such that p < q, and for every $p \in B$ we can find a rational $q \in B$ such that q < p.
- Let each rational p > 0 be associated to the number

$$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}. (4)$$

and

$$q^2 = \frac{(2p+2)^2}{(p+2)^2}. (5)$$

• Let us rewrite

$$q = p - \frac{p^2 - 2}{p + 2} \tag{6}$$

• Let us subtract 2 from both sides of (6)

$$q^{2}-2 = \frac{(2p+2)^{2}}{(p+2)^{2}} - \frac{2(p+2)^{2}}{(p+2)^{2}}$$

$$q^{2}-2 = \frac{(4p^{2}+8p+4) - (2p^{2}+8p+8)}{(p+2)^{2}}$$

$$q^{2}-2 = \frac{2(p^{2}-2)}{(p+2)^{2}}.$$
(7)

- If $p \in A$ then $p^2 2 < 0$, (6) shows that q > p, and (7) shows that $q^2 < 2$. Thus $q \in A$.
- If $p \in B$ then $p^2 2 > 0$, (6) shows that 0 < q < p, and (7) shows that $q^2 > 2$. Thus $q \in B$.

- In this slide we show two ways to approach $\sqrt{2}$.
- Newton's method

$$\sqrt{2} = \lim_{n \to \infty} x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n} \tag{8}$$

which produces the sequence for $x_0 = 1$

Table 2: Sequence of x_n of (8)

n	x_n (fraction)	x_n (decimal)
0	1	1
1	$\frac{3}{2}$	1.5
2	$\frac{17}{12}$	$1.41ar{6}$
3	$\frac{577}{408}$	1.4142

• Now let us consider the continued fraction given by

$$\sqrt{2} = 1 + \frac{1}{2 +$$

represented by $[1; 2, 2, 2, \ldots]$, which produces the following sequence

Table 3: Sequence of x_n of (9)

n	x_n (fraction)	x_n (decimal)
0	1	1
1	3/2	1.5
2	7/5	1.4
3	17/12	$1.41\bar{6}\dots$

Remark 1

The rational number system has certain gaps, in spite the fact that between any two rational there is another: if r < s then r < (r + s)/2 < s. The real number system fill these gaps.

Definition 1

If A is any set, we write $x \in A$ to indicate that x is a member of A. If x is not a member of A, we write: $x \notin A$.

Definition 2

The set which contains no element will be called the empty set. If a set has at least one element, it is called nonempty.

Definition 3

If every element of A is an element of B, we say that A is a subset of B, and write $A \subset B$, or $B \supset A$. If, in addition, there is an element of B which is not in A, then A is said to be a proper subset of B.

1.2 Ordered Sets

Definition 4

Let S be a set. An order on S is a relation, denote by <, with the following two properties:

• If $x \in S$ and $y \in S$ then one and only one of the statements

$$x < y, \quad x = y, \quad y < x$$

is true.

- 2 If $x, y, z \in S$, if x < y and y < z, then x < z.
 - The notation $x \leq y$ indicates that x < y or x = y, without specifying which of these two is to hold.

Definition 5

An ordered set is a set S in which an order is defined.

Suppose S is an ordered set, and $E \subset S$. If there exists a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say that E is bounded above, and call β an upper bound of E. Lower bound are defined in the same way (with \geq in place of \leq).

Definition 7

Suppose S is an ordered set, $E \subset S$, and E is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- \bullet α is an upper bound of E.
- ② If $\gamma < \alpha$ then γ is not an upper bound of E.

Then α is called the least upper bound of E or the supremum of E, and we write

$$\alpha = \sup E$$
.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in the same manner of Definition 7: The statement

$$\alpha = \inf E$$
.

means that α is a lower bound of E and that no β with $\beta > \alpha$ is a lower bound of E.

Example 2

If $\alpha = \sup E$ exists, then α may or may not be a member of E. For instance, let E_1 be the set of all $r \in Q$ with r < 0. Let E_2 be the set of of all $r \in Q$ with $r \le 0$. Then

$$\sup E_1 = \sup E_2 = 0,$$

and $0 \notin E_1$, 0 in E_2 .

An ordered set S is said to have the least-upper-bound property if the following is true: If $E \subset S$, E is not empty, and E is bounded above, then $\sup E$ exists in S.

Theorem 1

Suppose S is an ordered set with the least-upper-bound property, $B \subset S$, B is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then

$$\alpha = \sup L$$

exists in S and $\alpha = \inf B$.

1.3 Fields

Definition 10

A field is a set F with two operations, called addition and multiplication, which satisfy the following so-called "field axioms" (A), (M) and (D):

(A) Axioms for addition

- (A1) If $x \in F$ and $y \in F$, then their sum x + y is in F.
- (A2) Addition is commutative: x + y = y + x for all $x, y \in F$.
- (A3) Addition is associative: (x + y) + z = x + (y + z) for all $x, y, z \in F$.
- (A4) F contains an element 0 such that 0 + x = x for every $x \in F$.
- (A5) To every $x \in F$ corresponds an element $-x \in F$ such that x + (-x) = 0.

(M) Axioms for multiplication

- (M1) If $x \in F$ and $y \in F$, then their product xy is in F.
- (M2) Multiplication is commutative: xy = yx for all $x, y \in F$.

- (M3) Multiplicative is associative: (xy)z = x(yz) for all $x, y, z \in F$.
- (M4) F contains an element $1 \neq 0$ such that 1x = x for every $x \in F$.
- (M5) If $x \in F$ and $x \neq 0$ then there exists an element $1/x \in F$ such that

$$x \cdot (1/x) = 1.$$

(D) The distributive law

$$x(y+z) = xy + xz$$

holds for all $x, y, z \in F$.

Definition 11

An ordered field is a field F which is also an ordered set, such that

- ② xy > 0 if $x \in F$, $y \in F$, x > 0, and y > 0.

1.4 The real field

Theorem 2

There exists an ordered field R which has the least-upper-bound property. Moreover, R contains Q as a subfield.

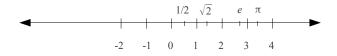


Figure 1: Real Line

Theorem 3

- (a) If $x \in R$, and x > 0, then there is a positive integer n such that nx > y.
- (b) If $x \in R$, and x < y, then there exists a $p \in Q$ such that x .

Theorem 4

For every real x > 0 and every integer n > 0 there is one and only one real y such that $y^n = x$.

Proof of Theorem 4:

- That there is at most one such y is clear, since $0 < y_1 < y_2$, implies $y_1^n < y_2^n$.
- Let E be the set consisting of all positive real numbers t such that $t^n < x$.
- If t = x/(1+x) then 0 < t < 1. Hence $t^n < t < x$. Thus $t \in E$, and E is not empty. Thus 1 + x is an upper bound of E.
- If t > 1 + x then $t^n > t > x$, so that $t \notin E$. Thus 1 + x is an upper bound of E and there is $y = \sup E$.
- To prove that $y^n = x$ we will show that each of the inequalities $y^n < x$ and $y^n > x$ leads to contradiction.

• The identity $b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \cdots + a^{n-1})$ yields the inequality

$$b^n - a^n < (b - a)nb^{n-1}$$

when 0 < a < b.

• Assume $y^n < x$. Choose h so that 0 < h < 1 and

$$h < \frac{x - y^n}{n(y+1)^{n-1}}.$$

• Put a = y, b = y + h. Then

$$(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)^{n-1} < x - y^n.$$

- Thus $(y+h)^n < x$, and $y+h \in E$. Since y+h > y, this contradicts the fact that y is an upper bound of E.
- Assume $y^n > x$. Put

$$k = \frac{y^n - x}{ny^{n-1}}.$$

Then 0 < k < y. If $t \ge y - k$, we conclude that

$$y^{n} - t^{n} > y^{n} - (y - k)^{n} < kny^{n-1} = y^{n} - x.$$

- Thus $t^n > x$, and $t \notin E$. It follows that y k is an upper bound of E. But y k < y, which contradicts the fact that y is the least upper bound of E.
- Hence $y^n = x$, and the proof is complete.

Let x > 0 be real. Let n_o be the largest integer such that $n_0 \le x$.

Having chosen $n_0, n_1, \ldots, n_{k-1}$, let n_k be the largest integer such that

$$n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \le x.$$

Let E be the set of these numbers

$$n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \quad (k = 0, 1, 2, \dots).$$
 (10)

Then $x = \sup E$. The decimal expansion of x is

$$n_0 \cdot n_1 n_2 n_3 \cdots \tag{11}$$

1.5 The extended real number system

Definition 13

The extended real number system consists of the real field R and two symbols: $+\infty$ and $-\infty$. We preserve the original order in R, and define

$$+\infty < x < -\infty$$

for every $x \in R$. An usual symbol for the extended real number system is \bar{R} .

- $+\infty$ is an upper bound of every subset of the extended real number system, and that every nonempty subset has a least upper bound.
- The same remarks apply to lower bounds.
- The extended real number system does not form a field.
- It is customary to make the following conventions:
 - (a) If x is real then

$$x + \infty = \infty$$
, $x - \infty = -\infty$, $\frac{x}{+\infty} = \frac{x}{-\infty} = 0$.

1.6 The complex field

(c) If
$$x < 0$$
 then $x \cdot (+\infty) = -\infty, x \cdot (-\infty) = +\infty$.

Definition 14

A complex number is an ordered pair (a,b) of real numbers. Let x=(a,b),y=(c,d) be two complex numbers. We define

$$x + y = (a + c, b + d),$$

$$xy = (ac - bd, ad + bc).$$

- i = (0, 1).
- $i^2 = -1$.
- If a and b are real, then (a, b) = a + bi.

1.7 Euclidean Space

Definition 15

For each positive integer k, let R^k be the set of all ordered k-tuples

$$\mathbf{x} = (x_1, x_2, \dots, x_k),$$

where x_1, \ldots, x_k are real numbers called the coordinates of **x**.

- Addition of vectors: $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_k + y_k)$.
- Multiplication of a vector by a real number (scalar): $\alpha \mathbf{x} = (\alpha x_1, \dots, \alpha x_k)$.
- Inner product: $x \cdot y = \sum_{i=1}^k x_i y_i$.
- Norm: $|x| = (x \cdot x)^{1/2} = \left(\sum_{i=1}^{k} x_i^2\right)^{1/2}$.
- The structure now defined (the vector space \mathbb{R}^k with the above product and norm) is called Euclidean k-space.

Theorem 5

Suppose $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$ and α is real. Then

- **1** $|\mathbf{x}| \ge 0;$
- $|\mathbf{x}| = 0$ if and only if $|\mathbf{x} = 0|$;

- $|x + y| \le |x| + |y|;$
- $|\mathbf{x} \mathbf{z}| \le |\mathbf{x} \mathbf{y}| + |\mathbf{x} \mathbf{z}|.$
 - Items 1,2 and 6 of Theorem 5 will allow us to regard R^k as a metric space.

Exercises Chapter 1

- (1) Let the sequence of numbers 1/n where $n \in \mathbb{N}$. Does this sequence have an infimum? If it has, what is it? Explain your result and show if it is necessary any other condition.
- (2) Comment the assumption: Every irrational number is the limit of monotonic increasing sequence of rational numbers (Ferrar, 1938, p.20).
- (3) Prove Theorem 1.
- (4) Prove the following statements
 - a) If x + y = x + z then y = z.
 - b) If x + y = x then y = 0.
 - c) If x + y = 0 then y = -x.
 - d) -(-x) = x.

- (5) Prove the following statements
 - a) If x > 0 then -x < 0, and vice versa.
 - b) If x > 0 and y < z then xy < xz.
 - c) If x < 0 and y < z then xy > xz.
 - d) If $x \neq 0$ then $x^2 > 0$.
 - e) If 0 < x < y then 0 < 1/y < 1/x.
- (6) Prove the Theorem 2. (Optional)
- (7) Prove the Theorem 3.
- (8) Write addition, multiplication and distribution law in the same manner of Definition 18 for the complex field.
- (9) What is the difference between R and \bar{R} ?
- (10) Prove the reverse triangle inequality: $||a| |b|| \le |a b|$.

2. Basic Topology

2.1 Finite, Countable, and Uncountable Sets

Definition 16

Consider two sets A and B, whose elements may be any objects whatsoever, and suppose that with each element x of A there is associated, in some manner, an element of B, which we denote by f(x). Then f is said to be a function from A to B (or a mapping of A into B). The set A is called the domain of f (we also say f is defined on A), and the elements of f(x) are called the values of f. The set of all values of f is called the range of f.

Definition 17

Let A and B be two sets and let f be a mapping of A into B. If $E \subset A$, f(E) is defined to be the set of all elements f(x), for $x \in E$. We call f(E) the image of E under f. In this notation, f(A) is the range of f. It is clear that $f(A) \subset B$. If f(A) = B, we say that f maps A onto B.

If $E \subset B$, f^{-1} denotes the set of all $x \in A$ such that $f(x) \in E$. We call $f^{-1}(E)$ the inverse image of E under f.

• f is a 1-1 mapping of A into B provided that $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2, x_1 \in A, x_2 \in A$.

Definition 19

If there exists a 1-1 mapping of A onto B, we say that A and B, can be put in 1-1 correspondence, or that A and B have the same cardinal number, or A and B are equivalent, and we write $A \sim B$.

- Properties of equivalence
 - It is reflexive: $A \sim A$.
 - ▶ It is symmetric: If $A \sim B$, then $B \sim A$.
 - ▶ It is transitive: If $A \sim B$ and $B \sim C$, then $A \sim C$.

Let $n \in N$ and J_n be the set whose elements are the integers $1, 2, \ldots, n$; let J be the set consisting of all positive integers. For any set A, we say:

- (a) A is finite if $A \sim J_n$ for some n.
- (b) A is infinite if A is not finite.
- (c) A is countable if $A \sim J$.
- (d) A is uncountable if A is neither finite nor countable.
- (e) A is at most countable if A is finite or countable.

Remark 2

A is infinite if A is equivalent to one of its proper subsets.

By a sequence, we mean a function f defined on the set J of all positive integers. If $f(n) = x_n$, for $n \in J$, it is customary to denote the sequence f by the symbol $\{x_n\}$, or sometimes x_1, x_2, x_3, \ldots The values of f are called terms of the sequence. If A is a set and if $x_n \in A$ for all $n \in J$, then $\{x_n\}$ is said to be a sequence in A, or a sequence of elements of A.

- Every infinite subset of a countable set A is countable.
- Countable sets represent the "smallest infinity.

Definition 22

Let A and Ω be sets, and suppose that with each element of α of A is associated a subset of Ω which denote by E_{α} . A collection of sets is denoted by $\{E_{\alpha}\}.$

The union of the sets E_{α} is defined to be the set S such that $x \in S$ if and only if $x \in E_{\alpha}$ for at least one $\alpha \in A$. It is denoted by

$$S = \bigcup_{\alpha \in A} E_{\alpha}.$$
 (12)

• If A consists of the integers $1, 2, \ldots, n$, one usually writes

$$S = \bigcup_{m=1}^{n} E_m = E_1 \cup E_2 \cup \dots \cup E_n.$$
 (13)

• If A is the set of all positive integers, the usual notations is

$$S = \bigcup_{m=1}^{\infty} E_m. \tag{14}$$

• The symbol ∞ indicates that the union of a countable collection of sets is taken. It should not be confused with symbols $+\infty$ and $-\infty$ introduced in Definition 13.

The intersection of the sets E_{α} is defined to be the set P such that $x \in P$ if and only if $x \in E_{\alpha}$ for every $\alpha \in A$. It is denoted by

$$P = \bigcap_{\alpha \in A} E_{\alpha}. \tag{15}$$

• P is also written such as

$$P = \bigcap_{m=1}^{n} = E_1 \cap E_2 \cap \cdots E_n. \tag{16}$$

• If A is the set of all positive integers, we have

$$P = \bigcap_{m=0}^{\infty} E_m. \tag{17}$$

Let $\{E_n\}, n = 1, 2, 3, \ldots$, be a sequence of countable sets, and put

$$S = \bigcup_{n=1}^{\infty} E_n. \tag{18}$$

Then S is countable.

- The set of all rational numbers is countable.
- The set of all real numbers is uncountable.

2.2 Metric Spaces

Definition 25

A set X, whose elements we shall call points, is said to be a metric space if with any two points p and q of X there is associated a real number d(p,q) the distance from p to q, such that

- (a) d(p,q) > 0 if $p \neq q$; d(p,p) = 0.
- (b) d(p,q) = d(q,p);
- (c) $d(p,q) \le d(p,r) + d(r,q)$, for any $r \in X$.

Definition 26

By the segment (a, b) we mean the set of all real numbers x such that a < x < b.

Definition 27

By the interval [a, b] we mean the set of all real number x such that $a \le x \le b$.

If $\mathbf{x} \in R^k$ and r > 0, the open (or closed) ball B with center at \mathbf{x} and radius r is defined to be the set of all $y \in R^k$ such that $|\mathbf{y} - \mathbf{x}| < r$ (or $|\mathbf{y} - \mathbf{x}| \le r$).

Definition 29

We call a set $E \subset R^k$ convex if $(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \in E$ whenever $\mathbf{x} \in E$, $\mathbf{y} \in E$ and $0 < \lambda < 1$.

Example 3

Balls are convex. For if $|\mathbf{y} - \mathbf{x}| < r$, $|\mathbf{z} - \mathbf{x}| < r$, and $0 < \lambda < 1$, we have

$$|\lambda \mathbf{y} + (1 - \lambda)\mathbf{z} - \mathbf{x}| = |\lambda(\mathbf{y} - \mathbf{x}) + (1 - \lambda)(\mathbf{z} - \mathbf{x})|$$

$$\leq \lambda|\mathbf{y} - \mathbf{x}| + (1 - \lambda)|\mathbf{z} - \mathbf{x}| < \lambda r + (1 - \lambda)r$$

$$= r.$$

Let X be a metric space. All points and sets are elements and subsets of X.

- (a) A neighbourhood of a point p is a set $N_r(p)$ consisting of all points q such that d(p,q) < r.
- (b) A point p is a limit point of the set E if every neighbourhood of p contains a point $q \neq p$ such that $q \in E$.
- (c) If $p \in E$ and p is not a limit point of E, then p is called an isolated point of E.
- (d) E is closed is very limit point of E is a point of E.
- (e) A point p is an interior point of E if there is a neighbourhood N of p such that $N \subset E$.
- (f) E is open is every point of E is an interior point of E.
- (g) The complement of E (denoted by E^c) is the set of all points $p \in X$ such that $p \notin E$.

- (h) E is perfect if E is closed and if every point of E is a limit point of E.
- (i) E is bounded if there is a real number M and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- (j) E is dense in X if every point of X is a limit point of E, or a point of E (or both).
- If p is a limit point of a set E, then every neighbourhood of p contains infinitely many points of E.
- A set E is open if and only if its complement is closed.

If X is a metric space, if $E \subset X$, and if E' denotes the set of all limit points of E in X, then the closure of E is the set $\bar{E} = E \cup E'$.

If X is a metric space and $E \subset X$, then

- (a) \bar{E} is closed.
- (b) $E = \bar{E}$ if and only if E is closed.
- (c) $E \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

Theorem 8

Let E be a nonempty set of real numbers which is bounded above. Let $y = \sup E$. Then $y \in \bar{E}$. Hence $y \in E$ if E is closed.

2.3 Compact Sets

Definition 32

By an open cover of a set E in a metric space X we mean a collection $\{G_{\alpha}\}$ of open subsets of X such that $E \subset \bigcup_{\alpha} G_{\alpha}$.

Definition 33

A subset K of a metric space X is said to be compact if every open cover of K contains a finite subcover.

Definition 34

A set $X \subset R$ is compact if X is closed and bounded^a.

^aLima, E. L. (2006) Análise Real volume 1. Funções de Uma Variável. Rio de Janeiro: IMPA, 2006.

Definition 35

If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$ (n = 1, 2, 3...), then $\bigcap_{n=1}^{\infty} K_n$ is not empty.

If $\{I_n\}$ is a sequence of intervals in \mathbb{R}^1 , such that $I_n \supset I_{n+1}$ (n=1,2,3...), then $\bigcap_{1}^{\infty} I_n$ is not empty.

Theorem 9

If a set E in \mathbb{R}^k has one of the following three properties, then it has the other two:

- E is closed and bounded.
- 2 E is compact.
- Every infinite subset of E has a limit point in E.

Theorem 10

(Weierstrass) Every bounded subset of R^k has a limit point in R^k .

2.4 Perfect Sets

Theorem 11

Let P be a nonempty perfect set in \mathbb{R}^k . Then P is uncountable.

- Every interval [a,b](a < b) is uncountable. In particular, the set of all real numbers in uncountable.
- The Cantor ternary set is created by repeatedly deleting the open middle thirds of a set of line segments. One starts by deleting the open middle third (1/3, 2/3) from the interval [0, 1], leaving two line segments: $[0,1/3] \cup [2/3,1]$. Next, the open middle third of each of these remaining segments is deleted, leaving four line segments: $[0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$. This process is continued ad infinitum, where the nth set is

$$C_n = \frac{C_{n-1}}{3} \cup \left(\frac{2}{3} + \frac{C_{n-1}}{3}\right) \cdot C_0 = [0, 1].$$

• The first six steps of this process are illustrated in Figure 46.

Figure 2: Cantor Set. Source: Wikipedia.

2.5 Connected Sets

Definition 37

Two subsets A and B of a metric space X are said to be separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty, i.e., if no point of A lies in the closure of B and no point of B lies in the closure of A. A set $E \subset X$ is said to be connected if E is not a union of two nonempty separated sets.

Theorem 12

A subset E of the real line R^1 is connected if and only if it has the following property: If $x \in E$, $y \in E$, and x < z < y, then $z \in E$.

Exercises Chapter 2

- (1) Let A be the set of real numbers x such that $0 < x \le 1$. For every $x \in A$, be the set of real numbers y, such that 0 < y < x. Complete the following statements
 - (a) $E_x \subset E_z$ if and only if $0 < x \le z \le 1$.
 - (b) $\bigcup_{x \in A} E_x = E_1$.
 - (c) $\bigcap_{x \in A} E_x$ is empty.
- (2) Prove Theorem 6. Hint: put the elements of E_n in a matrix and count the diagonals.
- (3) Prove that the set of all real numbers is uncountable.
- (4) The most important examples of metric spaces are euclidean spaces \mathbb{R}^k . Show that a Euclidean space is a metric space.

(5) For $x \in R^1$ and $y \in R^1$, define

$$d_1(x,y) = (x-y)^2,$$

$$d_2(x,y) = \sqrt{|x-y|},$$

$$d_3(x,y) = |x^2 - y^2|,$$

$$d_4(x,y) = |x-2y|,$$

$$d_5(x,y) = \frac{|x-y|}{1+|x-y|}.$$

Determine for each of these, whether it is a metric or not.

Work 1

To find the square root of a positive number a, we start with some approximation, $x_0 > 0$ and then recursively define:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right). {19}$$

Compute the square root using (19) for

- (a) a = 2;
- (b) $a = 2 \times 10^{-300}$
- (c) $a = 2 \times 10^{-310}$
- (d) $a = 2 \times 10^{-322}$
- (e) $a = 2 \times 10^{-324}$

Check your results by $x_n \times x_n$, after defining a suitable stop criteria for n. Develop a report with the following structure: Identification, Introduction, Methodology, Results, Conclusion, References, Appendix (where you should include an algorithm).

3. Numerical Sequences and Series

3.1 Convergent Sequences

Definition 38

A sequence $\{p_n\}$ in a metric space X is said to converge if there is point $p \in X$ with the following property: For every $\varepsilon > 0$ there is an integer N such that $n \geq N$ implies that $d(p_n, p) < \varepsilon$. In this case we also say that p_n converges to p, or that p is the limit of $\{p_n\}$, and we write $p_n \to p$, or

$$\lim_{n\to\infty} p_n = p.$$

- If $\{p_n\}$ does not converge, it is said to diverge.
- It might be well to point out that our definition of convergent sequence depends not only on $\{p_n\}$ but also on X.
- It is more precise to say convergent in X.
- The set of all points p_n (n = 1, 2, 3, ...) is the range of $\{p_n\}$.
- The sequence $\{p_n\}$ is said to be bounded if its range is bounded.

Example 4

Let $s \in R$. If $s_n = 1/n$, then

$$\lim_{n\to\infty} s_n = 0.$$

The range is infinite, and the sequence is bounded.

Example 5

Let $s \in R$. If $s_n = n^2$, the sequence $\{s_n\}$ is unbounded, is divergent, and has infinite range.

Example 6

Let $s \in R$. If $s_n = 1$ (n = 1, 2, 3, ...), then the sequence $\{s_n\}$ converges to 1, is bounded, and has finite range.

Let $\{p_n\}$ be a sequence in a metric space X.

- (a) $\{p_n\}$ converges to $p \in X$ if and only if every neighbourhood of p contains all but finitely many of the terms of $\{p_n\}$.
- (b) If $p \in X$, $p' \in X$, and if $\{p_n\}$ converges to p and to p', then p' = p.
- (c) If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- (d) If $E \subset X$ and if p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $p = \lim_{n \to \infty} p_n$.

Suppose $\{s_n\}$, $\{t_n\}$ are complex sequences, and $\lim_{n\to\infty} s_n = s$ and $\lim_{n\to\infty} t_n = t$. Then

- (a) $\lim_{n\to\infty} (s_n + t_n) = s + t;$
- (b) $\lim_{n\to\infty} cs_n = cs$, $\lim_{n\to\infty} (c+s_n) = c+s$, for any number c;
- (c) $\lim_{n\to\infty} (s_n t_n) = st;$
- (d) $\lim_{n \to \infty} \frac{1}{s_n} = \frac{1}{s};$

3.2 Subsequences

Definition 39

Given a sequence $\{p_n\}$, consider a sequence $\{n_k\}$ of positive integers, such that $n_1 < n_2 < n_3 < \cdots$. Then the sequence $\{p_{n_i}\}$ is called a subsequence of $\{p_n\}$. If $\{p_{n_i}\}$, its limit is called a subsequential limit of $\{p_n\}$. It is clear that $\{p_n\}$ converges to p if and only if every subsequence of $\{p_n\}$ converges to p.

- (a) If $\{p_n\}$ is a sequence in a compact metric space X, then some subsequence of $\{p_n\}$ converges to a point of X.
- (b) Every bounded sequence in \mathbb{R}^k contains a convergent subsequence.

Theorem 16

The subsequential limits of a sequence $\{p_n\}$ in a metric space X form a closed subset of X.

3.3 Cauchy Sequence

Definition 40

A sequence $\{p_n\}$ is a metric space X is said to be a Cauchy sequence if for every $\varepsilon > 0$ there is an integer N such that $d(p_n, p_m) < \varepsilon$ if $n \ge N$ and m > N.

Figure 3: Augustin-Louis Cauchy (1789-1857), French mathematician who was an early pioneer of analysis. Source: Wikipedia.

Let E be a subset of a metric space X, and let S be the set of all real number of the form d(p,q), with $p \in E$ and $q \in E$. The sup of S is called the diameter of E.

• If $\{p_n\}$ is a sequence in X and if E_N consists of the points $p_N, p_{N+1}, p_{N+2}, \ldots$, it is clear from the two preceding definitions that $\{p_n\}$ is a Cauchy sequence if and only if

$$\lim_{N \to \infty} \operatorname{diam} E_N = 0.$$

Theorem 17

(a) If \bar{E} is the closure of a set E in a metric space X, then

diam
$$\bar{E} = \text{diam } E$$
.

(b) If K_a is a sequence of compact sets in X such that $K_n \supset K_{n+1}$ (n = 1, 2, 3, ...) and if

- (a) In any metric space X, every convergent sequence is a Cauchy sequence.
- (b) If X is a compact metric space and if $\{p_n\}$ is a Cauchy sequence in X, then $\{p_n\}$ converges to some point X.
- (c) In \mathbb{R}^k , every Cauchy sequence converges.
- A sequence converges in \mathbb{R}^k if and only if it is a Cauchy sequence is usually called the Cauchy criterion for convergence.

Definition 42

A sequence $\{s_n\}$ of real numbers is said to be

- (a) monotonically increasing if $s_n \leq s_{n+1}$ (n = 1, 2, 3, ...);
- (b) monotonically decreasing if $s_n \geq s_{n+1}$ (n = 1, 2, 3, ...);

3.4 Upper and Lower Limits

Theorem 19

Suppose $\{s_n\}$ is monotonic. Then $\{s_n\}$ converges if and only if it is bounded.

Definition 43

Let $\{s_n\}$ be a sequence of real numbers with the following property: For every real M there is an integer N such that $n \geq N$ implies $s_n \geq M$. We then write $s_n \to +\infty$.

Definition 44

Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of numbers $x \in \overline{R}$ such that $s_{n_k} \to x$ for some subsequence $\{s_{n_k}\}$. This set E contains all subsequential limits plus possibly the numbers $+\infty$ and $-\infty$. Let $s^* = \sup E$, and $s_* = \inf E$. These numbers are called upper and lower limits of $\{s_n\}$.

• We can also write Definition 44 as

$$\lim_{n \to \infty} \sup s_n = s^*, \quad \lim_{n \to \infty} \inf s_n = s_*.$$

3.5 Some Special Sequences

- If $0 \le x_n \le s_n$ for $n \ge N$, where N is some fixed number, and if $s_n \to 0$, then $x_n \to 0$. This property help us to compute the following the limit of the following sequences:
 - (a) If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$. (b) If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.

 - (c) $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
 - (d) If p > 0 and α is real, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+n)^n} = 0$.
 - (e) If |x| < 1, then $\lim_{n \to \infty} x^n = 0$.

3.6 Series

Definition 45

Given a sequence $\{a_n\}$, we use the notation

$$\sum_{n=p}^{q} a_n \quad (p \le q)$$

to denote the sum $a_p + a_{p+1} + \cdots + a_q$. With $\{a_n\}$ we associate a sequence $\{s_n\}$, where

$$s_n = \sum_{k=1}^n a_k.$$

For $\{s_n\}$ we also use the symbolic expression $a_1 + a_2 + a_3 + \cdots$ or, more concisely,

$$\sum_{n=1}^{\infty} a_n. \tag{20}$$

The symbol (33) we call an infinite series, or just a series.

- The numbers s_n are called the partial sums of the series.
- If $\{s_n\}$ converges to s, we say that the series converges, and we write

$$\sum_{n=1}^{\infty} a_n = s. \tag{21}$$

- s is the limit of a sequence of sums, and is not obtained simply by addition.
- If $\{s_n\}$ diverges, the series is said to diverge.
- Every theorem about sequences can be stated in terms of series (putting $a_1 = s_1$, and $a_n = s_n s_{n-1}$ for n > 1), and vice versa.

• The Cauchy criterion can be restated as the following Theorem.

Theorem 20

 $\sum a_n$ converges if and only if for every $\varepsilon > 0$ there is an integer N such that

$$\left| \sum_{k=n}^{m} a_n \right| \le \varepsilon \tag{22}$$

if m > n > N.

Theorem 21

If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem 22

A series of nonnegative terms converges if and only if its partial sums form a bounded sequence.

- Comparison test
 - (a) If $|a_n| \le c_n$ for $n \ge N_0$, where N_0 is some fixed integer, and if $\sum c_n$ converges, then $\sum a_n$ converges.
 - (b) If $a_n \ge d_n \ge 0$ for $n \ge N_0$, and if $\sum d_n$ diverges, then $\sum a_n$ diverges.
- Geometric series
 - If $0 \le x < 1$, then

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

If $x \geq 1$, the series diverges.

Proof If $x \neq 1$, we have

$$s_n = \sum_{k=0}^n x^k = 1 + x + x^2 + x^3 + \dots + x^n.$$
 (23)

If we multiply (23) by x we have

$$xs_n = x + x^2 + x^4 \cdots x^{n+1}. (24)$$

Applying (23)-(24) we have

$$s_n - xs_n = 1 - x^{n+1}$$

 $s_n(1-x) = 1 - x^{n+1}$
 $s_n = \frac{1 - x^{n+1}}{1 - x}$.

The result follows if we let $n \to \infty$.

3.7 The Root and Ratio Tests

Theorem 23

(Root Test) Given $\sum a_n$, put $\alpha = \lim_{n\to\infty} \sup \sqrt[n]{|a_n|}$. Then

- (a) If $\alpha < 1$, $\sum a_n$ converges;
- (b) If $\alpha > 1$, $\sum a_n$ diverges;
- (c) If $\alpha = 1$, the test gives no information.

Theorem 24

(Ratio Test) The series $\sum a_n$

- (a) converges if $\lim_{n\to\infty} \sup \left| \frac{a_{n+1}}{a_n} \right| < 1$,
- (b) diverges if $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for $n \ge n_0$, where n_0 is some fixed integer.
- The ratio test is frequently easier to apply than the root test. However, the root test has wider scope.

Exercises Chapter 3

- (1) Let $s \in R$. and $s_n = 1 + [(-1)^n/n]$. $\{s_n\}$ is bounded and its range is finite? Which value $\{s_n\}$ converges to?
- (2) Write a Definition for $-\infty$ equivalent to Definition 43.
- (3) Apply the root and ratio tests in the following series

(a)
$$\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots$$
,
(b) $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{3^2} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots$,

4. Continuity

4.1 Limits of Functions

Definition 46

Let X and Y be metric spaces: suppose $E \subset X$, f maps E into Y, and p is a limit point of E. We write $f(x) \to q$ as $x \to p$, or

$$\lim_{x \to p} f(x) = q \tag{25}$$

if there is a point $q \in Y$ with the following property: For every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$d_Y(f(x), q) < \varepsilon \tag{26}$$

for all points $x \in E$ for which

$$0 < d_X(x, p) < \delta. (27)$$

• Alternative statement for Definition 46 based on (ε, δ) limit definition given by Bernard Bolzano in 1817. Its modern version is due to Karl Weierstrass²

Definition 47

The function f approaches the limit L near c means: for every ε there is some $\delta > 0$ such that, for all x, if $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

• f approaches L near c has the same meaning as the Equation (28)

$$\lim_{x \to c} f(x) = L. \tag{28}$$

²Addapted from Spivak, M. (1967) Calculus. Benjamin: New York.

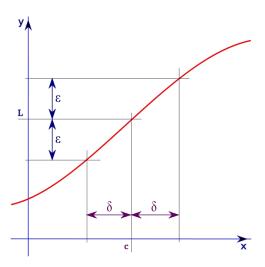


Figure 4: Whenever a point x is within δ of c, f(x) is within ε units of L. Source: Wikipedia.

Let X, Y, E, f, and p be as in Definition 46. Then

$$\lim_{x \to p} f(x) = q \tag{29}$$

if and only if

$$\lim_{n \to \infty} f(p_n) = q \tag{30}$$

for every sequence $\{p_n\}$ in E such that

$$p_n \neq p, \quad \lim_{n \to \infty} p_n = p.$$
 (31)

Suppose $E \subset X$, a metric space, p is a limit point of E, f and g are complex functions on E, and

$$\lim_{x \to p} f(x) = A, \quad \lim_{x \to p} g(x) = B.$$

Then

- (a) $\lim_{x \to p} (f+g)(x) = A + B;$
- (b) $\lim_{x \to p} (fg)(x) = AB;$
- (c) $\lim_{x \to p} \left(\frac{f}{g} \right)(x) = \frac{A}{B}$, if $B \neq 0$.

4.2 Continuous Functions

Definition 48

Suppose X and Y are metric spaces, $E \subset X, p \in E$, and f maps E into Y. Then f is said to be continuous at p if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$d_Y(f(x), f(p)) < \varepsilon$$

for all points $x \in E$ for which $d_X(x, p) < \delta$.

- If f is continuous at every point of E, then f is said to be continuous on E.
- f has to be defined at the point p in order to be continuous at p.
- f is continuous at p if and only if $\lim_{x\to p} f(x) = f(p)$.

Suppose X, Y, Z are metric spaces, $E \subset X$, f maps E into Y, g maps the range of f, f(E), into Z, and h is the mapping of E into Z defined by

$$h(x) = g(f(x)) \quad (x \in E).$$

If f is continuous at a point $p \in E$ and if g is continuous at the point f(p), then h is continuous at p. The function $h = f \circ g$ is called the composite of f and g.

4.3 Continuity and Compactness

Definition 49

A mapping \mathbf{f} of a set E into R^k is said to be bounded if there is a real number M such that $|\mathbf{f}(x)| \leq M$ for all $x \in E$.

Theorem 28

Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact.

Theorem 29

Suppose f is a continuous real function on a compact metric space X, and

$$M = \sup_{p \in X} f(p), \quad m = \inf_{p \in X} f(p). \tag{32}$$

Then there exist points $p, q \in X$ such that f(p) = M and f(q) = m.

• The conclusion may also be stated as follows: There exist points p and q in X such that $f(q) \leq f(x) \leq f(p)$ for all $x \in X$; that is, f attains its maximum (at p) and its minimum (at q).

Definition 50

Let f be a mapping of a metric space X into a metric space Y. We say that f is uniformly continuous on X if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$d_Y(f(p), f(q)) < \varepsilon \tag{33}$$

for all p and q in X for which $d_X(p,q) < \delta$.

Theorem 30

Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous on X.

4.4 Continuity and Connectedness

Theorem 31

If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then f(E) is connected.

Theorem 32

(Intermediate Vaalue Theorem) Let f be a continuous real function on the interval [a, b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then there exists a point $x \in (a,b)$ such that f(x) = c.

4.5 Discontinuities

• If x is a point in the domain of definition of the function f at which f is not continuous, we say that f is discontinuous at x.

Definition 51

Let f be defined on (a, b). Consider any point x such that $a \leq x < b$. We write f(x+) = q if $f(t_n) \to q$ as $n \to \infty$, for all sequences $\{t_n\}$ in (x,b) such that $t_n \to x$. To obtain the definition of f(x-), for $a < x \le b$, we restrict ourselves to sequences $\{t_n\}$ in (a, x).

• It is clear that any point x of (a, b), $\lim_{t \to x} f(t)$ exists if and only if

$$f(x+) = f(x-) = \lim_{t \to x} f(t).$$

Definition 52

Let f be defined on (a,b). If f is discontinuous at a point x and if f(x+) and f(x-) exist, then f is said to have a discontinuity of the first kind. Otherwise, it is of the second kind.

4.6 Monotonic Functions

Definition 53

Let f be real on (a, b). Then f is said to be monotonically increasing on (a, b) if a < x < y < b implies $f(x) \le f(y)$.

Theorem 33

Let f be monotonically increasing on (a,b). Then f(x+) and f(x-) exist at every point of x of (a,b). More precisely

$$\sup_{a < t < x} f(t) = f(x-) \le f(x) \le f(x+) = \inf_{x < t < b} f(t).$$
 (34)

Furthermore, if a < x < y < b, then

$$f(x+) \le f(x-). \tag{35}$$

4.7 Infinite Limits and Limits at Infinity

• For any real number x, we have already defined a neighborhood of x to be any segment $(x - \delta, x + \delta)$.

Definition 54

For any real c, the set of real numbers x such that x > c is called a neighborhood of $+\infty$ and is written $(c, +\infty)$. Similarly, the set $(-\infty, c)$ is a neighborhood of $-\infty$.

Definition 55

Let f be a real function defined on E. We say that

$$f(t) \to A \text{ as } t \to x$$

where A and x are in the extended real number system, if for every neighborhood U of A there is a neighborhood V of x such that $V \cap E$ is not empty, and such that $f(t) \in U$ for all $t \in V \cap E, t \neq x$.

• Three important theorems.

Theorem 34

If f is continuous on [a, b] and f(a) < 0 < f(b), then there is some x in [a,b] such that f(x)=0.

Theorem 35

If f is continuous on [a,b], then f is bounded above on [a,b], that is, there is some number N such that $f(x) \leq N$ for all x in [a, b].

Theorem 36

If f is continuous on [a,b], then there is some number y in [a,b] such that $f(y) \geq f(x)$ for all x in [a,b].

5. Differentiation

5.1 The Derivative of a Real Function

Definition 56

Let f be defined (and real-valued) on [a,b]. For any $x \in [a,b]$ form the quotient

$$\phi(t) = \frac{f(t) - f(x)}{t - x} \quad (a < t < b, t \neq x), \tag{36}$$

and define

$$f'(x) = \lim_{t \to x} \phi(t), \tag{37}$$

provided this limit exists. f' is called the *derivative of* f.

Theorem 37

Let f be defined on [a,b]. If f is differentiable at a point $x \in [a,b]$, then f is continuous at x.

Suppose f and g are defined on [a,b] and are differentiable at point $x \in [a,b]$. Then f+g, fg abd f/g are differentiable at x, and

(a)
$$(f+g)'(x) = f'(x) + g'(x);$$

(b)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x);$$

(c)
$$\left(\frac{f}{g}\right)' = \frac{g(x)f'(x) - g'(x)f(x)}{g^2(x)}$$
 with $g(x) \neq 0$.

Theorem 5.1

Suppose f os continuous on [a,b], f'(x) exists at some point $x \in [a,b]$, g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If h(t) = g(f(t)) and $(a \le t \le b)$, then h is differentiable at x, and

$$h'(x) = g'(f(x))f'(x).$$
 (38)

Let f be defined by

$$f(x) = \begin{cases} x \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$
 (39)

Applying the theorems, we have

$$f'(x) = \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x} \quad (x \neq 0)$$
 (40)

At x = 0 there is no f'(x).

Definition 57

Let f be a real function defined on a metric space X. We say that f has a *local maximum* at a point $p \in X$ if there exists $\delta > 0$ such that $f(q) \leq f(p)$ for all $q \in X$ with $d(p,q) < \delta$.

Theorem 39

Let f be defined on [a,b]; if f has a local maximum at a point $x \in (a,b)$, and if f'(x) exists, then f'(x) = 0.

Theorem 40

If f is a real continuous function on [a,b] which is differentiable in (a,b), then there is a point $x \in (a,b)$ at which f(b)-f(a)=(b-a)f(x).

Suppose f is a real differentiable function on [a,b] and suppose $f'(a) < \gamma < f'(b)$. Then there is a point $x \in (a,b)$ such that $f'(x) = \gamma$.

Suppose f and g are areal and differentiable in (a,b) and $g'(x) \neq 0$ for all $x \in (a,b)$, where $\infty \leq < b \leq +\infty$. Suppose

$$\frac{f'(x)}{g'(x)} \to A \quad as \quad x \to a. \tag{41}$$

Ιf

$$f(x) \to 0 \text{ and } g(x) \to 0 \text{ as } x \to a$$
 (42)

or if

$$g(x) \to +\infty \text{ as } x \to a,$$
 (43)

then

$$\frac{f(x)}{g(x)} \to A \text{ as } x \to a. \tag{44}$$

Definition 58

If f has a derivative f' on a interval, and if f' is itself differentiable, we denote the derivative of f' by f'' the second derivative of f'. Continuing in this manner, we obtain functions

$$f, f', f'', f^{(3)}, \dots, f^{(n)},$$

each of wich is the derivative of the preceding one. $f^{(n)}$ us cakked tge nth derivative, or the derivative of order n, of f.

Suppose f is a real function on [a,b], n is a positive integer, $f^{(n-1)}$ is continuous on [a,b], $f^{(n)}(t)$ exists for every $t \in (a,b)$. Let α, β be distinct points of [a,b], and define

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)(\alpha)}}{k!} (t - \alpha)^k.$$
 (45)

Example 8

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 for all x (46)

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \quad \text{for all } x$$
 (47)