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A B S T R AC T

This work addresses both the state-feedback control problem and filter design for discrete-time
cyber-physical systems (CPS) with polytopic uncertainties. The CPS is subject to the presence
of Denial-of-service (DoS) attacks and an unreliable network. The attacker is deemed energeti-
cally bounded, which limits the maximum duration of the attacks. Two scenarios are explored
throughout this work: i) Only DoS attacks are considered, with the closed-loop system dynamics
modeled after a switched system; ii) A non-homogeneous Markov chain is proposed to model
the attacks (with its deterministic energy limitations) and stochastic transmission faults due to
an unreliable network’s limitations (unrelated to the attacks). The utilized Markovian network
model is capable of tackling the presence of uncertain and unknown probabilities, which are
modeled by using time-varying parameters that aim to include a wider range of scenarios. A
packet-based control strategy is employed in the control applications, and a mode-dependent
robust filter is designed for the filtering problem. All the design conditions are obtained through
parameter-dependent Linear Matrix Inequalities (LMIs) conditions derived from the Lyapunov
Theory. The H2 and the H∞ performance criteria are employed to evaluate the effects of the
DoS attacks in the studied problems. Adaptations to both control and filtering strategies are dis-
cussed based on the hold and zero-input strategies, which are featured in numerical simulations
presented to illustrate the performance of the designed controllers and filters.

Keywords: Cyber-Physical Systems, DoS Attacks, Communication Constraints, Control De-
sign, Filter Design, Polytopic Uncertainty, Lyapunov Theory.
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R E S U M O

Esse trabalho aborda o problema de controle por realimentação de estados e o projeto de filtros
para sistemas ciber-físicos (CPS, do inglês Cyber-Physical Systems) de tempo discreto com in-
certezas politópicas. Os CPS estão sujeitos à presença de ataques de Negação de Serviço (DoS, do
inglês Denial-of-Service) e a uma rede não-confiável. O atacante é considerado energeticamente
limitado, o que limita a duração máxima dos ataques. Dois cenários são explorados ao longo
deste trabalho: i) Apenas ataques DoS são considerados, com a dinâmica do sistema em malha
fechada modelada a partir de um sistema chaveado; ii) Uma cadeia de Markov não homogênea
é proposta para modelar os ataques (com suas limitações energéticas determinísticas) e falhas
estocásticas de transmissão devido a limitações de uma rede não confiável (as quais não são rela-
cionadas aos ataques). O modelo de rede Markoviana utilizado é capaz de lidar com a presença de
probabilidades incertas e desconhecidas, as quais são modeladas a partir de parâmetros variantes
no tempo que buscam incluir uma gama maior de cenários. Uma estratégia de controle baseado
em pacotes é empregada nas aplicações de controle e um filtro robusto dependente do modo
é projetado para o problema de filtragem. Todas as condições de projeto são obtidas através
de Desigualdades Matriciais Lineares (LMIs, do inglês Linear Matrix Inequalities) dependentes
de parâmetros e derivadas da Teoria de Lyapunov. Os critérios de desempenho H2 e H∞ são
empregados para avaliar os efeitos dos ataques DoS nos problemas estudados. Adaptações para
as estratégias de controle e filtragem são discutidas baseadas nas estratégias hold e zero-input, as
quais são apresentadas em simulaçãoes numéricas que ilustram o desempenho dos controladores
e dos filtros projetados.

Palavras Chave: Sistemas Ciber-Físicos, Ataques DoS, Restrições de Comunicação, Projeto
de Controladores, Projeto de Filtros, Incertezas Politópicas, Teoria de Lyapunov
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1
I N T RO D U C T I O N

With the advancements in computational processing capabilities, and the advent of the 4.0 In-
dustry, there has been an increasing interest in the topic of Cyber-Physical Systems (CPSs).
CPSs consist of a combination of physical and computer or cyber components, where the latter
are involved in processing, communicating, and controlling information [1]. These cyber com-
ponents can take place through embedded computers that, coupled with physical sensors and
actuators, monitor and control physical processes, forming a loop where the cyber influences the
physical and vice-versa [2]. The cyber element may also consist of a whole collection of comput-
ing devices that communicate among themselves while interfacing with the physical components
of the wider CPS [3]. This class of systems offers a vast field of study, as they feature both the
versatility to be employed in a myriad of applications [4], as well as introduce a new array of
challenges, given that, as put by [5], it represents the intersection, not the union, of the cyber
and physical elements.

Discussions over "cybernetics" go back to the 40’s [6], with the term "Cyber-Physical Sys-
tem" having been coined by the National Science Foundation (NSF) in 2006, which emphasized
them as a promising field of research [4]. Applications for CPSs involve various fields, such as
industry [7, 8], healthcare [9], power-grids [10], Internet of Things (IoT) [11], automotive sys-
tems [12] among many others [13]. Networked systems and Networked Control Systems (NCSs)
also come as a subcategory of Cyber-Physical systems [1], where a computational network in-
termediates, for instance, the data transmission between a physical plant and its geographically
distant central controller.

NCSs present their own assortment of challenges [14]. When considering the context of net-
worked CPSs, one may mention time delays in the transmission [15], packet dropouts due to
network limitations [14, 16, 17] and, specifically because of the presence of the computational
components, the possibility of cyberattacks by malicious agents, which aim to disrupt and de-
grade the system performance [18]. In recent times, cyberattacks have been the cause of numerous
incidents, with some of them being summarized in [19] and in [20].

The cyberattacks may be divided into three main categories [18]: i) Deception (or false data
injection) attacks, where the transmitted information is compromised and the agent inserts false
measurements through the system network; ii) Replay attacks, where the attacker, in possession
of valid past signals from the CPS, transmits these measurements again to jeopardize the system
performance with the outdated information; iii) Denial of Service attacks (DoS attacks), where
the attacker overloads the network by seizing its communication or computational resources,
rendering transmission of information impossible and generating packet dropouts, with some
sources also indicating the introduction of time-delayed dynamics in the system [21, 22]. Among
these attacks, the DoS attacks are one of the easiest to implement, as the attacker does not

1



2 introduction

necessarily require any previous knowledge about how the system operates [23]. This justifies
the importance of approaching this sort of attack.

The topic of attack detection has been addressed in the literature [24–26], together with the
development of strategies aiming to maximize the attack impact on the system [27, 28]. On what
regards secure control and filtering techniques, which are the focus of this work, many surveys
have shown different perspectives and approaches to the theme [23, 29–31].

In relation to the packet dropouts due to network failure or limitations, the main approach
to model them, given their stochastic nature, is by utilizing Bernoulli processes [16] or Markov
chains [17, 32]. Furthermore, some works in the literature explore the use of non-homogeneous
Markov chains [33, 34], as they allow to include time-varying transition probabilities that trans-
late possible alterations concerning the network, as well as dismissing the need for precisely
knowing the network behavior. Some relevant works on control and filtering under stochastic
packet losses include [17, 32–35].

On the topic of DoS attacks, the use of the queuing model can be cited [21]. Furthermore,
departing from the deterministic assumption that the attacker has energetic constraints (which
limits the maximum duration of the attacks) it is possible to model the system under attack
as a switched system [36, 37]. This same approach can also be applied in traditional NCS
problems [38]. Among the possible strategies to tackle this class of problem, the packet-based
control strategies [36] come as a promising one, besides allowing the incorporation of strategies
like the Hold-input and Zero-input [16]. The work [39] summarizes this approach for Linear
Parameter-Varying systems (LPV systems) in the state-feedback [40], output-feedback [41] and
H∞ control [37] problems. To the author’s knowledge, however, the topic of H2 cost in this
context for uncertain systems is yet to be explored. Moreover, some works show the validity of
accounting for stochastic models to depict the DoS attacks. In [42, 43] a Bernoulli process is
employed whereas in [44] a Markov chain is utilized. In [45] the attacker modulates his attack
strategy based on a hidden Markov process. Some works also consider that the attacker operates
in a periodic manner, switching between moments of inactivity and attack [46], or as in [47],
where a cyclic downtime switching strategy is considered.

Many of the works, however, do not account for the simultaneous presence of parametric
uncertainties in the system model, which may be unrelated to the network operation. This
introduces more complexity in the CPSs control and filtering problem, as design techniques
must account for both packet dropouts (stochastic or attack-related) as well as the parametric
uncertainties themselves.

Lyapunov Theory is widely used in control theory. With it, it is possible to obtain stability
analysis conditions, control, and filter design techniques, among various other performance crite-
ria conditions with the use of Linear Matrix Inequalities (LMIs). They, in turn, can be solved by
convex optimization through computational packages and solvers. When considering uncertain-
ties or LPV systems, the first conditions derived from this theory, which were based on quadratic
stability, could be perceived as conservative, as a single constant Lyapunov matrix would have
to account for the whole domain [48]. Nevertheless, there exists the possibility of augmenting or
changing the structure of the Lyapunov function: Parameter-dependent Lyapunov functions for
uncertain systems [49]; Switched parameter-dependent Lyapunov functions [50]; matrices with
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polynomial structures [51]; the use of non-monotonic terms in stability analysis of uncertain
systems [52] and in control design and stability analysis of LPV systems [48], to name a few, are
possible techniques to decrease conservativeness in LMI conditions. Lyapunov Theory can also
be applied to acquire stability and other costs conditions to Markovian systems, as presented
in [53–55], which, amalgamated with the aforementioned structure modifications, may provide
less conservative conditions when tackling stochastic systems.

Given this discussion, it can be seen that there is still room to explore the impact of DoS
attacks using the H2 cost on uncertain CPSs modeled as switched systems. Additionally, there
are few works that address both the presence of packet dropouts caused by DoS attacks and
generated by an unreliable network’s limitations when considering an CPSs with uncertainties.
[46, 47] consider both but to a precisely known system and considering a periodic attack strategy.
In [56] the precisely known case and packet dropouts due to network limitations are approached
as well as DoS attacks, with the attacker almost always bounded by a ratio relative to the total
number of exchanged packets.

There is also a potential in creating a network model combining the deterministic assumption
of energetic constraints with a stochastic model of unreliable network’s packet dropout through
a finite state discrete-time Markov chain, which aims to be less conservative than a traditional
Gilbert-Elliot model [57, 58]. Since it is difficult to obtain precisely known probabilities that
describe both the attacker behavior and the network limitations, a non-homogeneous Markov
chain is proposed, in an approach similar to [33, 34], aiming to take into account a wider array
of more or less conservative scenarios when designing the controllers and filters. The use of
parameter-dependent slack variables and Lyapunov functions could also provide more complex,
but less conservative conditions. Existing methods such as [59–61], for the filtering problem,
whilst applied to uncertain systems without any network (noting that the latter is applied to
a Markov jump linear system (MJLS) with uncertain transition rates), show possible paths to
be taken in this sense.

1.1 objective

The main objective of this dissertation is to investigate secure control techniques for discrete-
time CPSs with polytopic uncertainties under DoS attacks, and to model the inclusion of stochas-
tic packet losses due to network limitations, proposing secure control and filtering techniques
in this context. The switched system approach of [36] is utilized when only considering DoS at-
tacks. A new Markovian network model is proposed that accounts for both the attacks and the
stochastic packet losses. Parameter-dependent Lyapunov functions are employed to obtain LMI
conditions for the addressed problems.
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1.2 contributions

This work provides contributions to control and filter design of CPSs under DoS attacks and
stochastic packet losses, and in network modeling. The main contributions can be summarized
as follows:

• New studies concerning the presence of exogenous disturbances in a discrete-time CPS
with polytopic uncertainties and under DoS attacks from an energetically-bounded at-
tacker. The state-feedback control framework is considered and the system is modeled as a
switched system based on the deterministic assumption of the attacker’s energy constraints.
The H2 criterion is employed to evaluate the impact of the exogenous disturbances.

• A new network model based on Markov chains that consider: i) successful transmission, ii)
transmission failure due to network problems, and iii) the existence of DoS attacks. This
Markovian model is based on a non-homogeneous Markov chain, that includes uncertain
and unknown probabilities dependent on time-varying parameters and aims to incorporate
the attacker energy constraints through a finite state chain.

• New state-feedback control and filter design methods that aim, respectively, to stabilize
and minimize the H∞ cost of a discrete-time CPS with polytopic uncertainties, which is
connected through a network defined by the aforementioned proposed model.

1.3 outline

The remainder of this manuscript is structured as follows:

• Chapter 2: Introduces the polytopic uncertainties existing in the addressed CPSs. A packet-
based control approach is presented with different implementation strategies, as well as
the utilized assumptions. Preliminary results regarding the stability of switched systems
and stochastic stability are also presented. The first contribution of this dissertation is also
provided, consisting of the proposal of a Markovian network model that accounts for DoS
attacks and stochastic packet losses, and is based on a non-homogeneous Markov chain
with uncertain and unknown transition probabilities.

• Chapter 3: Exhibits the conditions developed to design state-feedback controllers for
discrete-time CPSs with polytopic uncertainties, and accounting only the presence of DoS
attacks. The closed-loop system under attack is written as a switched system, and the influ-
ence of exogenous disturbances is evaluated through the H2 cost. Three control strategies
are discussed and compared through numerical experiments.

• Chapter 4: Details the state-feedback control technique for discrete-time CPSs with poly-
topic uncertainties, which accounts for DoS attacks and stochastic packet losses due to
network limitations. The closed-loop system is modeled as a MJLS. The proposed Marko-
vian network model is utilized, which is compared with a traditional Gilbert-Elliot model.
Three different control strategies are compared.
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• Chapter 5: Presents the proposed conditions to design full-order H∞ filters for a discrete-
time CPSs with polytopic uncertainties, considering DoS attacks and stochastic packet
losses because of network limitations. The closed-loop system is modeled as a MJLS. The
proposed Markovian network model is taken into account. Mode-dependent and mode-
independent approaches to filter design are compared, where both utilize a memory to
store the last transmitted output measurement in order to design the filter output. The
proposed network model is compared with a Gilbert-Elliot model.

• Chapter 6: Summarizes the conclusions and future directions for this work, as well as the
publications developed during the Master’s studies.





2
B AC KG RO U N D , P R E L I M I N A R I E S A N D I N I T I A L C O N T R I B U T I O N S

In this chapter, the assumptions and concepts employed in the conditions proposed in this
work are provided, as well as the first contributions, which consist of the proposal of the new
network model. The polytopic modeling of the discrete-time uncertain Cyber-Physical Systems
(CPSs) and the attack characterization are depicted. The utilized packet-based control strategy
is detailed with some possible modifications. The new network model is proposed, which is
based on a time-varying non-homogeneous Markov process that features uncertain and unknown
probabilities, and accounts for both packet losses due to network limitations and Denial of Service
attacks (DoS attacks). The inclusion of said probabilities in the resulting transition probability
matrix is demonstrated in detail. Moreover, conditions for stochastic stability and stability of
switched systems are provided, in addition to Finsler’s Lemma, which assists in deriving a
number of Linear Matrix Inequalities (LMI) conditions present in this work.

2.1 polytopic uncertainties

There are different types and ways to model parametric uncertainties of plant models. Among
them one may cite norm-bounded [62–64], affine [65, 66], interval [67–69] and polytopic uncer-
tainties [62, 70, 71]. In this work, time-invariant polytopic uncertainties are taken into account
to model the CPSs. Consider the following general representation for discrete-time uncertain
CPSs:

x(k+ 1) = A(α)x(k) +Bu(α)u(k) +Bw(α)w(k),

y(k) = C(α)x(k) +Du(α)u(k) +Dw(α)w(k),
(2.1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu the control input, w(k) ∈ Rnw is the exogenous
disturbance input vector, and k is the time instant. The exogenous disturbance input w(k) are
considered to have finite-energy, i.e., w ∈ ℓnw

2 [0, ∞). The matrices A(α) ∈ Rnx×nx , Bu(α) ∈
Rnx×nu , Bw(α) ∈ Rnx×nw , C(α) ∈ Rny×nx , Du(α) ∈ Rny×nu , and Dw(α) ∈ Rny×nw belong to
a polytopic domain dependent on the time-invariant parameter α ∈ RV . A generic matrix M(α)

is given by:

M(α) =
V∑
v=1

αvMv α ∈ ΛV , (2.2)

7
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where V is the number of vertices of the polytope, Mv, v = 1, . . . ,V , are the known vertices,
and ΛV is the unit simplex, defined as:

ΛV =
{
α ∈ RV :

V∑
v=1

αv = 1, αv ≥ 0, v = 1, . . . ,V
}

. (2.3)

Modeling uncertainties in the polytopic domain has been applied in many instances in the
literature [72, 73], including when addressing switched systems [70, 74] and Markov jump linear
systems (MJLSs) [34, 75]. Other types of uncertainties can also be converted to a polytopic
representation, as seen in [76], which provides a method to rewrite affine uncertainties in a
polytopic domain.

2.2 deterministic attack model

The DoS attacks originate from malicious agents that aim to jeopardize the system performance
by jamming its communication channels and, consequently, causing packet dropouts. It has been
shown in the literature that if these attacks are not accounted for when designing the control
system they may degrade the system performance, or even drive it to instability [40]. In a state-
feedback control context, they can make it impossible to transmit state readings from the sensor
to the control system and/or to transmit control signals from the controller to the actuator. This
is illustrated in Figure 2.1.

Actuator Plant Sensor

Controller

Network Network

x

u

Attacker
DoS

Attack

DoS
Attack

Figure 2.1: Schematic of the state-feedback control with the presence of DoS attacks.

In a filtering context, the DoS attacks attacks may interrupt the transmission of the measured
output between the plant and the filter, as depicted by Figure 2.2.
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Plant

Network

Filter

+

−

w

y

z

zf

e
Attacker

DoS
Attack

Figure 2.2: Schematic of the filtering system with the presence of DoS Attacks.

Note that in Figure 2.2, w is the exogenous disturbance, y is the measured output, z is the
estimated output, zf is the filter output and e is the error, where e = z − zf .

Predicting the exact attacker’s behavior is a difficult task. However, it is possible to assume
that the attacker is energy-bounded, which translates into attacks having a bounded duration [36,
37]. Thus, the following deterministic assumption is established:

Assumption 2.1

The DoS attacks display a bounded duration of N consecutive time-instants, with the
network staying free of attacks for at least one time instant before the next attack begins.

Based on Assumption 2.1, the control system will remain devoid of new measurements and/or,
most importantly, the actuator will remain without new control inputs for N time-instants, in a
worst-case scenario. This scenario brought forth the packet-based strategies [36, 37, 48], where
at each time instant a packet U(kt) with N + 1 control inputs is created by the controller and
sent to the actuator, where they are successively utilized if an attack ensues, guaranteeing the
CPS stability. This mitigates an attack in the controller-actuator channel. Moreover, since this
packet is created with only measurements from a given k instant of time, the sensor-controller
channel may also be jammed for N time instants without loss of stability, as this condition is
simultaneously solved by the packet-based strategy.

Given the above discussion, and following the procedure described in higher detail in [77], a
new time-scale kt is introduced, which indicates the time instant when a new packet of control
inputs arrives at the actuator. In this new time-scale, kt updates as follows:

kt+1 = kt + κ(kt) + 1, (k0 = 0), (2.4)

where κ(kt) is a time-varying switching signal that draws values from a finite set H ≜

{0, 1, . . . ,N}, and represents the number of consecutive attacks starting at the time kt + 1.
If κ(kt) = 0, then no attack starts at kt+ 1 For clarity’s sake, the correspondence between both
time scales is illustrated considering the example in the sequel:

• Consider N = 3 the maximum number of consecutive DoS attacks;
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• Consider the switching signal of κ(kt) = {2, 0, 3}, indicating the sequence of consecutive
time instants of attack;

Figure 2.3 depicts the relation between the two established time scales according to the switch-
ing signal κ(kt). The symbol ⊗ indicates that in the referred time instant, an attack is taking
place and there is no transmission. Each time increment of kt indicates the absence of attacks
and the arrival of a new packet at the actuator.

k k+ 1 k+ 2 k+ 3 k+ 4 k+ 5 k+ 6 k+ 7 k+ 8

kt kt+1 kt+2 kt+3

Figure 2.3: Correspondence between time scales k and kt for κ(kt) = {2, 0, 3}.
⊗

represents the packet
dropouts caused by DoS attacks.

2.2.1 Packet-based control strategy

Departing from the aforementioned time scale, the state-feedback control law for the packet of
N + 1 inputs is delineated by:

u(kt + r) = Krx(kt), (2.5)

where r = 0, 1, . . . ,κ(kt), being κ(kt) the previously defined time-varying switching signal. Fur-
thermore, the package of inputs is composed by

U(kt) =
[
u(kt)T u(kt + 1)T . . . u(kt +N)T

]T
.

At each time instant free of attacks, a new packet U(kt) is transmitted to the actuator. The
control strategy, then, is implemented by the following rules:

1. If a new packet arrives at the actuator at kt + 1, u(kt) is the only control input applied,
and the rest of the inputs from U (kt) are discarded.

2. If a DoS attacks starts at kt+ 1, then the control inputs u(kt+ 1), . . . ,u(kt+ r) previously
designed and transmitted in U(kt) will be successively applied to the actuator until the
attack ceases and a new packet arrives at the actuator.

Remark 2.1

As can be seen in the implementation rules, if the number of designed control signals is
higher than the number of attacks, the remaining inputs will be discarded with the arrival
of a new packet, which may be seen as a waste of network load. However, as seen in [36],
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the increase in network load required for this strategy is not sufficient to create a significant
increase in network traffic.

To illustrate the implementation rules, the example case depicted by Figure 2.3 is utilized
again. In this case, there will be 3 packets with N + 1 control inputs each. According to the
aforementioned implementation rules and the considered attack sequence, the control inputs in
blue are utilized while the ones in red are discarded due to the transmission of a new packet.

U(kt) =
[
u(kt)T u(kt + 1)T u(kt + 2)T u(kt + 3)T

]T
,

U(kt+1) =
[
u(kt+1)T u(kt+1 + 1)T u(kt+1 + 2)T u(kt+1 + 3)T

]T
,

U(kt+2) =
[
u(kt+2)T u(kt+2 + 1)T u(kt+2 + 2)T u(kt+2 + 3)T

]T
.

The approach exposed so far can be called Full packet strategy, as it designs and uses a distinct
control input for each time instant under attack. Alternatively, one may also consider the packet-
based framework with strategies like the hold and zero-input, which have been investigated in
control [16] and filtering [32] problems. Their definition in the packet-based context is presented
in the sequence:

• Hold-input Strategy: A fixed gain and a unique control input is designed for when the net-
work is operational, and when a packet dropout phenomenon takes place. This translates
in the packet of inputs as:

U(kt) =
[
u(kt) u(kt) . . . u(kt)

]
;

• Zero-input Strategy: The control inputs are set to zero whenever a packet dropout phe-
nomenon takes place. This translates in the packet of inputs as:

U(kt) =
[
u(kt) 0 . . . 0

]
.

Even though there is evidence that the Full packet strategy is less conservative than the
hold and zero-input strategies in the context of DoS attacks [37], these strategies are worth
investigating given their increased simplicity, and for not requiring a distinction on what concerns
control input value between consecutive time instants of packet loss.

2.3 stability of switched systems

Switched systems consist of a class of hybrid systems that switch between different subsystems
(modes), generating discontinuities in the system dynamics [78]. This way, a two-level dynamic
emerges where the lower level consists of the differential and/or difference equations of the
subsystems and an upper level that defines when the switching between modes takes place [79].

Different aspects may govern the switching rule of such systems. For instance, the switching
may be state-dependent, time-dependent, controlled, or autonomous [80, 81]. In the latter, which
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is also called arbitrary switching, there is no control or knowledge over the switching rule,
being necessary to consider all possible switching trajectories on what concerns stability analysis
and control design. Moreover, the individual modes of the system may also be subjected to
uncertainties or time-varying parameters in a polytopic domain [74, 82].

In the considered context of DoS attacks, there is no knowledge concerning the attacker’s
behavior. This way, by modeling the closed-loop dynamics after a switched system with arbitrary
switching, one accounts for whichever behavior the attacker may display (under the energetic
restriction depicted by Assumption 2.1). Thus, when only considering the presence of attacks,
this work will model the closed-loop dynamics of the system under DoS attacks using a switched
uncertain system.

Consider the following switched discrete-time uncertain system:

x(k+ 1) = Aκ(k)(α)x(k), (2.6)

where x(k) ∈ Rnx is the state vector, κ(k) is a time-varying switching signal that takes val-
ues from the set G ≜ {1, . . . ,Nm} where Nm is the number of modes. Each mode Ai(α),
i = 1, . . . ,Nm is part of a polytopic domain dependent on the time-invariant parameter α
as described in Section 2.1.

Since only one mode is active at a time, it is possible to combine all modes of (2.6) through
the following:

x(k+ 1) = A(ζ(k),α)x(k), (2.7)

where ζ(k) =
[
ζ1(k), . . . , ζNm(k)

]T
. ζ(k) is then described by the following indicator function

that depicts the switching behavior:

ζi (k) =

1, if κ(k) = i,

0, otherwise,
(2.8)

where, A(ζ(k),α) = ζ1(k)A1(α) + · · ·+ ζNm(k)ANm(α). Through (2.8), one may highlight that∑Nm
i=1 ζi(k) = 1, ζi(k)2 = 1, and ζiζj = 0, when i ̸= j.
Aiming to obtain a less conservative sufficient stability certificate for system (2.6), a switched

parameter-dependent Lyapunov function is considered in the following Lemma.

Lemma 2.1

If there exist symmetric positive definite matrices Pi(α) ∈ Rnx×nx such that
 Pi(α) Ai(α)TPj(α)

Pj(α)Ai(α) Pj(α)

 > 0, (2.9)

with i, j ∈ G, G ≜ {1, . . . ,Nm}, then the switched uncertain system (2.6) is asymptotically
stable under arbitrary switching, for all α ∈ ΛV .
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Proof.
Multiplying (2.9) by ζi(k), for i = 1, . . . ,Nm, and summing it up, yields

 P (ζ(k),α) A(ζ(k),α)TPj(α)

Pj(α)A(ζ(k),α) Pj(α)

 > 0.

Then, applying the same procedure with ζj(k+ 1), for j = 1, . . . ,Nm returns
 P (ζ(k),α) A(ζ(k),α)TP (ζ(k+ 1),α)

P (ζ(k+ 1),α)A(ζ(k),α) P (ζ(k+ 1),α)

 > 0.

In the sequel, applying Schur complement results on:

A(ζ(k),α)TP (ζ(k+ 1),α)A(ζ(k),α) − P (ζ(k),α) < 0.

Pre- and post-multiplying it by x(k)T and x(k), respectively, one obtains ∆V (x(k), ζ(k)) < 0,
considering the Lyapunov function V (x(k), ζ(k)) = x(k)TP (ζ(k),α)x(k), which, given that
P (ζ(k),α) is a positive definite matrix, implies that V (x(k), ζ(k)) > 0. This way, as supported
by [74, Theorem 3] for the time-varying case, the switched uncertain system (2.6) is asymptoti-
cally stable under arbitrary switching. This concludes the proof. □

Remark 2.2

Handling matrices in the polytopic domain may offer an infinite dimension problem, given
the structure of the simplex itself. The parser ROLMIP [83], however, is able to write such
matrices and parameter-dependent LMIs as finite dimension conditions.

2.4 non-homogeneous markov network model

Networked Control Systems (NCSs) is a topic with growing interest [84] and comes as a necessity
in systems whose elements are geographically distant and in the context of CPSs. Including a
network in the closed loop, however, brings forth problems like the already mentioned cyberat-
tacks [18], time-delays [85], and packet-losses due to network unreliability and limitations [84,
86]. Focusing on the latter, it is often assumed that the packet losses are stochastic in nature,
which allows the use of discrete-time MJLSs [87] to model the abrupt changes in the system
operation. A classic model for unreliable networks consists of the Gilbert-Elliot model [57, 58,
88], which divides the operation between two modes: Successful packet transmission and packet
loss, as it is illustrated in Figure 2.4.

In Figure 2.4, when in mode 1, the network is operating properly and has just transmitted
successfully, and has a probability of p11 of continuing to transmit successfully, and a probability
p12 of suffering a packet dropout. When in mode 2, the network has just suffered a packet
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Success
1

Failure
2

Successful
Transmission

p11

Packet
Loss
p22

Packet
Loss
p12

p21
Successful

Transmission

Figure 2.4: Markov chain for the Gilbert-Elliot model.

dropout and has a probability p22 of suffering another one, and a probability p21 of transmitting
successfully.

Many works based on MJLSs to model packet losses, however, consider time-invariant prob-
abilities and, consequently, homogeneous Markov chains. This assumption may prove to be
unrealistic, as environmental factors or network characteristics may vary with time, changing
the transmission failure chances. The inclusion of DoS attacks further introduces a time-varying
nature to the packet losses, as the attacker’s behavior may change with time. As a way to circum-
vent this problem, two strategies may be mentioned: using finite piecewise homogeneous Markov
chains [89, 90], or the use of non-homogeneous Markov chains with time-varying probabilities [33,
34]. The probabilities of the non-homogeneous Markov chain can be modeled in the polytopic
domain depending on time-varying parameters that change arbitrarily with time [33], and even
the existence of uncertain or unknown probabilities may be taken into account [91, 92].

As mentioned in Section 2.2, it is possible to make the deterministic assumption that the
attacker is energetically bounded. This assumption could not be so easily included in a classic
Gilbert-Elliot model. Furthermore, the combination of the lack of knowledge of the attacker’s
behavior, and the possibility of DoS attacks not reaching its maximum possible duration every
time an attack begins allows the creation of a new network model that accounts for both DoS
attacks and packet losses due to network unreliability and limitations, aiming to offer a less
conservative approach to this problem. In this Section, this model will be proposed based on
a non-homogeneous Markov chain that will account for a wider range of scenarios through the
use of uncertain and unknown transition probabilities that arbitrarily change with time. This
model can, then, be applied to portray the network featured in the schematics of Figure 2.1 and
Figure 2.2.

Consider a discrete-time non-homogeneous Markov chain {θk; k ≥ 0} with a finite state-space
K = {1, . . . ,σ} where the mode transition probabilities are as follows

pij(k) = Pr(θk+1 = j | θk = i), (2.10)

which satisfies pij(k) ≥ 0 and ∑σ
j=1 pij(k) = 1, ∀k ≥ 0. These mode transition probabilities are

all contained in the transition probabilities matrix Ψ(k) = |pij(k)|, i, j ∈ K.
With the previously defined Markov chain, the stochastic network model will be constructed.

The presence of DoS attacks from malicious agents is considered in addition to possible com-
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munication failures caused by the unreliability and limitations of the communication channels.
Both phenomena will translate into packet dropouts in the network. To combine both problems,
the deterministic Assumption 2.1 of the attacker’s energy limitation will be taken into account,
binding the duration of a DoS attack to N time instants. This enables modeling a finite number
of modes indicating each consecutive time instant with the presence of DoS attacks.

Figure 2.5 illustrates the schematic of the proposed Markovian network model. The modes
indicate three types of situations: i) Successful transmission, ii) Transmission failure, and iii)
DoS attacks.

Failure
2

Success
1

DoS
3

DoS
. . .

DoS
N+2

p11

p22

p
12

p
21

p13

p31

p23

p32

p(... )1

p(... )2

p(N+2)1

p(N+2)2

p34 p(N+1)(N+2)

Figure 2.5: Markov chain of the Network considering Transmission Failures and DoS attacks.

The modes definition and transitions are discussed in further detail in the sequel:

i) There are neither transmission failures nor DoS attacks and the transmission is successful
(θk = 1). In this mode, there is a probability p11 of the network remaining operational; a
probability p12 of having a communication failure due to network limitations (mode 2); and
a probability p13 of suffering the first time instant of a DoS attacks (mode 3). See mode 1
in Figure 2.5.

ii) A transmission failure happens because of communication channel limitations (θk = 2). In
this mode, there is a probability p21 of the network returning to regular operation (mode 1);
a probability p22 of occurring another transmission failure (mode 2); and a probability p23

of a DoS attacks (mode 3). See mode 2 in Figure 2.5.

iii) The communication channels are under a DoS attack (θk = 3, . . . ,N + 2). Starting from
mode 3, there is a probability p31 of the attack ceasing and the network returning to regular
operation (mode 1); a probability p32 of the attack ceasing, followed by a transmission
failure (mode 2); and a probability p34 of the attack persisting for another consecutive time
instant. This applies to θk = 4 up to θk = N + 1. In mode N + 2, however, the attacker has
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reached his energy bounds and the DoS attacks will have to cease. From there on, regular
network operation (mode 1) may be restored with a probability p(N+2)1 or a transmission
failure (mode 2) may follow, with a probability of p(N+2)2.

It can be highlighted that the combination of i) and ii) represent a simplified Gilbert-Elliot
model, while the rest of the modes stochastically model the attack whilst considering its deter-
ministic energy constraint. The combination of i), ii), and iii) results in the proposed network
model.

Given the aforementioned N + 2 modes of the Markovian network and its possible transitions,
the transition probability matrix Ψ ∈ R(N+2)×(N+2) derived from Figure 2.5 is as follows

Ψ =



p11 p12 p13 0 . . . 0

p21 p22 p23 0 . . . 0

p31 p32 0 p34 . . . 0
...

...
...

... . . . ...

p(N+1)1 p(N+1)2 0 0 . . . p(N+1)(N+2)

p(N+2)1 p(N+2)2 0 0 . . . 0


. (2.11)

For the sake of clarity, the same colors indicating the operation modes and their probabilities,
as featured in the Markov chain from Figure 2.5, are employed in matrix (2.11). Concerning
the state-space K = {1, . . . ,σ} of the network Markov chain, σ = N + 2 will be considered
hereafter.

The presented framework seeks to add nuance to the network model, not oversimplifying the
packet dropout problem of an unreliable network with DoS attacks into a traditional Gilbert-
Elliot model, since we can bind the number of consecutive attacks to a maximum finite number.
This can be particularly useful if we consider the following assumption:

Assumption 2.2

The control or filtering system is able to differentiate between a transmission failure due to
a network limitation and a packet dropout caused by a DoS attacks.

In this scenario, it is possible to design mode-dependent controllers and filters for the proposed
problem. In turn, attack and failure detection are open problems, and distinct fields of study
and are not the focus of this work. However, [93, 94] for example, indicate that there may be
feasible solutions. Nevertheless, as will be shown in Chapter 4 and Chapter 5, even not utilizing
a different controller or filter for each network mode yields better results than considering a
traditional Gilbert-Elliot model to depict the network.

2.4.1 Time-varying Transition Probability Matrix

Obtaining the transition probabilities pij is a challenging task in the proposed model. This hap-
pens mainly because, aside from the attacker’s energy limitation, it is difficult to know the attack
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behavior. As a way to circumvent this problem, the transition probability matrix (2.11) consid-
ered features uncertain and unknown probabilities, which will be modeled with time-varying
parameters. This enables considering a wider range of probabilities with more or less conserva-
tive scenarios, while not requiring an exact knowledge of the transmission failure frequency and
attacker’s behavior.

To model these transition probability matrices, each of the m rows that feature uncertain or
unknown probabilities is written in a polytopic representation dependent on the time-varying
parameter ξk,q, where q = 1, . . . ,m, in the same lines as in [91, 92]. This representation is
originated from the conditions ∑σ

j=1 pij(k) = 1 and pij(k) ≥ 0. A generic matrix M(ξk,q) in this
framework, referring to the q row from the total of m rows, is as follows

M(ξk,q) =
Zq∑
z=1

ξk,qzMz, ξk ∈ ΛZq , (2.12)

where Zq is the number of vertices for the q row, and ΛZq is the unit simplex described by

ΛZq =

{
ξk,q ∈ RZq :

Zq∑
z=1

ξk,z = 1; ξk,qz ≥ 0, z = 1, . . . ,Zq
}

, (2.13)

To illustrate, an example matrix is considered based in (2.11) with N = 2. The first row
has unknown probabilities (represented by ′?′), and the third row has uncertain probabilities.
Therefore, m = 2.

Ψ =



0.5 ? ? 0.0

0.6 0.1 0.3 0.0

0.3
[
0.1 0.5

]
0.0

[
0.2 0.6

]
0.8 0.2 0.0 0.0


. (2.14)

The vertices of the polytopes of the first and third row must respect the conditions pij(k) ≥ 0
and ∑4

j=1 pij(k) = 1. This way, the first row vertices are:

p1(1) =
[
0.5 0.5 0.0 0.0

]
, and p1(2) =

[
0.5 0.0 0.5 0.0

]
.

Being the convex vertices combination that depicts the first row unit simplex as follows

p1(k) = ξk,11p1(1) + ξk,12p1(2) , ξk,1 = (ξk,11, ξk,12) ∈ Λ2.

The same procedure is applied to obtain the vertices of the third row:

p3(1) =
[
0.3 0.1 0.0 0.6

]
, and p3(2) =

[
0.3 0.5 0.0 0.2

]
.
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The polytope representing the third row’s uncertain probabilities is inserted in a different unit
simplex since each row’s probabilities are independent of one another:

p3(k) = ξk,21p3(1) + ξk,22p3(2) , ξk,2 = (ξk,21, ξk,22) ∈ Λ2.

Note that the different simplexes depend on different parameters. The first row’s poly-
tope depends on the time-varying parameter ξk,1 while the third row depends on ξk,2. The
second and fourth row display precisely known probabilities, and can be written simply as
p2 =

[
0.6 0.1 0.3 0.0

]
and p4 =

[
0.8 0.2 0.0 0.0

]
.

Combining the polytopic description of the first and third row, as well as the second and
fourth constant rows results in

Ψ(k) = ξk,11


p1(1)

0

0

0


+ ξk,12


p1(2)

0

0

0


+ ξk,21


0

0

p3(1)

0


+ ξk,22


0

0

p3(2)

0


+


0

p2

0

p4


.

This representation, however, is not a homogeneous polynomial with relation to the parameters
ξk,1 and ξk,2. Thus, to obtain an homogeneous equivalent, noting that ξk,11 + ξk,12 = 1, and
ξk,21 + ξk,22 = 1, the procedure in the sequel is employed.

Ψ(k) = (ξk,21 + ξk,22)


ξk,11


p1(1)

0

0

0


+ ξk,12


p1(2)

0

0

0





+ (ξk,11 + ξk,12)


ξk,21


0

0

p3(1)

0


+ ξk,22


0

0

p3(2)

0




+ (ξk,11 + ξk,12)(ξk,21 + ξk,22)


0

p2

0

p4


.

The resulting transition probability matrix Ψ(ξk) is, then, the following

Ψ(ξk) = ξk,11ξk,21


p1(1)

p2

p3(1)

p4


+ ξk,11ξk,22


p1(1)

p2

p3(2)

p4


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+ ξk,12ξk,21


p1(2)

p2

p3(1)

p4


+ ξk,12ξk,22


p1(2)

p2

p3(2)

p4


, ξk ∈ Ω, (2.15)

where ξk = (ξk,1, ξk,2) ∈ (Λ2 × Λ2) and consists in a homogeneous polynomial in function of
the combination of the time-varying parameters ξk = (ξk,1, ξk,2). This concludes the example. It
is also worthy of note that Ω = (Λ2 × Λ2) represents the Cartesian product of both simplexes,
called a multi-simplex. More upon that can be found in [95].

In the sequel, the formal definitions of a multi-simplex and a Λ-homogeneous polynomial are
presented:

Definition 2.1: [76]

A multi-simplex Ω is the Cartesian product ΛZ1 × · · · × ΛZm of a finite number of simplexes,
where ΛZ has a dimension defined by the index Z = (Z1, . . . ,Zm). The given parameter
ξ of a simplex ΛZ consists on (ξ1, ξ2, . . . , ξm), depending on the number of vertices of ΛZ .
Each ξi is then decomposed in (ξi1, ξi2, . . . , ξiZi).

Definition 2.2: [91]

Given a multi-simplex Ω of dimension Z, a polynomial S(ξ) defined on RZ and taking values
in a finite-dimensional vector space is said Λ-homogeneous if, for any r0 ∈ {1, . . . ,m}, and
for any given ξZ ∈ RZq , q ∈ {1, . . . ,m}\{q0}, the partial application ξZq0

7→ P (ξ) is a
homogeneous polynomial.

In a generic formulation, the utilized Λ-homogeneous polynomial transition probability matrix
with m rows with uncertain or unknown probabilities is

Ψ(ξk) =
ψ∑
z=1

ξk(z)Ψz, ξk = (ξk,1, . . . , ξk,m) ∈ (ΛZ1 × · · · × ΛZm) = Ωψ, (2.16)

where z = 1, 2, . . . ,ψ, with ψ = Z1Z2 . . . Zm vertices and ξk = (ξk,1, . . . , ξk,m). ξk(z) are homo-
geneous monomials with degree m which are created by the ψ-tuple with all the ψ possible com-
binations obtained between the sets K1 = {ξk,11, . . . , ξk,1Z1} up to Km = {ξk,m1, . . . , ξk,mZm},
i.e.,

ξk(1) = ξk,11ξk,21 . . . ξk,m1,

ξk(2) = ξk,12ξk,21 . . . ξk,m1,
...

...

ξk(ψ) = ξk,1Z1ξk,2Z2 . . . ξk,mZm .
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To demonstrate how this general case applies, the example matrix (2.14) is utilized again.
The matrix has m = 2 rows with uncertain or unknown probabilities, which translates into 2
simplexes (ξk,1 ∈ Λ2 and ξk,2 ∈ Λ2). The resulting multi-simplex Λ2 × Λ2 has ψ = Z1Z2 = 4
vertices, and is written in function of monomials ξk(z) of degree m = 2, for z = 1, 2, 3, 4. These
monomials are composed by the 4-tuple with the combination of the sets K1 = {ξk,11, ξk,12} and
K2 = {ξk,21, ξk,22}, namely

ξk(1) = ξk,11ξk,21,

ξk(2) = ξk,12ξk,21,

ξk(3) = ξk,11ξk,22,

ξk(4) = ξk,12ξk,22,

which, in turn, can be confirmed in (2.15).

Remark 2.3

More details on the homogenization of multi-simplexes, Λ-homogeneous polynomial matri-
ces manipulations, and how to write finite LMI conditions utilizing them can be found in [91].
In this work, however, the writing of polynomial matrices, LMI conditions in a multi-simplex
as finite dimension conditions, and the process of polynomial homogenization presented are
handled automatically by using the parser ROLMIP [83].

2.5 stability of non-homogeneous markov jump linear systems

There are different possible definitions of stability for MJLSs. For instance, mean-square stability,
stochastic stability, and exponential mean-square stability [96]. These definitions are based on
the Second Moment Stability (SMS) concept [97–99], and, on what concerns MJLSs with homoge-
nous Markov chains, the three definitions are equivalent. When dealing with non-homogeneous
Markov chains with time-varying probabilities, however, such equivalence is not met. It is then
important to consider the time-varying dynamics and uncertainties of the probabilities in the
design conditions, as not doing so may result in performance degradation or even instability [53]

Consider the following MJLS with polytopic uncertainties in function of time-invariant pa-
rameter α. The system also depends on a network based on the non-homogeneous Markov chain
proposed in Section 2.4 and 2.4.1.

x(k+ 1) = A(θk,α)x(k), (2.17)

where x(k) ∈ Rnx is the state vector, α is a time-invariant parameter that describes the system
polytopic uncertainties as in (2.2). θk is a random variable that assumes values from the finite
set K = {1, . . . ,σ} according to a given transition probability matrix Ψ(ξk) that is dependent
on the time-varying parameters ξk and written as in (2.16). To simplify, A(θk = i,α) = Ai(α).
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As to obtain a stochastic stability definition for the approached non-homogeneous MJLSs,
the concept of Exponential stability in the mean square sense with conditioning I (ESMS-CI),
as defined by [54, Proposition 1], [55, Definition 3.1(c)] is considered in this work. The formal
definition is depicted in the sequel:

Definition 2.3

The system (2.17) is ESMS-CI if there exist β ≥ 1, q ∈ (0, 1) such that for any Markov
Chain ({θk}k≥0, {Ψk}k≥0, K) under nondegenerate stochastic matrices Ψk we have

E [|Φ(k, k0)xk0 |2|θk0 = i] ≤ β|x(k0)|2qk−k0 , ∀k ≥ k0 ≥ 0, i ∈ Kk0 ,x(k0) ∈ Rnx , (2.18)

where Φ(k, k0) is the fundamental random matrix solution of system (2.17) (more on this
in [55, pages 60-64]) and Kk0 ∈ {i ∈ K|Ψ{θk0 = i} > 0}

The following Lemma gives the sufficient conditions to guarantee that the MJLS system (2.17)
is ESMS-CI:

Lemma 2.2

If there exists symmetric positive definite matrices Pi(ξk,α) ∈ Rnx×nx such that

Ai(α)
TP+

i Ai(α) − Pi(ξk,α) < 0, (2.19)

where

P+
i =

σ∑
j=1

pij(ξk)Pj(ξk+1,α), (2.20)

hold for each i ∈ K, then (2.17) is ESMS-CI for all (α, ξk, ξk+1) ∈ ΛV × Ωψ × Ωψ, for k ≥ 0.

Proof. More details and the proof of this Lemma can be found in [55, Pages 76-77]. □

Remark 2.4

It is worthy of note that ξk+1 is considered by the parser as a new unit (multi-)simplex.
This idea was introduced by [100] and utilized in [48].

2.6 finsler’s lemma

In this work, Finsler’s Lemma will be utilized to introduce new slack variables to the LMI
conditions, i.e., by going from i) to iv) or ii) to iv). The addition of slack variables is useful
to expand the search space when pursuing feasible solutions, as it results in less conservative
conditions. Examples of this can be found in [60, 101–103].
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Lemma 2.3

If there exist ω ∈ Rn1 , Q ∈ Rn1×n1 , and B ∈ Rn2×n1 with rank(B) < n1, being B⊥ a
basis for the Nullspace of B (i.e., BB⊥ = 0), then the following conditions are equivalent

i) ωTQω < 0, ∀ ω ̸= 0 : Bω = 0,

ii) B⊥TQB < 0,

iii) ∃µ ∈ R : Q − µBTB<0,

iv) ∃X ∈ Rn1×n2 : Q +X B +BTX T < 0.

Proof. The proof of this Lemma can be found in [104]. □



3
H 2 S TAT E - F E E D B AC K C O N T RO L FO R C Y B E R - P H Y S I C A L
U N C E RTA I N S Y S T E M S U N D E R D O S AT TAC K S

This chapter addresses the packet-based state-feedback control problem for discrete-time Cyber-
physical uncertain systems under the presence of energy-limited exogenous disturbances and De-
nial of Service attacks (DoS attacks). The deterministic assumption of the attacker’s energetic
bounds (as stated in Section 2.2) is taken into account and the closed-loop system dynamics
under attacks are modeled after a switched system. The full packet, hold-input and zero-input
strategies as described in Subsection 2.2.1 are addressed and tested in the presented context.
The presence of exogenous disturbances is investigated under the H2 cost, which is utilized to
evaluate each strategy performance.

3.1 problem statement

Consider the following discrete-time uncertain model of a CPS plant:

x(k+ 1) = A(α)x(k) +Bu(α)u(k) +Bw(α)w(k),

y(k) = C(α)x(k) +Du(α)u(k) +Dw(α)w(k),
(3.1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the control input, w(k) ∈ Rnw is the
exogenous disturbance with finite energy (i.e., w ∈ ℓnw

2 [0, ∞)), and y(k) ∈ Rny is the output
vector at the time instant k. The matrices A(α) ∈ Rnx×nx , Bu(α) ∈ Rnx×nu , Bw(α) ∈ Rnx×nw ,
C(α) ∈ Rny×nx , Du(α) ∈ Rny×nu , and Dw(α) ∈ Rny×nw as in (3.1) belong to a polytopic
domain with V vertices as presented in Section 2.1 with (2.2).

The general packet-based control law utilized (based on what was described in Subsec-
tion 2.2.1) is as follows:

u(kt + r) = Krx(kt). (3.2)

The closed-loop system dynamics under attack will be derived from the approach in Section 2.2,
based on the deterministic Assumption 2.1 and with the attacks operating as in Figure 2.1. This
way, applying (3.2) to (3.1) yields the following cases between switching points:

• Case 0: DoS-free

x(kt + 1) = (A(α) +Bu(α)K0) x(kt) +Bw(α)w(kt),

→ x(kt+1) = x(kt + 1) = F0(α)x(kt) +B0(α)w̃(kt), (3.3)

F0(α) = A(α) +Bu(α)K0,

B0(α) ≜
[
Bw(α)

]
, w̃(kt) =

[
w(kt)

]
. (3.4)

23
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• Case 1: One time instant is jammed by DoS attacks. x(kt + 1) as in Case 0 and

x(kt + 2) = A(α)x(kt + 1) +Bu(α)K1x(kt) +Bw(α)w(kt + 1),

→ x(kt+1) = x(kt + 2) = F1(α)x(kt) +B1(α)w̃(kt),

F1(α) ≜ A(α)F0(α) +Bu(α)K1, (3.5)

B1(α) ≜
[
A(α)Bw(α) Bw(α)

]
, w̃(kt) =

 w(kt)

w(kt + 1)

 . (3.6)

• Case N : N time instants jammed by DoS attacks. x(kt + 1) as in Case 0, x(kt + 2) as in
Case 1 and

x(kt +N + 1) = A(α)x(kt +N) +Bu(α)KNx(kt) +Bw(α)w(kt +N),

→ x(kt+1) = x(kt +N + 1) = FN (α)x(kt) +BN (α)w̃(kt), (3.7)

FN (α) ≜ A(α)FN−1(α) +Bu(α)KN ,

with

BN (α) ≜
[
ΦN ΦN−1 ... Φ0

]
, Φ0 = Bw(α), (3.8)

Φj = Aj(α)Bw(α), j = 1, 2, . . . ,N , (3.9)

w̃(kt) =


w(kt)

w(kt + 1)
...

w(kt +N)


.

Matrices C(α) and Du(α) remain the same during all cases. To match the matrix Dw(α)

dimensions to the augmented vector w̃(kt), the following is established:

• Case 0: DoS-free

D0(α) =
[
Dw(α)

]
. (3.10)

• Case 1: One time instant is jammed by DoS attacks

D1(α) =
[
Dw(α) 0ny×nw

]
. (3.11)

• Case N : N time instants jammed by DoS attacks

DN (α) =
[
Dw(α) 0ny×nw . . . 0ny×nw

]
=
[
Dw(α) 0ny×Nnw

]
. (3.12)



3.1 problem statement 25

Remark 3.1

To simplify the notation, hereafter the term (α) will be omitted from the matrices Fi, Bi
and Di, for i = 0, 1, . . . ,N .

Combining the N + 1 modes from (3.3)-(3.7) with the output assumptions, and the matrices
from (3.10)-(3.12), the system dynamics can be depicted by the following switched system:

x(kt+1) = Fκ(kt)x(kt) +Bκ(kt)w̃(kt),

y(kt) =
(
C(α) +Du(α)Kκ(kt)

)
x(kt) +Dκ(kt)w̃(kt),

(3.13)

where the time-varying switching signal κ(kt) utilizes values from the set H ≜ {0, 1, . . . ,N}. Uti-
lizing the indicator function (2.8) to represent that only a single mode is active at a time, (3.13)
is rewritten as

x(kt+1) = F (ζ(kt))x(kt) +B(ζ(kt))w̃(kt),

y(kt) = (C(α) +Du(α)K(ζ(kt))) x(kt) +D(ζ(kt))w̃(kt),
(3.14)

where the matrices F (ζ(kt)), B(ζ(kt)), K(ζ(kt)), and D(ζ(kt)) can be generically written as

M(ζ(kt),α) = ζ0(kt)M0(α) + ζ1(kt)M1(α) + · · · + ζN (kt)MN (α).

3.1.1 H2 definition

The packet-based control strategy proposed in this chapter aims to guarantee asymptotic stabil-
ity to (3.14) when w̃(kt) = 0 while minimizing the H2 cost when w̃(kt) ̸= 0.

In [72], the different definitions for the H2 norm are discussed in the context of Linear Time-
Varying systems. It settles for the following definition, which will be adapted to switched systems
and utilized in this chapter:

Definition 3.1

The infinite horizon H2 performance of the discrete-time uncertain switched system (3.14)
is defined by

∥H2∥2 := lim sup
T→∞

E

{
1
T

T∑
k=0

y(k)T y(k)

}
,

where y(k) is the system output when applied an input w(k) consisting of a zero-mean
white noise Gaussian process with identity covariance matrix and the positive integer T is
the time horizon.

This definition allows bounding the H2 performance through conditions derived from the Con-
trollability and Observability Gramians. Based on the former, the following Lemma is proposed,
as an adaptation of [72, Theorem 2].
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Lemma 3.1

If there exist symmetric positive definite matrices Pi(α) ∈ Rnx×nx and Q(α) ∈ Rny×ny

such thatQ(α) −D(ζ(kt))D(ζ(kt))T (C(α) +Du(α)K(ζ(kt)))P (ζ(kt),α)

⋆ P (ζ(kt),α)

 > 0, (3.15)

and P (ζ(kt + 1),α) − F (ζ(kt))P (ζ(kt),α)F (ζ(kt))T B(ζ(kt))

⋆ I

 > 0, (3.16)

then the system (3.14) is asymptotically stable when w = 0 and

Tr(Q(α)) ≤ γ, (3.17)

with H2 cost being bounded by √
γ for non-null w ∈ ℓnw

2 signals, and for all α ∈ ΛV .

Proof. The proof of this Lemma follows the same lines as the proof found in [72] when consid-
ering a switched uncertain system. □

3.2 main results

In this section, the conditions to design a packet-based state-feedback control strategy that
aims to minimize the H2 cost (as depicted by Lemma 3.1) of closed-loop (3.14) are described.
A switched parameter-dependent Lyapunov function is utilized. For clarity’s sake, a particular
case considering a maximum DoS attack duration of N = 1 (i.e., H ≜ {0, 1}) is presented in
the following Lemma.

Lemma 3.2

If there exist symmetric positive definite matrices Pi(α) ∈ Rnx×nx , Q(α) ∈ Rny×ny , matri-
ces X ∈ Rnx×nx and Zi ∈ Rnu×nx , and the scalar γ such that

min γ, (3.18)

Tr(Q(α)) < γ, (3.19)

Q(α) −D0D
T
0 C(α)X +Du(α)Z0

⋆ X +XT − P0(α)

 > 0, (3.20)



3.2 main results 27

Q(α) −D1D
T
1 C(α)X +Du(α)Z1

⋆ X +XT − P1(α)

 > 0, (3.21)


Pj(α) Γ0 B0

⋆ X +XT − P0(α) 0nx×nw

⋆ ⋆ Inw

 > 0, (3.22)


Pj(α) Γ1 B1

⋆ X +XT − P1(α) 0nx×2nw

⋆ ⋆ I2nw

 > 0, (3.23)

where,

Γ0 = A(α)X +Bu(α)Z0,

Γ1 = A2(α)X +A(α)Bu(α)Z0 +Bu(α)Z1,

with i, j ∈ H, H ∈ {0, 1}, then K0 = Z0X
−1, K1 = Z1X

−1 are the state-feedback gains
of control law (3.2) that assure the closed-loop system (3.14) (with N = 1 and F0(α) and
F1(α) as in (3.3)-(3.5), B0 and B1 as in (3.4)-(3.6), and D0 and D1 as in (3.10)-(3.11)) is
asymptotically stable for all α ∈ ΛV when w = 0 and whose H2 cost is bounded by √

γ for
non-null w ∈ ℓnw

2 signals.

Proof. Departing from the relation

(X − Pi(α))
T Pi(α)

−1 (X − Pi(α)) = XTPi(α)X −X −XT + Pi(α) > 0, (3.24)

one has

XTPi(α)
−1X > X +XT − Pi(α). (3.25)

Setting Z0 = K0X and Z1 = K1X, and applying relation (3.25), the conditions (3.20)-(3.21)
yield Q(α) −D0D

T
0 (C(α) +Du(α)K0)X

⋆ XTP0(α)−1X

 > 0, (3.26)

Q(α) −D1D
T
1 (C(α) +Du(α)K1)X

⋆ XTP1(α)−1X

 > 0, (3.27)
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Pre and post-multiplying (3.26) by M T
0 = diag(Iny ,P0(α)X−T ) and its transpose, and (3.27)

by M T
1 = diag(Iny ,P1(α)X−T ) and its transpose results in

Q(α) −D0D
T
0 (C(α) +Du(α)K0)P0(α)

⋆ P0(α)

 > 0, (3.28)

Q(α) −D1D
T
1 (C(α) +Du(α)K1)P1(α)

⋆ P1(α)

 > 0. (3.29)

Multiplying (3.28) by ζ0(kt)2 and (3.29) by ζ1(kt)2 and summing up the results, one has
Q(α) −D(ζ(kt))D(ζ(kt))T (C(α) +Du(α)K(ζ(kt)))P (ζ(kt),α)

⋆ P (ζ(kt),α)

 > 0, (3.30)

which is equivalent to condition (3.15) in Lemma 3.1. The square of the H2 norm is then bounded
by the trace of matrix Q(α), which, in turn, is bounded by the scalar γ. Thus, introducing the
optimization problem of minimizing γ assures that one finds the minimum bound for the H2

performance that still ensures feasible solutions.
Moreover, departing from (3.22) and (3.23), setting Z0 = K0X and Z1 = K1X and utilizing

relation (3.25), results in


Pj(α) F0X B0

⋆ XTP0(α)−1X 0nx×nw

⋆ ⋆ Inw

 > 0, (3.31)


Pj(α) F1X B1

⋆ XTP1(α)−1X 0nx×2nw

⋆ ⋆ I2nw

 > 0. (3.32)

Pre and post-multiplying (3.31) by RT
0 = diag(Inx ,P0(α)X−T , Inw) and its transpose, and (3.32)

by RT
1 = diag(Inx ,P1(α)X−T , I2nw) and its transpose yields


Pj(α) F0P0(α) B0

⋆ P0(α) 0nx×nw

⋆ ⋆ Inw

 > 0, (3.33)
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
Pj(α) F1P1(α) B1

⋆ P1(α) 0nx×2nw

⋆ ⋆ I2nw

 > 0. (3.34)

Multiplying (3.33) by ζ0(kt)2 and (3.34) by ζ1(kt)2, and summing up the results gives


Pj(α) F (ζ(kt))P (ζ(kt),α) B(ζ(kt))

⋆ P (ζ(kt),α) 0

⋆ ⋆ I

 > 0. (3.35)

Making the same procedure, multiplying (3.35) by ζj(kt + 1)2, for j = 0, 1 and summing the
results up yields


P (ζ(kt + 1),α) F (ζ(kt))P (ζ(kt),α) B(ζ(kt))

⋆ P (ζ(kt),α) 0

⋆ ⋆ I

 > 0. (3.36)

Applying Schur’s complement lemma results inP (ζ(kt + 1),α) − F (ζ(kt))P (ζ(kt),α)F (ζ(kt))T B(ζ(kt))

⋆ I

 > 0, (3.37)

which is equivalent to (3.16) from Lemma 3.1. This concludes the proof. □

In the sequel, the general case considering a maximum of N consecutive DoS attacks is pre-
sented.

Theorem 3.1

If there exist symmetric positive definite matrices Pi(α) ∈ Rnx×nx , Q(α) ∈ Rny×ny , matri-
ces X ∈ Rnx×nx and Zi ∈ Rnu×nx , and the scalar γ such that

min γ, (3.38)

Tr(Q(α)) < γ, (3.39)

Q(α) −DiD
T
i C(α)X +Du(α)Zi

⋆ X +XT − Pi(α)

 > 0, (3.40)
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
Pj(α) Γi Bi

⋆ X +XT − Pi(α) 0nx×(i+1)nw

⋆ ⋆ I(i+1)nw

 > 0, (3.41)

where,

Γi = Ai+1(α)X +
i∑

h=0
Ai−h(α)B(α)Zh, (3.42)

with i, j ∈ H, H ≜ {0, 1, . . . ,N}, where A0(α) = Inx , Bi as in (3.8)-(3.9) and Di as
in (3.10)-(3.12), then Ki = ZiX

−1 are the state-feedback gains of control law (3.2) that
assure the closed-loop system (3.14) (with Fi(α) as in (3.3)-(3.7)) is asymptotically stable
for all α ∈ ΛV when w = 0 and whose H2 cost is bounded by √

γ for non-null w ∈ ℓnw
2

signals.

Proof. The same steps pursued in the proof presented for Lemma 3.2 can be used in the proof
of Theorem 3.1. Therefore, they shall not be repeated. □

Theorem 3.1 presents the full packet strategy. In the sequel, the conditions to consider the
hold and zero-input strategies (as described in Subsection 2.2.1) in Theorem 3.1 are respectively
presented. Note that their proofs follow the same lines as the proof for Theorem 3.1.

Corollary 3.1

If there exist symmetric positive definite matrices Pi(α) ∈ Rnx×nx , Q(α) ∈ Rny×ny , ma-
trices X ∈ Rnx×nx , Z0 ∈ Rnu×nx and Zl = Z0 for l = 1, . . . ,N , and the scalar γ such
that (3.38)-(3.41) then Ki = ZiX

−1 for i ∈ H, H ∈ {0, 1, . . . ,N} are the state-feedback
gains using the hold-input strategy that assure the closed-loop system (3.14) (with Fi(α)

as in (3.3)-(3.7)) is asymptotically stable for all α ∈ ΛV when w = 0 and whose H2 cost is
bounded by √

γ for non-null w ∈ ℓnw
2 signals.

Corollary 3.2

If there exist symmetric positive definite matrices Pi(α) ∈ Rnx×nx Q(α) ∈ Rny×ny , matrices
X ∈ Rnx×nx , Z0 ∈ Rnu×nx and Zl = 0ny×nx for l = 1, . . . ,N , and the scalar γ such
that (3.38)-(3.41) then Ki = ZiX

−1 for i ∈ H, H ∈ {0, 1, . . . ,N} are the state-feedback
gains using the zero-input strategy that assure the closed-loop system (3.14) (with Fi(α)

as in (3.3)-(3.7)) is asymptotically stable for all α ∈ ΛV when w = 0 and whose H2 cost is
bounded by √

γ for non-null w ∈ ℓnw
2 signals.
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Remark 3.2

The number of scalar decision variables employed by Theorem 3.1 (NVT1), Corollary 3.1
(NVhold) and Corollary 3.2 (NVzero) are calculated as follows:

NVT1 = n2
x + V

n2
y + ny

2 + (N + 1)(V n
2
x + nx

2 + nunx) + 1,

NVhold = NVzero = n2
x + V

n2
y + ny

2 + (N + 1)V n
2
x + nx

2 + nunx + 1.

3.3 numerical examples

Two numerical examples are presented to illustrate the proposed method’s performance. The
parameter-dependent Linear Matrix Inequalities (LMIs) are written using MATLAB with the
parsers YALMIP [105], ROLMIP [83] and the solver MOSEK [106]. The three strategies: full
packet, hold-input, and zero-input are compared on what concerns the utilized H2 performance
criterion.

3.3.1 Example 1:

Consider the following discrete-time uncertain CPS borrowed and adapted from [107]:

A1 =


0.9813 0.3420 1.3986

0.0052 0.9840 −0.1656

0 0 0.5488

 , A2 =


0.9872 0.3575 1.2273

0.0016 0.9872 −0.1603

0 0 0.5488

 ,

A3 =


0.9687 0.9840 3.6304

0.0043 0.9742 −0.4647

0 0 0.5488

 , A4 =


0.9857 0.5881 2.5226

−0.0135 0.9717 −0.4702

0 0 0.5488

 ,

[Bu1 | Bu2 | Bu3 | Bu4] =


−1.4700 −4.999 −0.4376 −1.4700

−0.0604 −0.0576 −0.1589 −0.0604

0.4512 0.4512 0.4512 0.4512

 ,

Bw1 =


0.0198 0.0034 0.0156

0.0001 0.0198 −0.0018

0 0 0.0150

 , Bw2 =


0.0199 0.0036 0.0137

0.0000 0.0199 −0.0018

0 0 0.0150

 ,

Bw3 =


0.0197 0.0099 0.0412

0.0000 0.0197 −0.0052

0 0 0.0150

 , Bw4 =


0.0199 0.0059 0.0284

−0.0001 0.0197 −0.0051

0 0 0.0150

 ,
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C =

1 0 0

0 1 0

 , Du =

0

0

 , Dw =

0 0 0

0 0 0

 .

The presented strategies were tested in function of N , with N = 0 up until N = 9. Figure 3.1
illustrates the H2 cost obtained, which is bounded by √

γ, for the full packet (—) (Theorem 3.1),
zero-input (– – –) (Corollary 3.2) and hold strategies (· · · ) (Corollary 3.2) in function of the N
considered in the design. It can be seen that for all strategies the higher the value of the integer
N , that is, the longer the maximum attack taken into account, the higher the H2 cost. It is also
evident that the full packet strategy presented the best results, while the hold and zero-input
strategies provided similar results, with the zero-input strategy being more effective for higher
numbers of N than the hold-input strategy.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

Figure 3.1: √
γ bounds for the H2 cost for Example 1, as a function of N , obtained with controllers

designed by: Full Packet (—), Zero-input (– – –), and Hold Strategy (· · ·).

Moreover, Table 3.1 displays the number of scalar decision variables required in the design of
the three strategies, in function of N . The increase of the integer N results in the need for a
higher number of decision variables, which translates into a problem of higher complexity that
needs to be solved. Among the three strategies, the full packet strategy required the highest
number of decision variables, while the hold and zero-input strategies required the same number.
This depicts that the full packet strategy displays a trade-off between better performance and
higher computational complexity.
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Table 3.1: Number of scalar decision variables (NV) for the different strategies and percentage difference
between the full packet strategy and the rest.

N Theorem 3.1 Corollary 3.2 Corollary 3.1 Percentage difference

1 76 73 73 +3.94%
2 103 97 97 +5.82%
3 130 121 121 +6.92%
4 157 145 145 +7.64%
5 184 169 169 +8.15%
6 211 193 193 +8.53%
7 238 217 217 +8.82%
8 265 241 241 +9.05%
9 292 265 265 +9.24%

3.3.2 Example 2:

Consider the following system proposed in [108, 109], which was discretized and analysed with
the H2 cost in [110]. It consists of a satellite system composed of two rigid bodies connected
by a flexible link with uncertain torque constants and viscous damping. The parameters range,
respectively, between e ∈

[
0.09 0.4

]
and f ∈

[
0.0038 0.04

]
. The state-space representation of

the system is as follows:

x(k+ 1) =


1 0 0.1 0

0 1 0 0.1

−0.1e 0.1e 1 − 0.1e 0.1f

0.1e −0.1e 0.1f 1 − 0.1f


x(k) +


0

0

0.1

0


u(k) +


0

0

0

0.1


w(k),

y(k) =

0 1 0 0

0 0 0 0

x(k) +
 0

0.01

u(k) +
0

0

w(k).
The system was tested with the strategies featured in Theorem 3.1, Corollary 3.1, and Corol-

lary 3.2. Results considering N = 0 up to N = 9 were obtained, and the guaranteed H2 cost is
depicted in Table 3.2. The full packet strategy of Theorem 3.1 presented the best results among
the three strategies for all the values of N , and the zero-input strategy appears to perform better
than the hold-input strategy when considering longer consecutive attacks. Moreover, it is worthy
of note that considering no attacks i.e., N = 0 presents the same cost as the method in [111].

In the sequel, the designed controllers were tested in time-based simulations. The value of α
was randomly selected and null initial conditions were considered. An energy-limited exogenous
disturbance consisting of a 0 dBW Gaussian noise signal with a variance of 1.1099 was created.
The same disturbance vector was applied during the interval k ∈ [0, 100] in the examples depicted
in the sequel, in order to compare each strategy’s performance. Firstly, the controllers designed
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Table 3.2: H2 cost with the different strategies for Example 2 in function of N

N Theorem 3.1 Corollary 3.1 Corollary 3.2

0 0.7538 0.7538 0.7538
1 0.8279 0.8416 0.9557
2 0.9267 0.9847 1.1300
3 1.0400 1.1973 1.1294
4 1.1614 1.4758 1.4560
5 1.2895 1.7789 1.6198
6 1.4177 2.0669 1.7850
7 1.5428 2.3170 1.9506
8 1.6630 2.5232 2.1151
9 1.7666 2.6914 2.5295

for N = 2 were tested for the worst-case scenario of κ(kt) = {2, 2, 2, . . . }. Figure 3.2 depicts the
system’s first output under the three strategies.

0 50 100 150 200

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 3.2: System output with control strategies considering N = 2: Full Packet (—), Zero-input
(– – –), and Hold Strategy (· · ·). Initial conditions are x0 = [0 0 0 0]T and α =
[0.2258 0.3709 0.1502 0.2531]. Attack sequence is κ(kt) = {2, 2, 2, . . . }.

Then, the design considering N = 9 for the three strategies is taken into account to analyze
the impact of longer attack sequences on the system performance. Once more, the worst-case
scenario is contemplated as in κ(kt) = {9, 9, 9, . . . }. The time-based simulations are depicted in
Figure 3.3.
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0 50 100 150 200
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Figure 3.3: System output with control strategies considering N = 9: Full Packet (—), Zero-input
(– – –), and Hold Strategy (· · ·). Initial conditions are x0 = [0 0 0 0]T and α =
[0.2258 0.3709 0.1502 0.2531]. Attack sequence is κ(kt) = {9, 9, 9, . . . }.

The time-based simulations showed that all of the strategies were able to stabilize the system,
even with the presence of energy-limited disturbances and DoS attacks. In both Figure 3.2 and
Figure 3.3 the full packet strategy of Theorem 3.1 provided the best results in comparison to
the other strategies. This could be evidenced by the smaller oscillation caused by the exoge-
nous disturbance signal. In Figure 3.2 hold-input performed better than the zero-input strategy,
while in Figure 3.3 the opposite is depicted. This is corroborated by Table 3.2, and somewhat
in accordance with what was seen in Example 1, on what concerns the zero-input strategy per-
forming better than the hold-input for higher values of N . However, further studies are required
to make this an affirmative, as the zero-input strategy depends upon the open-loop dynamics of
the approached system.

The presence of the overshoot in the response is expected, as minimizing the H2 cost aims
to reduce the average magnitude of the response, and not necessarily its maximum magnitude.
Considering a mixed H∞/H2 control technique might reduce said overshoot while keeping a
lower average response, but this is beyond the scope of this chapter.

To obtain a more general view of the controller performance, 10000 time-based simulations
were conducted with distinct disturbance vectors generated following the aforementioned pro-
cedure. A new set α was also randomly selected at the beginning of each new simulation. The
scenario and controllers for N = 9 were taken into account, and the average output with a
range of one standard deviation is featured in Figure 3.4. Once more, it can be seen that the full
packet strategy was the best candidate to mitigate the influence of the exogenous disturbance,
even when accounting for a wider range of scenarios. Moreover, in accordance with Table 3.2,
the hold-input strategy performed more poorly than the zero-input.
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Figure 3.4: Mean system output with one standard deviation of 10000 time-based simulations with the
control strategies considering N = 9: Full Packet (—), Zero-input (– – –), and Hold Strategy
(· · ·). Initial conditions are x0 = [0 0 0 0]T . Attack sequence is κ(kt) = {9, 9, 9, . . . }. A new
set of α and a new exogenous disturbance vector w with duration k ∈ [0, 100] was randomly
selected at the start of each time-based simulation.

3.4 final remarks

This chapter presented design conditions for a packet-based state-feedback control for discrete-
time uncertain Cyber-Physical Systems (CPSs) under the presence of energy-limited exogenous
disturbances and DoS attacks from an energy-bounded attacker. The full packet strategy was
presented as well as adaptations to implement the hold and zero-input strategies. The H2 cost
was considered in the design of the controller and as a performance criterion. The proposed
strategies were able to stabilize the system, even under the presence of DoS attacks, and, as
shown in Table 3.1 and Table 3.2, the system becomes more difficult to stabilize and the H2

cost becomes higher as longer consecutive attacks are taken into account. In all of the considered
scenarios, the full packet control presented the best performance, when compared to the hold
and zero-input strategies.



4
C O N T RO L D E S I G N FO R C Y B E R - P H Y S I C A L U N C E RTA I N S Y S T E M S
U N D E R U N R E L I A B L E M A R K OV I A N N E T WO R K S U S C E P T I B L E T O
D E N I A L - O F - S E RV I C E AT TAC K S

In this chapter, the problem of packet-based state-feedback control for discrete-time Cyber-
Physical System (CPS) with time-invariant polytopic uncertainties is tackled. The design con-
ditions will aim to guarantee closed-loop stability even with the system utilizing an unreliable
network that may feature packet dropouts due to stochastic network limitations and Denial of
Service attacks (DoS attacks) from an energy-bounded attacker. The utilized network model
is presented in Section 2.4. Parameter-dependent Linear Matrix Inequalities (LMI) conditions
will be proposed with the goal of guaranteeing that the closed-loop system features Exponential
stability in the mean square sense with conditioning I (ESMS-CI). Numerical experiments are
provided comparing the full packet, hold-input, and zero-input strategies (as depicted in Sub-
section 2.2.1), as well as comparing the proposed network model with an adapted Gilbert-Elliot
model.

4.1 problem statement

Consider the following discrete-time uncertain model of the plant of a CPS:

x(k+ 1) = A(α)x(k) +B(α)uθk
(k), (4.1)

where x(k) ∈ Rnx is the state vector and uθk
(k) ∈ Rnu is the mode-dependent control input vec-

tor. The matrices A(α) ∈ Rnx×nx and B(α) ∈ Rnx×nu belong to a polytopic domain depending
on the vector α of time-invariant parameters, as presented in Section 2.1 with (2.2).

The utilized network model was presented in Section 2.4, with the attacks operating as seen
in Figure 2.1. Consider a discrete-time non-homogeneous Markov chain {θk; k ≥ 0} with a finite
state-space K = {1, . . . ,N + 2} where N is the maximum number of consecutive DoS attacks,
and the mode transition probabilities are as follows

pij(k) = Pr(θk+1 = j | θk = i),

which satisfies pij(k) ≥ 0 and ∑N+2
j=1 pij(k) = 1, ∀k ≥ 0. These mode transition probabilities are

all contained in the transition probabilities matrix Ψ(k) = |pij(k)|, i, j ∈ K. Matrix Ψ(k) fea-
tures m rows with uncertain or unknown probabilities. The resulting Λ-homogeneous polynomial
transition probability matrix Ψ(ξk) is defined as follows:

Ψ(ξk) =
ψ∑
z=1

ξk(z)Ψz, ξk = (ξk,1, . . . , ξk,m) ∈ (ΛZ1 × · · · × ΛZm) = Ωψ, (4.2)

37
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where z = 1, 2, . . . ,ψ, with ψ = Z1Z2 . . . Zm vertices and ξk = (ξk,1, . . . , ξk,m). ξk(z) are homo-
geneous monomials with degree m which are created by the ψ-tuple with all the ψ possible com-
binations obtained between the sets K1 = {ξk,11, . . . , ξk,1Z1} up to Km = {ξk,m1, . . . , ξk,mZm}.
See Section 2.4.1 for more details.

The mode-dependent control law utilized is as follows:

uθk
(k) = δθk

Kθk
x(k) + (1 − δθk

)Kθk
xl(k− 1), (4.3)

where Kθk
∈ Rnu×nx is the mode-dependent state feedback gain. A binary variable indicat-

ing transmission success or packet loss is defined based on the Markovian network state-space
K = {1, . . . ,N + 2}, and is described by

δθk
=

1, if θk = 1,

0, otherwise.
(4.4)

Noting that θk = 1 indicates a successful data transmission. If δθk
= 0, the controller has no

access to the current state measurement. It is, then, considered that the controller retains the last
transmitted state in its memory, denoted xl(k− 1). Moreover, xl(k) is updated by the following
equation:

xl(k) = δθk
x(k) + (1 − δθk

)xl(k− 1). (4.5)

By applying the control law (4.3) to system (4.1), the following closed-loop augmented Markov
jump linear system (MJLS) can be defined:

η(k+ 1) = F (θk,α)η(k), (4.6)

where η(k) =
[
x(k)T xl(k− 1)T

]T
∈ R2nx is the augmented state vector, and

F (θk,α) =

A(α) + δθk
B(α)Kθk

(1 − δθk
)B(α)Kθk

δθk
Inx (1 − δθk

)Inx

 . (4.7)

Note that the augmented system considers the current state measurement and includes the
update of the last transmitted measurement in the controller memory. Moreover, the plant
parametric uncertainties in function of the time-invariant parameter α do not depend on the
Markovian network, while the control law and xl(k) update rule do. This aspect is what defines
the overall augmented system as a MJLS.

The zero-input strategy, in turn, presents itself as a particular case, since it does not require
saving the last transmitted state measurement xl(k− 1). This way, the closed-loop system needs
not to be augmented and is described by

x(k+ 1) = G(θk,α)x(k), (4.8)
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where

Gi(θk,α) = A(α) + δθk
B(α)Kθk

. (4.9)

In the approached problem, the packet-based strategy can be employed to guarantee that the
actuator will have a different input for each mode, even if the communication channels are
unavailable. This strategy can be applied because of Assumption 2.1 that assumes a bounded
duration for the existence of attacks. The packet of control inputs is defined by

U(K) =
[
K1x(k) K2x(k) . . . KN+2x(k)

]
. (4.10)

The control inputs of the packet are designed based on the current state measurement. From
the actuator viewpoint, however, (4.6) applies, since in the presence of a transmission failure
or DoS attack, the utilized control input will be derived from a past measurement, as defined
by (4.3) and (4.5).

Remark 4.1

Hereafter in this chapter, the notation F (θk = i,α) = Fi(α) will be employed. The same
will apply to every other mode-dependent matrix or parameter.

4.2 main results

In this section, the design conditions for the mode-dependent state-feedback gains Ki for
i = 1, . . . ,N + 2 as in (4.3) through parameter-dependent LMIs are presented. The gains aim to
guarantee that (4.6) is ESMS-CI. The design conditions are presented in the following Theorem.

Theorem 4.1

If there exist symmetric positive definite matrices Pi(ξk,α) ∈ R2nx×2nx , and matrices
W ∈ Rnx×nx , Y ∈ Rnx×nx , and Zi ∈ Rnu×nx such that−Pi(ξk,α) ⋆

Φi P+
i −X −XT

 < 0, (4.11)

with

Φi =

A(α)W + δiB(α)Zi (1 − δi)B(α)Zi

δiW (1 − δi)Y

 , (4.12)

δi =

1, if i = 1,

0, otherwise.
(4.13)
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P+
i =

N+2∑
j=1

pij(ξk)Pj(ξk+1,α), (4.14)

X = diag(W ,Y ), (4.15)

then, the gains K1 = Z1W
−1, and Kj = ZjY

−1 for j = 2, . . . ,N + 2 guarantee that the
closed-loop system (4.6) is ESMS-CI for all i ∈ K, (α, ξk, ξk+1) ∈ ΛV × Ωψ × Ωψ.

Proof. Setting Z1 = K1W , and Zj = KjY for j = {2, . . . ,N + 2}, one can write (4.12) as

Φi =

A(α) + δiB(α)Ki (1 − δi)B(α)Ki

δiInx (1 − δi)Inx

 W ⋆

0nx×nx Y

 . (4.16)

Considering (4.15) and (4.7), it is possible to see that (4.16) is equivalent to Fi(α)X. This
way, (4.11) may be written as

−Pi(ξk,α) ⋆

Fi(α)X P+
i −X −XT

 < 0. (4.17)

Pre and post-multiplying (4.17) by M T = diag(X−T ,X−T ) and its transpose yields
−X−TPi(ξk,α)X−1 ⋆

X−TFi(α) X−TP+
i X

−1 −X−T −X−1

 < 0. (4.18)

Then, pre and post-multiplying (4.18) by RT =
[
Inx Fi(α)T

]
and its transpose gives

Fi(α)
TX−TP+

i X
−1Fi(α) −X−TPi(ξk,α)X−1 < 0, (4.19)

which, considering P+
i as in (4.14), yields the same condition presented by Lemma 2.2 for

V (ξk,α, k) = η(k)TX−TPi(ξk,α)X−1η(k). This concludes the proof. □

The mode-dependent controller just presented departs from Assumption 2.2 that dictates that
the system is able to differentiate between packet losses due to network limitations and DoS
attacks, as well as having a way to track how many consecutive time instants of attack the
network is under. This, however, may not be always possible. A solution would be utilizing a
mode-independent control akin to the Hold-input strategy, or employing the Zero-input strategy
and rendering the control inputs null whenever the transmission is not successful. On what
concern the Hold-input strategy, the design conditions are depicted in Corollary 4.1.
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Corollary 4.1

If there exist symmetric positive definite matrices Pi(ξk,α) ∈ R2nx×2nx , and matrices
W ∈ Rnx×nx , Z ∈ Rnu×nx , such that (4.11)holds with (4.13)-(4.14) and

Φi =

A(α)W + δiB(α)Z (1 − δi)B(α)Z

δiW (1 − δi)W

 , (4.20)

X = diag(W ,W ), (4.21)

then K = ZW−1 for i ∈ K is the state-feedback gains using the hold-input strategy that
assure the closed-loop system (4.6) is ESMS-CI for all (α, ξk, ξk+1) ∈ ΛV × Ωψ × Ωψ.

The proof of Corollary (4.1) follows the same lines as the proof of Theorem 4.1. The equivalent
packet of (4.10) utilized by this strategy is

U(K) =
[
Kx(k) Kx(k) . . . Kx(k)

]
. (4.22)

The design conditions for the zero-input strategy are presented in the following Corollary:

Corollary 4.2

If there exist symmetric positive definite matrices Pi(ξk,α) ∈ Rnx×nx , and matrices
X ∈ Rnx×nx , Z ∈ Rnu×nx , such that (4.11) is satisfied with

Φi = A(α)X + δiB(α)Z, (4.23)

and considering (4.13)-(4.14), then K = ZX−1 is the state-feedback gain using the zero-
input strategy that assure the closed-loop system (4.8) is ESMS-CI for i ∈ K, and for all
(α, ξk, ξk+1) ∈ ΛV × Ωψ × Ωψ.

The proof of this Corollary follows the same steps as in Theorem 4.1, with the appropriated
dimensions, by rewriting K = ZX, considering (4.8) as the closed-loop system and proceeding
from (4.17) onward. The equivalent packet of (4.10) for this strategy is:

U(K) =
[
Kx(k) 0 . . . 0

]
. (4.24)

Remark 4.2
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The number of scalar decision variables employed by Theorem 4.1 (NVT1), Corollary 4.1
(NVhold) and Corollary 4.2 (NVzero) is calculated as follows:

NVT1 = 2(nx)2 + (N + 2)(V ψ(2n2
x + nx) + nunx),

NVhold = (nx)
2 + V ψ(N + 2)(2n2

x + nx) + nunx,

NVzero = (nx)
2 + V ψ(N + 2)

(
n2
x + nx

2

)
+ nunx,

with ψ as defined by (4.2).

4.3 numerical examples

In this section, numerical experiments will be conducted to test the proposed mode-dependent
state-feedback control design technique considering a discrete-time uncertain CPS. The net-
work is unreliable and subjected to DoS attacks, and is modeled as described in Section 2.4
and Figure 2.2. Comparisons between the proposed network model and a classic Gilbert-Elliot
model will be conducted. Furthermore, comparisons will be drawn between the use of the full
packet, hold, and zero-input strategies. All tests were performed using the parsers YALMIP [105],
ROLMIP [112], and the solver MOSEK [106] combined with MATLAB 2016b.

4.3.1 Example 1:

Consider the following system borrowed from [40]:

A(α) = α1

 0.9520 0.0936

−0.9358 0.8584

+ α2λ

 0.9996 0.0824

−0.0082 0.6699

 , B(α) = α1

1

0

+ α2

0

1

 ,

where higher values of λ render the system more difficult to stabilize.
The transition probability matrix is created following (2.11) considering a maximum of N = 5

consecutive attacks and m = 2 rows with uncertain or unknown probabilities, and is presented
in the sequel:

Ψ =



0.5 c d 0 0 0 0

0.4 ? ? 0 0 0 0

g 0.05 0 ρ 0 0 0

g 0.05 0 0 ρ 0 0

g 0.05 0 0 0 ρ 0

g 0.05 0 0 0 0 ρ

0.5 0.5 0 0 0 0 0


, (4.25)
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where g = (1 − 0.05 − ρ), c =
[
0.05 0.15

]
and d =

[
0.35 0.45

]
. ρ is a parameter that defines

if the attacks will be longer. The closer ρ is to 1, the more likely the attacks will persist until
completing N consecutive time instants.

The scenario with N = 5 described by (4.25) is considered, as well as a scenario with N = 10,
which can be easily obtained by using the values of rows 3 to 6 of (4.25), extending them
in accordance to the positioning defined by (2.11). The value of λ is used to evaluate how
conservative both the control strategy and the network model were in function of ρ. Theorem 4.1
is used to design a full packet control strategy, as well as Corollary 4.1 for the hold-input and
Corollary 4.2 for the zero-input strategy. The results are displayed in Table 4.1.

Theorem 4.1 Corollary 4.2

ρ
N 5 10 5 10

0.50 1.1156 1.1156 1.1156 1.1156
0.60 1.1056 1.1016 1.1056 1.1016
0.70 1.0850 1.0765 1.0850 1.0765
0.80 1.0649 1.0518 1.0649 1.0518
0.85 1.0551 1.0399 1.0551 1.0399
0.90 1.0457 1.0284 1.0457 1.0284
0.95 1.0367 1.0174 1.0367 1.0174

NV 582 992 174 294

Table 4.1: λ in function of different values of ρ.

The hold-input strategy of Corollary 4.1 did not return any feasible solutions, indicating it
to be a far too conservative approach to the addressed problem. As seen in Table 4.1, the
increase in the probability of longer attacks renders the system more difficult to stabilize than
accounting for higher values of N . In Chapter 3, the use of Full packet control provided better
results in comparison to the zero-input strategy on what concerned H2, however, as seen here,
there is evidence that in problems aiming only to stabilize the closed-loop system, using robust
full packet controllers shows no advantage in comparison to the zero-input strategy, as they
obtained virtually the same results, with the difference laying in the fact that the zero-input
required fewer decision variables.

In the sequel, in order to compare how the network model influences how conservative the
approach is, an adapted Gilbert-Elliot model will be constructed based on (4.25). To do so, the
probabilities of its first row of the transition probability matrix will be utilized to refer to the
successful transmission mode, while the second row will have a lower bound according to the
second row of (4.1), and an upper bound following the modes 3 to 6. The transition probability
matrix will then be modeled with uncertain time-varying probabilities in its second row:

Ψ =

 0.5 0.5[
0.4 (1 − ρ− 0.05)

] [
0.6 (ρ+ 0.05)

]
 . (4.26)



44 chapter 4

Then, by using (4.26), ρ is increased and the highest feasible value of λ is found in the same
approach as in Table 4.1. The value of N is irrelevant since a Gilbert-Elliot model features only
two modes. This way, the following are considered to calculate the required number of decision
variables when using the Gilbert-Elliot model:

NVGB,T1 = 2(nx)2 + 2(V ψ(2n2
x + nx) + nunx),

NVGB,hold = (nx)
2 + 2V ψ2(2n2

x + nx) + nunx,

NVGB,zero = (nx)
2 + 2V ψ

(
n2
x + nx

2

)
+ nunx.

The results are then featured in Table 4.2. The Hold-input strategy returned no feasible solu-
tions.

ρ Theorem 4.1 Corollary 4.2
0.50 1.1129 1.1129
0.60 1.0985 1.0985
0.70 1.0694 1.0694
0.80 1.0409 1.0409
0.85 1.0273 1.0273
0.90 1.0142 1.0142
0.95 - -

NV 92 54

Table 4.2: λ in function of different values of ρ for the Gilbert-Elliot model.

The results of Table 4.2 show that, once again, the full packet and zero-input strategies were
equivalent, with the latter requiring fewer decision variables. The use of a Gilbert-Elliot model,
however, proved to be more conservative than utilizing the proposed network model, as the
values of λ were lower, and there were even cases where feasible results could not be found (as
for ρ = 0.95), in comparison to Table 4.1. This can stem from the fact that the Gilbert-Elliot
model is not able to so easily model the deterministic assumption of the attacker’s energetic
limitation, which bounds the attacks to a maximum N consecutive time instants.

4.3.2 Example 2:

An Angular Positioning System (APS) borrowed from [46] is considered. In this system, a mo-
tor points an antenna towards a flying moving target. Considering a sample time of 0.1s, the
discretized APS model is as follows:

A(α) =

1 0.1

0 1 − 0.1λ

 , B =

 0

0.1κ

 ,
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where 0.1s−1 ≤ λ ≤ 10s−1 is an uncertain parameter proportional to the coefficient of viscous
friction κ = 0.787rad−1V −1s−2.

Considering the transition probability matrix (4.25), where N = 5, a full packet state feed-
back controller is designed utilizing Theorem 4.1 and ρ = 0.9. 1000 time-based simulations are
conducted, in which a new set of α is selected at the beginning of each new simulation, and a
new set of ξk is randomly selected at each time instant. Figure 4.1 illustrates the mean value of
the states in the 1000 time-based simulations, as well as the interval defined by one standard
deviation. The considered initial condition is η(0) =

[
π −1.7 0 0

]T
.

Figure 4.1: Mean value of states x1(k) (—) and x2(k) (- - -) with confidence interval of 1 standard-
deviation from the 1000 time-based simulations with randomly selected ξk and α parameters.
The mode-dependent full packet state-feedback control generated by Theorem 4.1 is considered
and η(0) =

[
π −1.7 0 0

]T
.

In the sequel, the histogram indicating how often the system found itself in each mode during
the 1000 simulations is displayed in Figure 4.2.
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Figure 4.2: Histogram with the frequency of occurrence of each mode in the 1000 time-based simulations.

It can be seen that the proposed method resulted in a control strategy able to stabilize the
system even when, on average, the network was successfully transmitting in less than 30% of
the time.

To further illustrate the proposed control technique, a time-based simulation was randomly
selected from the previous set. States x1(k) (—) and x2(k) (- - -) are plotted in Figure 4.3. The
occurrence of the mode representing transmission failure is depicted in orange and the mode of
the DoS attacks is illustrated in red.
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Figure 4.3: Time-based simulation of x1(k) (—) and x2(k) (- - -) with the mode-dependent full packet
state-feedback control created with Theorem 4.1 considering a different randomly selected ξk
for each time instant. α =

[
0.4911 0.5089

]
and η(0) =

[
π −1.7 0 0

]T
. Transmission

failures are depicted in orange and DoS attacks in red.

As it is reinforced in higher detail by Figure 4.3, the designed control strategy was able to
stabilize the system even when suffering a high number of consecutive packet losses.

4.4 final remarks

This chapter has proposed new conditions to design mode-dependent packet-based state-feedback
controllers for discrete-time CPSs with time-invariant polytopic uncertainties. The CPSs utilizes
an unreliable network that suffers packet losses because of network limitations and DoS attacks,
which is modeled as depicted in Section 2.4 utilizing a non-homogeneous Markov chain with
uncertain and unknown transition probabilities. Comparisons between the full packet, hold-input,
and zero-input strategies were conducted, as well as a comparison between the proposed network
model and a traditional Gilbert-Elliot model. With the conducted numerical experiments, the
hold-input strategy proved to be the most ineffective and conservative approach, while the full
packet strategy and zero-input provided virtually the same performance. This may indicate that
for robust state-feedback controllers aiming only to stabilize the system under packet dropouts
the use of the full packet strategy may provide no advantage. However, future investigations
are required to prove this, mainly when considering parameter-dependent controllers. Moreover,
the reference tracking problem with the proposed network model and techniques is a promising
application to be analyzed, as the full packet strategy may prove to be more suitable for it. On
what concerns the network models comparison, the proposed network model proved to be, in the
considered example, less conservative than the Gilbert-Elliot model, with the latter even being
unable to provide feasible solutions in more extreme cases.





5
H ∞ F I LT E R D E S I G N FO R C Y B E R - P H Y S I C A L U N C E RTA I N S Y S T E M S
U N D E R U N R E L I A B L E M A R K OV I A N N E T WO R K S U S C E P T I B L E T O
D E N I A L - O F - S E RV I C E AT TAC K S

This chapter approaches the H∞ filtering problem for discrete-time Cyber-Physical System
(CPS) with time-invariant polytopic uncertainties. The system utilizes an unreliable network
that features stochastic packet losses due to transmission limitations and is subject to Denial
of Service attacks (DoS attacks). The attacker here considered is energetically bounded. The
network model presented in Section 2.4 is accounted for here. Linear Matrix Inequalities (LMI)
conditions that feature parameter-dependent slack variables are proposed aiming to obtain less
conservative conditions to design mode-dependent and mode-independent full-order robust filters.
Numerical experiments are presented to test the method’s performance, and comparisons are
drawn between the proposed network model and the traditional Gilbert-Elliot model.

5.1 problem statement

Consider the following discrete-time uncertain model of a CPS plant:

x(k+ 1) = A(α)x(k) +B(α)w(k),

z(k) = Cz(α)x(k) +Dz(α)w(k),

y(k) = Cy(α)x(k) +Dy(α)w(k),

(5.1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the control input, w(k) ∈ Rnw is the
exogenous input with finite energy (i.e., w ∈ ℓnw

2 [0, ∞))), y(k) ∈ Rny is the measured output,
and z(k) ∈ Rnz is the estimated output. The matricesA(α) ∈ Rnx×nx ,B(α) ∈ Rnx×nw , Cy(α) ∈
Rny×nx , Dy(α) ∈ Rny×nw , Cz(α) ∈ Rnz×nx and Dz(α) ∈ Rnz×nw belong to a polytopic domain
as presented in Section 2.1 with (2.2). It is assumed that A(α) is Schur stable.

The utilized network model is presented in Section 2.4, with the attacks operating as seen in
Figure 2.2. Consider a discrete-time non-homogeneous Markov chain {θk; k ≥ 0} with a finite
state-space K = {1, . . . ,N + 2} where N is the maximum number of consecutive DoS attacks,
and the mode transition probabilities are as follows

pij(k) = Pr(θk+1 = j | θk = i),

which satisfies pij(k) ≥ 0 and ∑N+2
j=1 pij(k) = 1, ∀k ≥ 0. These mode transition probabilities are

all contained in the transition probabilities matrix Ψ(k) = |pij(k)|, i, j ∈ K. Matrix Ψ(k) fea-

49
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tures m rows with uncertain or unknown probabilities. The resulting Λ-homogeneous polynomial
transition probability matrix Ψ(ξk) is defined as follows:

Ψ(ξk) =
ψ∑
z=1

ξk(z)Ψz, ξk = (ξk,1, . . . , ξk,m) ∈ (ΛZ1 × · · · × ΛZm) = Ωψ, (5.2)

where z = 1, 2, . . . ,ψ, with ψ = Z1Z2 . . . Zm vertices and ξk = (ξk,1, . . . , ξk,m). ξk(z) are homo-
geneous monomials with degree m which are created by the ψ-tuple with all the ψ possible com-
binations obtained between the sets K1 = {ξk,11, . . . , ξk,1Z1} up to Km = {ξk,m1, . . . , ξk,mZm}.
See Section 2.4.1 for more details.

The packet dropouts due to the network unreliability and DoS attacks will affect the measured
output y(k), as stated in Figure 2.2. To circumvent it, in an approach inspired by [35], it is
assumed that the last transmitted measurement ym(k) is stored in memory in the filter, here
defined by:

ym(k) = δθk
y(k) + (1 − δθk

)ym(k− 1), (5.3)

where the δθk
is a binary variable that follows the Markovian network state space

K = {1, . . . ,N + 2}, and which indicates if the transmission was successful, or was thwarted
by transmission failure or DoS attacks. δθk

is depicted by the following:

δθk
=

1, if θk = 1,

0, otherwise.
(5.4)

Consider the following full-order mode-dependent filter:

xf (k+ 1) = Afθk
xf (k) +Bfθk

ym(k),

zf (k) = Cfθk
xf (k) +Dfθk

ym(k),
(5.5)

where xf (k) ∈ Rnx is the filter state vector, zf (k) ∈ Rnz is the filter output, and ym(k) ∈ Rny

is the measured output that arrives at the filter, as defined in (5.3). Afθk
∈ Rnx×nx , Bfθk

∈
Rnx×ny , Cfθk

∈ Rnz×nx , Dfθk
∈ Rnz×ny . For simplicity’s sake, mode-dependent matrices will

be described as Afθk=i = Afi.
The estimation error is given by e(k) = z(k)− zf (k). Ultimately, by combining (5.1) with (5.3)

and the full-order filter (5.5), the augmented system that evaluates the filtering error is described
in the sequel:

η(k+ 1) = Ãi(α)η(k) + B̃i(α)w(k),

e(k) = C̃i(α)η(k) + D̃i(α)w(k),
(5.6)



5.2 main results 51

where η(k) =
[
x(k)T ym(k− 1)T xf (k)

T
]T

∈ Rn and e(k) ∈ Rnz , with n = 2nx + ny. The
matrices have compatible dimensions and are described by:

Ãi(α) =


A(α) 0nx×nx 0nx×nx

δiCy(α) (1 − δi)Iny 0ny×nx

δiBfiCy(α) (1 − δi)Bfi Afi

 , B̃i(α) =


B(α)

δiDy(α)

δiBfiDy(α)

 ,

C̃i(α) =
[
Cz(α) − δiDfiCy(α) −(1 − δi)Dfi −Cfi

]
, D̃i(α) = Dz(α) − δiDfiDy(α).

(5.7)

5.2 main results

In this section, the conditions to define and obtain the upper bounds of the H∞ are presented.
Then, the conditions to design a robust filter as in (5.5) with the goal of minimizing the H∞ norm
of the closed-loop system (5.6) are provided. The proposed technique was based on and adapted
from [60], as well as took inspiration upon [61], in a Networked Control System (NCS) context.
The method in said work allows the introduction of parameter-dependent slack variables to
design a dynamic filter for systems with polytopic uncertainties. Here, it is adapted to account for
the non-homogeneous Markovian network framework and to design a mode-dependent dynamic
filter.

Firstly, the definition of the H∞ norm from [35] is adapted for a Markov jump linear system
(MJLS) that uses a non-homogeneous Markov chain:

Definition 5.1

If the exists the scalar γ, then given an initial η(0) and θ0, (5.6) ∥H∞∥2 norm is bounded
by γ such that

∞∑
k=0

E (e(k)T e(k)) < γ
∞∑
k=0

w(k)Tw(k),

for all w(k) ∈ ℓnw
2 [0, ∞). E (·) is the mathematical expectation.

Moreover, the bounded real lemma that considers the proposed framework and system is
presented [34, 54].

Lemma 5.1

If there exist symmetric positive definite matrices Pi(ξk,α) ∈ Rn×n, such that

Ãi(α) B̃i(α)

C̃i(α) D̃i(α)

T P+
i 0

0 Inz

Ãi(α) B̃i(α)

C̃i(α) D̃i(α)

−

Pi(ξk,α) 0

0 γInw

 < 0, (5.8)
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with

P+
i =

N+2∑
j=1

pij(ξk)Pj(ξk+1,α), (5.9)

hold for i ∈ K, then (5.6) has a H∞ norm bounded by √
γ for non-null w ∈ ℓnw

2 signals,
and is Exponential stability in the mean square sense with conditioning I (ESMS-CI) for
all (α, ξk, ξk+1) ∈ ΛV × Ωψ × Ωψ, ∀k ≥ 0.

Proof. The proof for this Lemma is found, in detail, in [54]. □

Performing some manipulations, the following Lemma can be derived from Lemma 5.1:

Lemma 5.2

If there exist symmetric positive definite matrices Pi(ξk,α) ∈ Rn×n, such that
Pi(ξk,α) Ãi(α)TP

+
i 0 C̃i(α)T

⋆ P+
i P+

i B̃i(α) 0

⋆ ⋆ Inw D̃i(ξ)T

⋆ ⋆ ⋆ γInz


> 0, (5.10)

hold for i ∈ K and with P+
i as in (5.9), then (5.6) has a H∞ norm bounded by √

γ for
non-null w ∈ ℓnw

2 signals, and is ESMS-CI for all (α, ξk, ξk+1) ∈ ΛV × Ωψ × Ωψ, ∀k ≥ 0.

Proof. Pre and post-multiplying (5.10) by diag(γ
1
2 In, γ 1

2 In, γ 1
2 Inw , γ− 1

2 Inz ) and its transpose
yields

(γPi(ξk,α)) Ãi(α)T (γP
+
i ) 0 C̃i(α)T

⋆ (γP+
i ) (γP+

i )B̃i(α) 0

⋆ ⋆ γInw D̃i(ξ)T

⋆ ⋆ ⋆ Inz


> 0,

Setting Pi(ξk,α) = (γPi(ξk,α)) and P+
i = (γP+

i ) allows to write
Pi(ξk,α) Ãi(α)TP

+
i 0 C̃i(α)T

⋆ P+
i P+

i B̃i(α) 0

⋆ ⋆ γInw D̃i(ξ)T

⋆ ⋆ ⋆ Inz


> 0. (5.11)
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By pre and post-multiplying (5.11) by L T and its transpose, where

L T =


In 0 0 0

0 0 Inw 0

0 0 0 Inz

0 In 0 0


,

the following is obtained
Pi(ξk,α) 0 C̃i(α)T Ãi(α)TP

+
i

⋆ γInw D̃i(α)T B̃i(α)TP
+
i

⋆ ⋆ Inz 0

⋆ ⋆ ⋆ P+
i


> 0.

Through Schur’s complement, the following is found

Pi(ξk,α) 0

0 γInw

−

Ãi(α) B̃i(α)

C̃i(α) D̃i(α)

T P+
i 0

0 Inz

Ãi(α) B̃i(α)

C̃i(α) D̃i(α)

 > 0,

which is equivalent to the bounded real lemma condition of Lemma 5.1. □

With the aid of Finsler’s Lemma, as described in Section 2.6, parameter-dependent slack variables
will be selected to create less conservative LMI conditions to design the mode-dependent filter
departing from the following Lemma:

Lemma 5.3

If there exists the symmetric positive definite matrices Pi(ξk,α) ∈ Rn×n, and matrices
J (α) ∈ Rn×n, O(α) ∈ Rnw×n, G (α) ∈ Rn×n, F (α) ∈ Rnz×n, and the scalar variable γ,
such that

Pi(ξk,α) +J (α)Ãi(α) + Ãi(α)TJ (α)T ⋆

−J (α)T + G (α)Ãi(α) −P+
i − G (α) − G (α)T

B̃i(α)TJ (α)T +O(α)Ãi(α) B̃i(α)TG (α)T − O(α)T

F (α)Ãi(α) + C̃i(α) −F (α)

⋆ ⋆

⋆ ⋆

B̃i(α)TO(α)T +O(α)B̃i(α) + Inz ⋆

F (α)B̃i(α) + D̃i(α) γInz


> 0,

(5.12)



54 chapter 5

hold for i ∈ K, with P+
i as in (5.9), then (5.6) has a H∞ norm bounded by √

γ for non-null
w ∈ ℓnw

2 signals, and is ESMS-CI for all (α, ξk, ξk+1) ∈ ΛV × Ωψ × Ωψ, ∀k ≥ 0.

Proof. The condition (5.12) is equivalent to condition (iv) of Finsler’s Lemma, by considering
the following:

X =


J (α)

G (α)

O(α)

F (α)


, Q =


Pi(ξk,α) 0n×n 0n×nw C̃i(α)T

⋆ −P+
i 0n×nw 0n×nz

⋆ ⋆ Inw D̃i(α)T

⋆ ⋆ ⋆ γInz


, BT =


Ãi(α)T

−In
B̃i(α)T

0nz×n


, (5.13)

where a basis for the Nullspace of BT is

B⊥T =


In Ãi(α)T 0n×nw 0n×nz

0nw×n B̃i(α)T Inw 0nw×nz

0nz×n 0nz×n 0nz×nw Inz

 . (5.14)

Pre and post-multiplying (5.12) by B⊥T and its transpose yields the modified bounded real
lemma condition (5.10) of Lemma (5.2). □

The slack variables can be partitioned with the following structure:

J (α) =


K11(α) K12(α) 0nx×nx

K21(α) K22(α) 0ny×nx

K31(α) K32(α) 0nx×nx

 ,

K11(α),K31(α) ∈ Rnx×nx ,

K12(α),K32(α) ∈ Rnx×ny ,

K21(α) ∈ Rny×nx ,

K22(α) ∈ Rny×ny ,

(5.15)

O(α) =
[
Q1(α) Q2(α) 0nw×nx

]
, Q1(α) ∈ Rnw×nx , Q2(α) ∈ Rnw×ny , (5.16)

G (α) =


E11(α) E12(α) K

E21(α) E22(α) 0ny×nx

E31(α) E32(α) K

 ,

E11(α),E31(α),K ∈ Rnx×nx ,

E12(α),E32(α) ∈ Rnx×ny ,

E21(α) ∈ Rny×nx ,

E22(α) ∈ Rnx×ny ,

(5.17)

F (α) =
[
F1(α) F2(α) 0nz×nx

]
, F1(α) ∈ Rnz×nx , F2(α) ∈ Rnz×ny , (5.18)
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while Pi(ξk,α) can be subdivided by the symmetric matrices P11,i(ξk,α),P33,i(ξk,α) ∈ Rnx×nx ,
P22,i(ξk,α) ∈ Rny×ny , and matrices P12,i(ξk,α) ∈ Rnx×ny , P13,i(ξk,α) ∈ Rnx×nx , P23,i(ξk,α) ∈
Rny×nx , for i ∈ K:

Pi(ξk,α) =


P11,i(ξk,α) P12,i(ξk,α) P13,i(ξk,α)

P12,i(ξk,α)T P22,i(ξk,α) P23,i(ξk,α)

P13,i(ξk,α)T P23,i(ξk,α)T P33,i(ξk,α)

 . (5.19)

With these defined, the general Theorem for designing the dynamic filter is presented as
follows.

Theorem 5.1

If there exist symmetric matrices P11,i(ξk,α), P33,i(ξk,α) ∈ Rnx×nx , P22,i(ξk,α) ∈ Rny×ny ,
and matrices P12,i(ξk,α), K12(α), K32(α), E12(α), E32(α), K2,i ∈ Rnx×ny , P13,i(ξk,α),
K11(α), K31(α), E11(α), E31(α), K, K1,i ∈ Rnx×nx , P23,i(ξk,α) ∈ Rny×nx , K21(α),
E21(α) ∈ Rny×nx , K22(α), E22(α) ∈ Rny×ny , Q1(α) ∈ Rnw×nx , F1(α) ∈ Rnz×nx ,
Q2(α) ∈ Rnw×ny , Cfi ∈ Rnz×nx , F2(α), Dfi ∈ Rnz×ny and the scalar positive parame-
ter γ such that,

min γ, (5.20)

Pi(ξk,α) =


P11,i(ξk,α) P12,i(ξk,α) P13,i(ξk,α)

P12,i(ξk,α)T P22,i(ξk,α) P23,i(ξk,α)

P13,i(ξk,α)T P23,i(ξk,α)T P33,i(ξk,α)

 > 0, (5.21)



ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17 ϕ18

⋆ ϕ22 ϕ23 ϕ24 ϕ25 ϕ26 ϕ27 ϕ28

⋆ ⋆ ϕ33 ϕ34 ϕ35 ϕ36 ϕ37 ϕ38

⋆ ⋆ ⋆ ϕ44 ϕ45 ϕ46 ϕ47 ϕ48

⋆ ⋆ ⋆ ⋆ ϕ55 ϕ56 ϕ57 ϕ58

⋆ ⋆ ⋆ ⋆ ⋆ ϕ66 ϕ67 ϕ68

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ϕ77 ϕ78

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ϕ88



> 0, (5.22)

where,

ϕ11 = P11,i(ξk,α) +He(K11(α)A(α) + δiK12(α)Cy(α)),
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ϕ12 = P12,i(ξk,α) + (1 − δi)K12 +A(α)TK21(α)
T + δiCy(α)

TK22(α)
T ,

ϕ13 = P13,i(ξk,α) +A(α)TK31(α)
T + δiCy(α)

TK32(α)
T ,

ϕ14 = A(α)TE11(α)
T −K11(α) + δi(Cy(α)

TE12(α)
T +Cy(α)TKT

2,i),

ϕ15 = A(α)TE21(α)
T −K12(α) + δiCy(α)

TE22(α)
T ,

ϕ16 = A(α)TE31(α)
T + δi(Cy(α)

TE32(α)
T +Cy(α)TKT

2,i),

ϕ17 = A(α)TQ1(α)
T +K11(α)B(α) + δi(K12(α)Dy(α) +Cy(α)TQ2(α)

T ),

ϕ18 = A(α)TF1(α)
T +Cz(α)T + δi(Cy(α)

TF2(α)
T −Cy(α)TDfTi ),

ϕ22 = P22,i(ξk,α) + (1 − δi)He(K22(α)),

ϕ23 = P23,i(ξk,α) + (1 − δi)K32(α)
T ,

ϕ24 = (1 − δi)(E12(α)
T +KT

2,i) −K21(α),

ϕ25 = (1 − δi)E22(α)
T −K22(α),

ϕ26 = (1 − δi)(E32(α)
T +KT

2,i),

ϕ27 = (1 − δi)Q2(α)
T + δiK22(α)Dy(α) +K21(α)B(α),

ϕ28 = (1 − δi)(F2(α)
T −Dfi),

ϕ33 = W33,i(ξk,α),

ϕ34 = KT
1,i −K31(α),

ϕ35 = −K32(α),

ϕ36 = KT
1,i,

ϕ37 = K31(α)B(α) + δiK32(α)Dy(α),

ϕ38 = −CfTi ,

ϕ44 = −P+
11,i −He(E11(α)),

ϕ45 = −P+
12,i −E21(α)

T −E12(α),

ϕ46 = −P+
13,i −E31(α)

T −K,

ϕ47 = E11(α)B(α) −Q1(α)
T + δi(E12(α)Dy(α) +K2,iDy(α)),

ϕ48 = −F1(α)
T ,

ϕ55 = −P+
22,i −He(E22(α)),

ϕ56 = −P+
23,i −E32(α)

T ,

ϕ57 = E21(α)B(α) −Q2(α)
T + δiE22(α)Dy(α),

ϕ58 = −F2(α)
T ,

ϕ66 = −P+
33,1 −He(K),

ϕ67 = E31(α)B(α) + δi(E32(α)Dy(α) +K2,iDy(α)),

ϕ68 = 0nx×nz ,

ϕ77 = He(Q1(α)B(α) + δiQ2(α)Dy(α)) + Inw ,

ϕ78 = B(α)TF1(α)
T +Dz(α)T + δi(Dy(α)

TF2(α)
T −Dy(α)TDfTi ),

ϕ88 = γInz ,



5.2 main results 57

with,

δi =

1, if i = 1,

0, otherwise.

and where P+
11,i, P+

12,i, P+
13,i, P+

22,i, P+
23,i, P+

33,i are written after the generic matrix M+
i , with

M+
i =

N+2∑
j=1

pij(ξk)Mj(ξk+1,α), (5.23)

then for all i ∈ K, Afi = K−1K1,i, Bfi = K−1K2,i, Cfi and Dfi are the mode-dependent
matrices of the filter (5.5) that assures that (5.6) has a guaranteed cost H∞ bounded by
√
γ for non-null w ∈ ℓnw

2 signals, and is ESMS-CI for all (α, ξk, ξk+1) ∈ ΛV × Ωψ × Ωψ,
∀k ≥ 0.

Proof. The proof follows the same line as in Lemma 5.3 considering (5.15)-(5.19). □

The mode-dependent filter just presented departs from Assumption 2.2 that dictates that the
system is able to differentiate between packet losses due to network limitations and DoS attacks,
as well as having a way to track how many consecutive time instants of attack the network is
under. This however may not be always possible. A solution to it, whereas a more conservative
one, is to utilize a mode-independent filter. The design conditions to do so are presented in
Corollary 5.1.

Corollary 5.1

If open-loop (w = 0) system (5.1) is stable, and there exist symmetric matrices P11,i(ξk,α),
P22,i(ξk,α) ∈ Rny×ny , P33,i ∈ Rnx×nx , and matrices P12,i(ξk,α), K12, K32, E12, E32,
K2 ∈ Rnx×ny , P13,i(α), K11(α), K13(α), E11(α), E13(α), K, K1 ∈ Rnx×nx , P23,i ∈ Rny×nx ,
K21, E21 ∈ Rny×nx , K22, E22 ∈ Rny×ny , Q1 ∈ Rnw×nx , F1(α) ∈ Rnz×nx , Q2(α) ∈ Rnw×ny ,
F2(α), Cf ∈ Rnz×nx , Df ∈ Rnz×ny and the scalar positive parameter γ, such that (5.21)
and (5.22) are feasible, then Af = K−1K1, Bfi = K−1K2, Cf and Df are the mode-
independent matrices of the filter (5.5) for Afi = Af , Bfi = Bf , Cfi = Cf , and Dfi = Df

that assures that (5.6) has a guaranteed cost H∞ bounded by √
γ for non-null w ∈ ℓnw

2
signals, and is ESMS-CI for all i ∈ K, (α, ξk, ξk+1) ∈ ΛV × Ωψ × Ωψ, and ∀k ≥ 0.

Remark 5.1
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The number of scalar decision variables employed by Theorem 5.1 (NVT1) and Corollary 5.1
(NVC1) is defined by the following:

NVT1 = n2
x + (N + 2)(nx + ny)(nx + nz) + V (nx + ny)(nw + 4nx + 2ny + nz)

+ V ψ(N + 2)(2n2
x + 2nxny + nx +

n2
y

2 +
ny
2 ) + 1,

NVC1 = n2
x + (nx + ny)(nx + nz) + V (nx + ny)(nw + 4nx + 2ny + nz)

+ V ψ(N + 2)(2n2
x + 2nxny + nx +

n2
y

2 +
ny

2 ) + 1,

with ψ as seen in (5.2).

5.3 numerical experiments

In this section, numerical experiments will be conducted to test the proposed mode-dependent
and mode-independent filter design technique considering an uncertain CPS. The network is
unreliable and modeled as described in section 2.4 and Figure 2.2. Comparisons between the
proposed network model and a classic Gilbert-Elliot model will be conducted. All tests were
performed and the parameter-dependent LMIs were written using the parsers YALMIP [105],
ROLMIP [112], and the solver MOSEK [106] combined with MATLAB 2016b.

5.3.1 Example 1:

Consider the following discrete-time uncertain system, borrowed from [59]

A =

0 −0.5

1 1 + µ

 , B =

−6 0

1 0

 ,

Cy =
[
−100 10

]
, Dy =

[
0 1

]
,

Cz =
[
1 0

]
, Dz =

[
0 0

]
,

where |µ| ≤ 0.45, resulting in V = 2 vertices, and whose closed-loop system is described as
in (5.6).
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Considering a maximum of N = 5 consecutive attacks, the utilized transition probability
matrix (created based on (2.11)) with m = 2 rows with uncertain and unknown probabilities is
as follows:

Ψ =



0.45 c d 0 0 0 0

0.5 ? ? 0 0 0 0

f 0.05 0 ρ 0 0 0

f 0.05 0 0 ρ 0 0

f 0.05 0 0 0 ρ 0

f 0.05 0 0 0 0 ρ

0.45 0.55 0 0 0 0 0


, (5.24)

where f = (1 − 0.05 − ρ), c =
[
0.05 0.15

]
and d =

[
0.4 0.5

]
. ρ is a parameter that establishes

if longer attacks are more likely to occur. The closer the value of ρ is to 1, the higher the
probability that each attack that initiates will have a duration of N time instants.

Theorem 5.1 is utilized to obtain a mode-dependent filter and Corollary 5.1 to obtain a mode-
independent filter. The scenario with N = 5 described by (5.24) is taken into account, as well
as a scenario with N = 10, which is easily obtained by using the same values of rows 3 to 6
in (5.24), in accordance to the positioning defined by (2.11). The norm value in function of the
parameter ρ and the number of decision variables in function of N is displayed in Table 5.1

Theorem 5.1 Corollary 5.1

ρ
N 5 10 5 10

0.50 10.73 10.73 11.79 11.79
0.60 12.09 12.14 13.07 13.19
0.70 13.87 14.25 15.13 15.98
0.80 16.12 17.92 17.98 20.87
0.85 17.49 20.70 19.82 24.60
0.90 19.08 24.11 22.10 29.50
0.95 20.96 28.59 24.90 35.55

NV 986 1631 932 1532

Table 5.1: ∥H∞∥ cost in function of different values of ρ.

Through Table 5.1, it is evident that the probability of persisting in an attack (as seen in the
parameter ρ) affects the H∞ cost more than the maximum number N of attacks considered.
Moreover, even with higher probabilities of consecutive attacks, the method was able to provide
feasible results, whereas at the cost of needing to solve a somewhat high complexity problem, as
seen in the number of variables required. The mode-dependent filter designed by Theorem 5.1
provided the best costs. However, the mode-independent filter of Corollary 5.1 was also able to
supply competitive performances while requiring a relatively lower number of decision variables.
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This is useful to know, as it is far simpler to implement a filtering system that does not need to
detect in which mode the system finds itself.

In the sequel, a Gilbert-Elliot model as described by Figure 2.4 is proposed. The adapted
transition probability matrix is constructed using the first row of (5.24) to refer to the successful
transmission mode, while the second row of the adapted matrix has a lower bound according
to the second row of (5.24) and an upper-bound according to modes 3 to 6. This results in the
following, which is modeled as a matrix with uncertain time-varying probabilities in the second
row:

Ψ =

 0.45 0.55[
0.5 (1 − ρ− 0.05)

] [
0.5 (ρ+ 0.05)

]
 . (5.25)

Theorem 5.1 and Corollary 5.1 are once again utilized to respectively design a mode-dependent
and mode-independent filter according to (5.25). The value of N is irrelevant since a Gilbert-
Elliot model features only two modes. Thus, in this specific case, to calculate the number of
scalar decision variables required, the following holds

NVGB,T1 = n2
x + 2(nx + ny)(nx + nz) + V (nx + ny)(nw + 4nx + 2ny + nz)

+ 2V ψ(2n2
x + 2nxny + nx +

n2
y

2 +
ny
2 ) + 1,

NVGB,C1 = n2
x + (nx + ny)(nx + nz) + V (nx + ny)(nw + 4nx + 2ny + nz)

+ 2V ψ(2n2
x + 2nxny + nx +

n2
y

2 +
ny

2 ) + 1.

Table 5.2 displays the performance cost in function of ρ, as well as the number of decision
variables required.

ρ Theorem 5.1 Corollary 5.1
0.50 10.80 10.80
0.60 12.40 13.47
0.70 14.87 16.75
0.80 19.62 24.28
0.85 24.42 31.03
0.90 32.20 39.22
0.95 - -

NV 221 212

Table 5.2: ∥H∞∥ cost in function of different values of ρ for the Gilbert-Elliot model.

As seen in Table 5.2, using the equivalent Gilbert-Elliot model is a less complex problem
from the viewpoint of the number of decision variables required. However, the case for ρ = 0.95
did not provide feasible solutions. Moreover, the performance of the resulting filters is more
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conservative than what was obtained with the proposed network model (featured in Table 5.1),
mainly in scenarios with a higher value of ρ. This shows that the proposed network model is
less conservative and better represented the deterministic assumption of energy limitation of the
attacker.

5.3.2 Example 2:

Consider the system from [113], which consists of a mechanical system with two masses and two
springs. The discretized model with sample time 0.1s, borrowed from [114], is presented in the
sequel.

A1 = A2 =


0.99 0 0.1 0

0.01 0.99 0 0.1

−0.19 0.10 0.94 0

0.19 −0.19 0.01 0.90


, B1 = B2 =


0

0

0.01

0


,

Cy1 =
[
0.3 0 0 0

]
,

Cy2 =
[
1.7 0 0 0

]
,

Dy1 = Dy2 = 0, Cz1 = Cz2 =
[
0 1 0 0

]
,

Dz1 = Dz2 = 0.

For simplicity’s sake, the transition probability matrix (5.24) will be utilized considering
ρ = 0.9 and N = 5. The mode-dependent filter of Theorem 5.1 returned a guaranteed cost
of √

γ = 0.0967, having required 2912 decision variables.
To further test the method’s performance, 1000 time-based simulations, with a randomly

selected set of α for each simulation and ξk for each time instant, and null η(0). The interval
k ∈ [0, 170] and the exogenous disturbance w(k) = 10e−0.05k cos (0.1k) were considered. Utilizing√∑∞

k=0 e(k)
2/
∑∞
k=0w(k)

2 the H∞ cost of each simulation is calculated. The mean response
and the standard deviation of the H∞ cost was, respectively, 0.0354 and 0.0098. The mean
response with one standard deviation of zf (k) (- - -) and the mean response of the estimated
output z(k) (—) of the 1000 simulations are obtained and are featured in Figure 5.1. Note that
z(k) showed a null value of standard deviation, given that it does not depend on the network,
nor (in this particular system) is influenced by the parametric uncertainties.
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Figure 5.1: Mean z(k) (—) and mean zf (k) (- - -) with confidence interval of 1 standard-deviation from
the 1000 time-based simulations. A new set of α was randomly selected at each simulation and
a new ξk is randomly selected at each time instant. The mode-dependent filter of Theorem 5.1
is considered and η(0) is null.

Moreover, Figure 5.2 shows the histogram of how often the system found itself in each of the
modes in the 1000 simulations.

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7

Figure 5.2: Histogram with the frequency of occurrence of each mode in the 1000 time-based simulations.
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It can be seen that even with successful transmissions less than 30% of the time, the filter
was able to perform its function and mitigate the impact of the exogenous disturbance in the
output. The obtained mean value of the H∞ cost showed that it was even smaller than the one
guaranteed by design, indicating that the latter shows a somewhat conservative value compared
to the actual operation of the filter.

In the sequel, a random simulation is selected to better illustrate the evolution of the modes in
function of time and is shown in Figure 5.3. The filter output zf (k) (- - -) and the estimated out-
put z(k) (—) are displayed. The modes representing transmission failure are depicted in orange
and DoS attacks in red. Using

√∑∞
k=0 e(k)

2/
∑∞
k=0w(k)

2 returns a cost of 0.0303. Once again,
it can be seen that the filter was able to perform as expected, even with frequent consecutive
packet losses, and that the calculated cost had a value lower than the one guaranteed in the
design stage.

Figure 5.3: z(k) (—) and zf (k) (- - -) with the mode-dependent filter considering a different randomly
selected ξk for each time instant. α =

[
0.5234 0.4766

]
and η(0) is null. Transmission failures

are depicted in orange and DoS attacks in red.

The values of y(k) (—) and ym(k) (- - -) of the previous case are then displayed in Figure 5.4
to illustrate how the attack impacts the measured output that arrives at the filter.
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Figure 5.4: y(k) (—) and ym(k) (- - -) considering a different randomly selected ξk for each time instant.
α =

[
0.5234 0.4766

]
and η(0) is null. Transmission failures are depicted in orange and DoS

attacks in red.

5.4 final remarks

This chapter presented parameter-dependent LMI conditions to design mode-dependent and
mode-independent full-order filters considering the H∞ cost for discrete-time CPSs with time-
invariant polytopic uncertainties and in an unreliable network subject to DoS attacks. The
proposed method utilizes parameter-dependent slack variables in order to obtain less conserva-
tive results. The network model utilized is the one proposed in Section 2.4, which is created
using a non-homogeneous Markov chain that contains uncertain and unknown transition proba-
bilities combined with a finite state chain that accounts for the deterministic assumption of the
attacker’s energetic limitations. Numerical tests illustrated the method performance, and that a
high probability of longer attacks affects the H∞ cost more than accounting for larger numbers
of maximum consecutive attacks. Moreover, comparisons showed that utilizing a Gilbert-Elliot
model instead of the proposed one returned more conservative results, or even resulted in unfea-
sible problems.
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C O N C L U S I O N S A N D P O S S I B L E F U T U R E D I R E C T I O N S

This work has proposed new Linear Matrix Inequalities (LMI) conditions for the state-feedback
control design of discrete-time Cyber-Physical Systems (CPSs) with polytopic uncertainties with
the presence of exogenous disturbances and Denial of Service attacks (DoS attacks) from an
attacker with energetic constraints. A packet-based approach based on three different strategies
was considered. At the first moment, only the attacks were taken into account, with the closed-
loop system being modeled as an uncertain switched system.

In the sequel, a new Markovian network model was proposed to model both stochastic trans-
mission failures due to network limitations and energy-bounded DoS attacks, both in the context
of an unreliable network. The proposed model was constructed upon a non-homogeneous Markov
chain with a finite number of states (reflecting the energetic limitations of the attacker) and un-
certain and unknown probabilities that are modeled after time-varying parameters, aiming to
easily encompass a wider array of more or less conservative scenarios. Moreover, accounting
for the proposed network model, the problems of state-feedback control and filter design were
tackled, both with mode-dependent and mode-independent strategies.

Several numerical experiments were conducted to test the design methods, and many conclu-
sions could be drawn from the different strategies employed, both in what concerns performance
as well as numerical complexity in the design stage. The proposed control methods and strate-
gies were able to guarantee stability, while the filter design technique provided satisfactory
performance even in scenarios where the network operation was more precarious. Furthermore,
tests were made comparing the suggested network model with a traditional network model with
packet loss from the literature, which resulted in promising evidence that the proposed model is
relatively less conservative, more versatile, and more adequate to model the approached problem.

6.1 future directions

• Event-based control strategies: Event-based control strategies can be employed in a
network subjected to DoS attacks and stochastic packet losses in order to reduce packet
transmission rates and mitigate the attacker impact in the system. Some works have shown
them to be a promising technique in this sort of problem [115].

• Fault-tolerant control: Fault-tolerant control may be employed to mitigate the impact
of the packet losses, more specifically, techniques based on Fault Hiding [116, 117]. These
techniques do not require changing the controller structure or design, as they, instead,
insert reconfiguration blocks (virtual sensors and/or virtual actuators) in the link sen-
sor/controller and/or controller/actuator seeking to maintain the system performance and
stability during an attack or transmission failure. In [118], for instance, virtual actuators

65



66 conclusions and possible future directions

were utilized against DoS attacks in the controller/actuator network. However, there is
more to explore in this approach like, for instance, considering the simultaneous use of
virtual sensors and actuators [119] in the problem addressed in this dissertation.

• Data-driven control: Data-driven techniques may be applied to obtain model-free con-
trol design methods. This would reduce the necessity for precise knowledge of both system
and network models to design effective control strategies. Works like [120–122] have pro-
vided some steps in this path.

6.2 publications

The publications with the contributions found in this manuscript are listed below

(i) P. M. Oliveira, J. M. Palma, M. J. Lacerda, "H2 state-feedback control for discrete-
time cyber-physical uncertain systems under DoS attacks", In Applied Mathematics and
Computation, vol 452, pp. 127091, (2022).

(ii) P. M. Oliveira, J. M. Palma, M. J. Lacerda, "Control Design for Cyber-physical uncertain
systems under Unreliable Markovian Network Susceptible to Denial-of-Service Attacks".

(iii) P. M. Oliveira, J. M. Palma, M. J. Lacerda, "Filter design for Cyber-physical systems
against DoS attacks and unreliable networks: A Markovian approach".

Where (ii) and (iii) are under revision. Additional publications concerning related topics, and
that were developed during the Master’s research, are listed in the sequel

(i) P. M. Oliveira, J. M. Palma, E.G. Nepomuceno, M. J. Lacerda, "Reinforcement learning
for control design of uncertain polytopic systems", In Information Sciences, vol 625, pp.
417-429, (2023).

(ii) M. J. Lacerda, P. M. Oliveira and J. M. Palma, "Control design for cyber-physical
systems under DoS attacks", In 2022 IEEE International Conference on Automation/XXV
Congress of the Chilean Association of Automatic Control (ICA-ACCA), Curicó, Chile, pp.
1-6 (2022).

(iii) R. Fuentes, P. M. Oliveira, L. P. Carvalho, M. J. Lacerda, J. M. Palma, "Autonomous
Vehicle Platoon Packet-Based Control Problem Under Denial-of-Service Attacks", In CON-
TROLO 2022: Proceedings of the 15th APCA International Conference on Automatic Con-
trol and Soft Computing, Caparica, Portugal. Cham: Springer International Publishing, p.
474-486 (2022).

(iv) P. M. Oliveira, P. S. P. Pessim, J. M. Palma, M. J. Lacerda, "Reference tracking con-
trol for cyber-physical systems under DoS attacks", In 2021 IEEE CHILEAN Confer-
ence on Electrical, Electronics Engineering, Information and Communication Technologies
(CHILECON), Valparaíso, Chile, p. 1-6 (2021).
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(v) P. M. Oliveira, R. C. L. F. Oliveira, J. M. Palma, M. J. Lacerda, "State-feedback memory
control for uncertain cyber-physical systems under Denial-of-Service attacks" In Proceed-
ings of the 22nd IFAC World Congress, Yokohama, Japan (2023).

Where (v) has been accepted, but not yet published.
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